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Abstract: Cold-water coral reefs are hotspots of biological diversity and play an important role as
carbonate factories in the global carbon cycle. Reef-building corals can be found in cold oceanic
waters around the world. Detailed knowledge on the spatial location and distribution of coral
reefs is of importance for spatial management, conservation and science. Carbonate mounds (reefs)
are readily identifiable in high-resolution multibeam echosounder data but systematic mapping
programs have relied mostly on visual interpretation and manual digitizing so far. Developing more
automated methods will help to reduce the time spent on this laborious task and will additionally
lead to more objective and reproducible results. In this paper, we present an attempt at testing
whether rule-based classification can replace manual mapping when mapping cold-water coral
carbonate mounds. To that end, we have estimated and compared the accuracies of manual mapping,
pixel-based terrain analysis and object-based image analysis. To verify the mapping results, we created
a reference dataset of presence/absence points agreed upon by three mapping experts. There were
no statistically significant differences in the overall accuracies of the maps produced by the three
approaches. We conclude that semi-automated rule-based methods might be a viable option for
mapping carbonate mounds with high spatial detail over large areas.

Keywords: carbonate mound; cold-water corals; bathymetry; automatic mapping; manual mapping;
classification; map accuracy

1. Introduction

Coral reefs, which are frequently associated with warm, shallow and photic tropical seas, are also
found widespread in deep waters of continental shelves, slopes, seamounts and ridge systems around
the world [1]. Such cold-water coral (CWC) reefs are of high importance since they contribute to
increased biodiversity [2], create suitable conditions for nurseries for fish larvae [3,4], provide food to
many organisms [5,6] and act as carbonate factories [7,8].

At the same time, CWC reefs are fragile and slow-growing three-dimensional structures that are
vulnerable to various anthropogenic impacts, such as demersal fishing [9–11], mining [12], hydrocarbon
drilling [13] and climate change (ocean warming [14] and acidification [6,15]). Knowledge about their
spatial distribution and habitat requirements is crucial to be able to prevent or minimize damage to
CWC reefs.

CWCs are generally restricted to oceanic waters with temperatures of 4–12 ◦C, which translates to
water depths of approximately 50–1000 m at high latitudes and down to 4000 m at low latitudes [1].
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CWCs in the north-east Atlantic Ocean tolerate a wide range of environmental conditions although
they appear to be limited to intermediate water masses within a certain density envelope [16]. At local
scales, CWC occurrence is linked to the availability of fresh labile organic matter [17] and the presence
of hard substrate for larval settlement. CWC reefs frequently occur on positive-relief landforms, such as
bedrock ridges and submarine slide terrains [18,19]. Glacial landforms, such as iceberg ploughmarks,
drumlins and megascale glacial lineations may provide hard bottom substrates, which are frequently
exposed to enhanced currents that carry food towards the reef structures [18,20].

There are different approaches of mapping CWC species and reefs with the aim to provide
crucial information for marine spatial planning and conservation. One relies on coral reef databases,
such as those from the United Nations Environment World Conservation Monitoring Centre [21].
Databases provide occurrence records, but spatial coverage is variable and limited while positioning
accuracy might occasionally be low, e.g., when fishermen’s records are included. Another more
widespread approach involves the species distribution modelling of framework-building. Based on
records of the presence (and absence) of CWC species and relevant environmental variables, it is
feasible to spatially predict the probabilities of occurrence of coral species, such as Lophelia pertusa.
However, such models might perform poorly when tested against independent field validation data
due to the lack of recorded species absences, low precision of bathymetry models and lack of data
on the geomorphology and substrate at scales that are appropriate to the modelled taxa [22]. A third
approach is directly mapping the carbonate mounds that are the geological products of CWC reefs [23].
This is becoming possible with the increased availability of high-resolution multibeam echosounder
(MBES) data. Although case studies have been presented that demonstrate how carbonate mounds
can be mapped in a semi-automated way [24,25], manual mapping is still commonplace [26].

Carbonate mounds are comprised of different zones or facies [27], ranging from living corals to
dead coral matrix to coral rubble. Such facies zonation is not recognizable even in high-resolution
MBES data but a skilled analyst can identify mound features in shaded relief maps [28]. In Norwegian
offshore waters, the marine mapping program MAREANO (Marine AREA database for Norwegian
coast and sea areas) has published regional-scale maps of the spatial distribution of bioclastic sediments
(Figure 1), which are essentially sediments interpreted to originate from living or dead CWC reefs [26].
These maps are based on expert interpretation and manual digitizing. These methods that typically
may risk being subjective and time-consuming could be improved by utilizing semi-automated
mapping methods.

