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Abstract: Cold-water coral reefs are hotspots of biological diversity and play an important role as 

carbonate factories in the global carbon cycle. Reef-building corals can be found in cold oceanic 

waters around the world. Detailed knowledge on the spatial location and distribution of coral reefs 

is of importance for spatial management, conservation and science. Carbonate mounds (reefs) are 

readily identifiable in high-resolution multibeam echosounder data but systematic mapping 

programs have relied mostly on visual interpretation and manual digitizing so far. Developing more 

automated methods will help to reduce the time spent on this laborious task and will additionally 

lead to more objective and reproducible results. In this paper, we present an attempt at testing 

whether rule-based classification can replace manual mapping when mapping cold-water coral 

carbonate mounds. To that end, we have estimated and compared the accuracies of manual mapping, 

pixel-based terrain analysis and object-based image analysis. To verify the mapping results, we 

created a reference dataset of presence/absence points agreed upon by three mapping experts. There 

were no statistically significant differences in the overall accuracies of the maps produced by the three 

approaches. We conclude that semi-automated rule-based methods might be a viable option for 

mapping carbonate mounds with high spatial detail over large areas. 

Keywords: carbonate mound; cold-water corals; bathymetry; automatic mapping; manual 

mapping; classification; map accuracy 

 

1. Introduction 

Coral reefs, which are frequently associated with warm, shallow and photic tropical seas, are 

also found widespread in deep waters of continental shelves, slopes, seamounts and ridge systems 

around the world [1]. Such cold-water coral (CWC) reefs are of high importance since they contribute 

to increased biodiversity [2], create suitable conditions for nurseries for fish larvae [3,4], provide food 

to many organisms [5,6] and act as carbonate factories [7,8].  

At the same time, CWC reefs are fragile and slow-growing three-dimensional structures that are 

vulnerable to various anthropogenic impacts, such as demersal fishing [9–11], mining [12], 

hydrocarbon drilling [13] and climate change (ocean warming [14] and acidification [6,15]). 

Knowledge about their spatial distribution and habitat requirements is crucial to be able to prevent 

or minimize damage to CWC reefs. 

CWCs are generally restricted to oceanic waters with temperatures of 4–12