The main objectives of this study are (1) to develop and test semi-automated rule-based
methods and (2) to assess whether such methods could replace manual methods in the future.
We compare the mapping outputs from two different semi-automated approaches and manual expert
interpretation against a reference dataset of carbonate mound presence and absence. The goal is to
investigate if semi-automated rule-based methods produce more accurate, quicker, repeatable and
cost-efficient products.

2. Methods

Among a range of possible semi-automated methods of mapping carbonate mounds, we selected
two for this study: Geographic Object-Based Image Analysis (GEOBIA) and classification based on terrain
analysis of pixels (Figure 1). The mapping experiments were conducted separately by two individual
researchers, with a third making a manually digitized map based on expert interpretation. All three
method testers were working independently but all had access to the same bathymetry dataset and
derived terrain variables (Table 1). Terrain variable datasets (BPI and Surface area to Planar area)
were derived from the bathymetry using the Benthic Terrain Modeler tool for ESRI ArcGIS [29].
Previous works [26,30,31] have suggested that suitable derivatives of bathymetry for classification
of carbonate mounds are the slope, curvature and bathymetric positioning index (BPI). In addition,
we included surface area to planar area and second-order polynomial transformation, which were
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used to increase precision in creating the reference dataset. In this study, GEOBIA was conducted
using the software eCognition [32] and all bathymetric derivatives were produced in ESRI ArcGIS.
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Figure 1. Flowchart summarizing the experiment.

Table 1. Bathymetric derivates utilized in the study.

Derivative Description Reference

Slope [◦] The maximum slope gradient. [33]
Curvature The rate of change of slope. [33]

Profile and plan curvature Profile curvature is measured parallel to the slope, plan curvature perpendicular. [33]
Bathymetric positioning

index (BPI) [m] Vertical position of a cell relative to its neighborhood. [34]

Surface area to Planar area * Computes a ratio between the three-dimensional surface area and the planar area of the surface. [29]
Second order polynomial transformation * Creates bend or curved adjusted transformation of the dataset [35]

* Derivates only used to produce the reference dataset.

2.1. Data Input and Study Area

We performed the analyses with data from a 76 km2 area located on Skjoldryggen on the
continental shelf in Northern Norway with water depth of 270–680 m (Figure 1). The carbonate
mounds in the study area are typically elongated, positive-relief features, which are often 10–20 m
wide and 30–90 m long. Many curvilinear, kilometer-long iceberg ploughmarks of varying relief
intersect the study area, measuring up to 100 m berm to berm (Figure 2c–e). Skjoldryggen is a very
large terminal moraine, marking the furthest advance of the full-glacial Fennoscandian ice sheet
located offshore Norway [36]. Bioclastic sediment distribution has previously been mapped in this
area. Shaded relief and terrain variables were derived from a MBES bathymetry dataset with a
horizontal resolution of 5 m × 5 m.
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seen growing in a NW–SE direction on a surface furrowed by iceberg plough marks (c–e). 

2.2. Manual Digitizing  

In manually digitizing mound features in ESRI ArcMap, the curvature (including plan and 
profile curvature) and slope were found to be the terrain variables that best aided expert 
interpretation of the study area. To accurately outline the features and to distinguish between 
assumed carbonate mounds and any other ridges or mounds present in the area that are related to 
iceberg plough marks (Figure 3), the interpreter used the shaded relief map. The scale of digitizing 
was approximately 1:5000, meaning that in locations where mounds were clustered, these were 
clumped together into larger polygons rather than separate small polygons in accordance with the 
mapping scale. 

Figure 2. (a) Location of study area located on Skjoldryggen on the Mid-Norwegian continental shelf.
(b) Close-up of study area; also shown are bioclastic sediments mapped by the MAREANO program as
a proxy for CWC carbonate mounds [26]. (c) Area presented later in Figures 4 and 5. (d) Area presented
later in Figure 3. (e) Area presented later in Figure 8. Elongated carbonate mounds can be seen growing
in a NW–SE direction on a surface furrowed by iceberg plough marks (c–e).

2.2. Manual Digitizing

In manually digitizing mound features in ESRI ArcMap, the curvature (including plan and profile
curvature) and slope were found to be the terrain variables that best aided expert interpretation of the
study area. To accurately outline the features and to distinguish between assumed carbonate mounds
and any other ridges or mounds present in the area that are related to iceberg plough marks (Figure 3),
the interpreter used the shaded relief map. The scale of digitizing was approximately 1:5000, meaning
that in locations where mounds were clustered, these were clumped together into larger polygons
rather than separate small polygons in accordance with the mapping scale.
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2.3. Pixel-based Terrain Analysis

To automatically identify carbonate mounds in the bathymetry dataset, the method tester working
with ESRI ArcGIS raster-based tools started by making a visual assessment of the available terrain
variables (Table 1). The aim was to identify a suitable variable that could reliably differentiate between
mound-like features and other morphological elements, such as iceberg ploughmarks. A number of
specialized tools for terrain modeling are available as extensions to the ArcGIS package, including those
found in the toolsets of Benthic Terrain Modeler [29] and Geomorphometry & Gradient Metrics [35].
These were initially considered for this study but were deemed no more suitable for this relatively
simple presence/absence categorization than standard ArcGIS Spatial Analyst tools. Following the
visual inspection of the products of various tools, a small-neighborhood bathymetric positioning index
(BPI3) was selected as the basis for further analysis. BPIs are scale dependent [34]. They highlight
different terrain features based on the relation between the size of the feature, the image resolution
and the neighborhood size of the BPI. The chosen BPI3 best highlighted the carbonate mounds relative
to iceberg ploughmark berms. The workflow is summarized below and in Figure 4.

• Selecting a cut-off value: The BPI3 raster data were initially displayed in a GIS with different
raster classification methods to facilitate the selection of a cut-off value. After visual examination
of the results for false positives, we decided upon a cut-off value of +0.3 to classify the BPI3 raster
into the presence and absence of mounds. With the raster resolution and feature properties given
in this case, a BPI3 value that is higher than 0.3 is likely to represent a mound feature.

• Creating polygons from classified raster data: The ArcGIS Raster to Polygon tool was used to
create a layer of polygons representing high-BPI areas.

• Buffering polygons: A BPI-based method of identifying elevated structures will predominantly
highlight the highest elevations. By adding a 10-m buffer zone, we aim to include the whole area
of each mound feature in the study area (Figure 5). The size of the buffer was selected after trials
and visual assessment of the results.
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• Removing results based on polygon size: Many false positives in pixel-based classification will
be single cells that happen to have a value above the cut-off limit as we would risk missing actual
features if we set the cut-off value too high. These can optionally be removed at the polygon stage
by deleting polygons that are smaller than a specified size (700 m2).
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2.4. GEOBIA

In GEOBIA, a crucial first step is image segmentation [37,38], in which the image is divided into
non-overlapping polygons (objects) in image space based on homogeneity [39] in order to minimize
heterogeneity within image objects [25]. These objects are the main analysis units, which make
object-based classification fundamentally different from pixel-based methods. The resulting image
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objects can be characterized by various features, such as layer values (mean, standard deviation,
skewness, etc.), geometry (extent, shape, etc.) and image texture. The subsequent classification is based
on combinations of these image object features. This can be performed by systematically applying rules
that formulate the analyst’s understanding of the image or in a data-driven way through supervised
classification (e.g. machine learning). Here, rule-based classification was performed. All rule set
parameters were selected following trials and visual assessment of the results. We used eCognition
software v9.2 for GEOBIA analysis. The workflow is summarized below and in Figure 6.

• Segmentation: all bathymetric derivatives were imported to eCognition [32] and segmented using
the multiresolution segmentation with a scale parameter of 5 and composition of homogeneity
criterion compactness of 0.1. A weighting of 2 was given to BPI5, BPI20, slope and curvature,
while 1 was given to the second order polynomial transformation.

• Classification: a rule-based classification of the objects was performed. The following rules were
applied: mean value of BPI5 and BPI20 ≥ 0, mean slope ≥ 5, standard deviation of the slope ≥
2.3 and standard deviation of curvature ≥ 20.

• Export to ArcGIS: the classified data were exported to an ArcGIS shapefile as a smoothed polygon.
• Buffering polygons: A 5-m buffer was applied around the classified polygons with the aim to

include the lower parts of carbonate mounds. The size of the buffer was selected after trials and
visual assessment of the results (Figure 7).
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2.5. Reference Data and Accuracy Assessment

Estimating the accuracies of the three map outputs involves three elements: sampling design,
response design and analysis of map accuracy [40,41].

2.5.1. Sampling Design

We selected a stratified-random sampling design with the maximum extent of carbonate
mounds (as derived by merging all three outputs) and the absence of mounds as the two strata.
Stratified random sampling is a recommended practical design that satisfies the basic accuracy
assessment objectives [40]. The sample size was estimated according to the following formula [40,42]:

n =
(∑ WiSi)

2[
S
(
Ô
)]2

+ (1/N)∑ WiS2
i

(1)

where N is the number of units in the region of interest, S
(
Ô
)

is the standard error of the estimated
overall accuracy that we would like to achieve, Wi is the mapped proportion of area of class i and Si is
the standard deviation of stratum i, Si =

√
Ui(1−Ui) with Ui being the user’s accuracy of class i.

2.5.2. Response Design

Once the reference data points were created (Figure 8), these were labelled by three experts based
on a visual assessment of higher-resolution (2 m × 2 m) derivatives (plus surface area to planar area)
and shaded relief maps (Figure 1). The reference labelling protocol required the analysts to label the
reference points as carbonate mound presence or absence and give a subjective confidence rating
(high, moderate, low). Assessments were initially carried out independently. When there was any
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2.5.3. Analysis

The predicted classes (mound presence or absence) were attached to the reference data set using a
Spatial Join in ArcGIS. Accuracies were analyzed using the function confusionMatrix() of the package
caret [43] in R. We assessed the accuracy of the predictions with three widely applied metrics, which can
be derived from a contingency table (Table 2). These are namely the overall accuracy (percent classified
correctly, PCC), sensitivity and specificity. PCC is the proportion of correctly classified presences
and absences (Table 2 and Equation (2)). Sensitivity is the amount of true presence predictions as
a proportion of the total number of presence observations (Table 2 and Equation (3)). Specificity is
the amount of true absence predictions as a proportion of the total number of absence observations
(Table 2 and Equation (4)).

PCC =
(TN + TP)

(TN + FN + FP + TP)
(2)

Sens =
TP

(FN + TP)
(3)

Spec =
TN

(TN + FP)
(4)
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Table 2. Contingency table for presence–absence predictions and selected associated accuracy metrics.

Observed Absence Observed Presence

Predicted absence True negative (TN) False negative (FN)
Predicted presence False positive (FP) True positive (TP)

The statistical significance of the differences in the estimated overall accuracies of the maps was
tested with McNemar’s χ2 test for related samples with continuity correction [44]. From the calculated
χ2 values and the degrees of freedom (df = 1), a p-value can be derived from published tables or online
calculators (e.g., https://www.socscistatistics.com/pvalues/chidistribution.aspx). For a p-value of
0.05, the χ2 value needs to be higher than 3.84.

3. Results

3.1. Reference Data

The maximum extent of carbonate mounds accounted for was 12.3% of the total area and hence,
the absence of mounds had a relative area of 87.7%. The number of units in the study area was
3271 individual polygons. Based on previous experience [45], we estimated user accuracies of 0.9 for
the mound presence and 0.85 for mound absence. We specified a target standard error for an overall
accuracy of 0.02. Hence, we estimated a sample size of 303 according to Equation (1). A proportional
allocation of sample points would have resulted in 37 samples for mound presence and 266 for mound
absence. To allow for a sufficient number of samples for mound presence, we allocated 100 sample
points to this class and the remainder (203) to the mound absence class.

The class labels assigned independently by the three analysts agreed in 280 out of 303 cases
(92.4%). When there was disagreement, the confidence in the labelling was typically rated as low
or moderate. After a consensus was reached in undecided cases, 73 sample points were labelled as
mound presence and 230 as mound absence, leading to a prevalence of 0.24 and a no-information rate
(NIR) of 0.76 (Table 3).

Table 3. Summary of the reference dataset.

No. of Observations Fraction Meaning

Presence 73 0.241 = Prevalence
Absence 230 0.759 = No-information Rate

Sum 303 1

3.2. Map Accuracy

Based on the reference dataset, we estimated the map accuracies of the three different approaches
(Table 4). All methods achieved overall accuracies (PCC) above the no-information rate (NIR = 0.759).
Differences in PCC were small, ranging from 91.09% (manual) to 89.11% (terrain analysis) to 88.45%
(GEOBIA). Furthermore, the 95% confidence intervals overlapped (Figure 9). In fact, differences in
PCC were not significant based on McNemar’s χ2 test for related samples with continuity correction
(Table 5).

The sensitivity was highest for the terrain analysis with 80.82% and lowest for GEOBIA
with 64.38%. On the other hand, specificity was highest with 96.09% for both manual and
GEOBIA classification.

https://www.socscistatistics.com/pvalues/chidistribution.aspx
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Table 4. Contingency table for presence–absence predictions with results for 3 classifications. PA, PP,
OA and OP denotes predicted absence/presence or observed absence/presence, respectively.

Manual Terrain Analysis GEOBIA

OA OP OA OP OA OP
PA 221 18 211 14 221 26
PP 9 55 19 59 9 47

PCC 0.9109 0.8911 0.8845
95% CI (0.873, 0.9405) (0.8505, 0.9238) (0.843, 0.9182)

NIR 0.7591 0.7591 0.7591
P-Value [Acc > NIR] 7.40E-12 4.44E-09 2.85E-08

Sensitivity 0.7534 0.8082 0.6438
Specificity 0.9609 0.9174 0.9609
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Table 5. Evaluation of statistical significance of differences in classification accuracy based on
McNemar’s χ2 test for related samples with continuity correction. For a p-value of 0.05, the χ2

value needs to be higher than 3.84.

p-values\χ2 Manual Terrain Analysis GEOBIA

manual - 0.521 1.225
terrain analysis 0.471 - 0.025

GEOBIA 0.268 0.874 -

3.3. Spatial Comparison

Manual digitalization produced 3559 polygons (Table 6). The semi-automated classification based
on pixel-based analysis resulted in 3247 polygons, while GEOBIA gave 4866 features. The mapped
carbonate mound areas amounted to 6.01 km2, 7.35 km2 and 5.01 km2 for manual mapping, terrain
analysis and GEOBIA, respectively. A comparison of the different map outputs is shown in Figure 10.
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Table 6. Mapped carbonate mounds expressed as the number of polygons and area by method.

Manual Terrain Analysis GEOBIA

Number of polygons 3559 3247 4866
Area (km2) 6.01 7.35 5.01
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4. Discussion

We have presented three different methods (manual digitization, pixel-based terrain analysis
and object-based image analysis) for classifying carbonate mounds from 5-m grid bathymetry and its
derivatives and estimated the map accuracies based on a reference dataset. We selected two rule-based
methods (one pixel-based, the other object-based) as they allow for an easier incorporation of the
analyst’s understanding of the image and contextual information. More recently, machine learning
and deep learning methods have been adopted in image analysis. Such data-driven classification
methods hold promise and have been shown to be applicable to CWC carbonate mound mapping [25].
However, results are highly dependent on the quality of the data available for mapping, which can still
be a limiting factor in marine mapping applications. Furthermore, the incorporation of the analyst’s
knowledge, which is often necessary when data quality issues must be overcome, is more complicated.
Therefore, while it would be interesting to further investigate the performance of advanced data-driven
classification methods, this is beyond the scope of this paper. Besides, all methods applied in this study
achieved high overall accuracies of approximately 90%. Differences between methods in accuracy
were small and statistically not significant.

To our knowledge, the method used to derive a reference dataset is novel in marine mapping.
Typically, direct observations of the seafloor with underwater videos and still images or physical
samples taken with grabs and corers are used as reference data. However, these are often costly to
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retrieve and analyze and hence limited in number. In this case, we decided to create a reference dataset
by directly analyzing high-resolution multibeam echosounder bathymetry data. The process of creating
a reference dataset has to be of higher quality than the map-making process [40]. Here, we used the
same MBES data gridded to a finer resolution (2 m vs 5 m) and the consensual labelling from three
analysts to produce a reference dataset. Thus, we deem the reference labelling process to be of higher
quality than the map-making processes. This approach is viable here because carbonate mounds are
well-recognizable features to a skilled analyst. To limit uncertainty in the reference data, we applied a
reference labelling protocol that minimized interpreter variability. From the results, it is obvious that
the inter-analyst variability is low as the reference points were labelled differently in only 8% of cases.
This occurred most frequently in transition areas at the bottom of mound slopes. The low disagreement
is likely due to (1) the fact that carbonate mounds are conspicuous features readily identifiable from
MBES data [25] and (2) the use of a simple binary (presence/absence) classification [46].

The reference labelling approach we have taken has several advantages. There is no geolocation
error in the reference dataset as the labelling is based on the same MBES data (albeit processed to
a higher resolution) as the data used for mapping. Likewise, there are no temporal mismatches as
the data used for mapping and deriving the reference dataset are of the same age. Most importantly,
the reference dataset could be created cheaply and quickly (within a day), which allowed us to follow
recommendations for appropriate sample size and sampling design [40,41]. This is in contrast with data
partitioning, in which one set of ground-truth data points is split into training and testing datasets [47].
Such an approach is frequently conducted when it is not possible to specifically collect independent
ground-truth data in a separate survey after map production. It does, however, invariably mean that
it is not possible to apply well-established recommendations for sampling design. As a result, such
single splits into training and testing data frequently lead to high variance in estimates of accuracy [48]
although this problem might be alleviated by applying bootstrap aggregation [45].

There was little difference in the overall map accuracy between the three methods.
However, differences were more pronounced in terms of sensitivity and specificity. With the parameters
used in this study, the terrain analysis method was most successful in predicting the presence of
mounds (highest sensitivity) and predicting the largest carbonate mound area (Table 5). GEOBIA and
manual classification were superior in the identification of the absence of mounds (highest specificity)
in line with smaller predicted areas of carbonate mounds when compared with terrain analysis.
Choosing the most appropriate mapping method will not only depend on these differences in
error statistics but also on the task in hand. If the requirement is to correctly classify as many
carbonate mounds as possible, our results suggest that terrain analysis might be the method of choice.
However, if the task is to minimize the number of false positives, it might be more appropriate to
utilize GEOBIA or manual interpretation (Table 7).

Table 7. Comparison of the strengths of the different methods.

Method Manual Terrain Analysis GEOBIA

Has highest specificity sensitivity specificity
Minimizes number of false positives number of false negatives number of false positives

Best predicts Absence of mounds Presence of mounds Absence of mounds

The number of produced mound polygons varies from 3247 to 4866. Dependent on the mapping
scale, manual mapping will lead to generalizations, in which individual carbonate mounds might be
grouped together when in close proximity. The lower number of polygons resulting from the terrain
analysis when compared with GEOBIA is likely a result of the larger buffer size (10 m vs. 5 m), which
was chosen separately for each method with the aim to improve mapping performance (as judged by the
analyst). Whether it is necessary to map individual carbonate mounds as precisely as possible or some
generalization is acceptable will depend on the usage of the map products. Taken together, this indicates
that a “one size fits all” mapping approach is unlikely to exist, and it will be important to first specify map
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requirements based on anticipated usage as precisely as possible before choosing the most appropriate
method. Trade-offs (e.g., favoring high sensitivity over high specificity) will be unavoidable.

The statistically insignificant differences in overall accuracy indicate that semi-automated
rule-based methods can reliably substitute time-consuming and subjective manual methods.
The mapped area of this case study was small (76 km2) when compared with the size of the Norwegian
continental shelf (≈1,400,000 km2) or the area suitable for CWC growth (≈1,000,000 km2) therein [8].
Such large areas can only be mapped manually with increased generalization (decreased mapping
scale) as has been done previously [26]. To maintain the level of detail contained in 5-m MBES data
will require some level of automation and as showcased here, rule-based methods are a viable option.
The GEOBIA rule-set is now developed and tested. However, the parameters potentially need to
be tuned if applied in a new study area. The same applies for the terrain analysis method with the
work flow defined but it will take some iterations to obtain satisfactory results or create a model with
Model Builder. The map accuracy can be reliably assessed by producing reference datasets through
labelling by experts. Ultimately, this means that the expertise of involved analysts is still needed but
the focus will shift from manual map production to the creation of reference data. In this way, it should
be possible to map large areas of the seabed with high spatial resolution and to assess and critically
evaluate the accuracy of the derived products. Such products are likely to improve the database for
spatial management and conservation. Estimates of carbonate mound area might also help to constrain
the rate of carbonate production of CWC reefs [8] and their role as carbonate sinks [7].

5. Conclusions

Two semi-automated rule-based methods (pixel-based terrain analysis and GEOBIA) were
compared with manual mapping in their ability to accurately map CWC carbonate mounds based on
high-resolution MBES bathymetry data. To test the accuracy of the methods, we created a reference
dataset by selecting 303 points in a stratified random way. These points were subsequently classified
as carbonate mound presence or absence by three expert analysts. Based on the reference data,
we estimated map accuracy and found that all methods produced highly accurate results with an
overall accuracy of approximately 90%. Moreover, there were no statistically significant differences
in those accuracy values, meaning that more time-efficient semi-automated methods can replace
laborious manual mapping in the future. Application of such methods in seafloor mapping programs
will likely increase the evidence base for sustainable management and conservation.
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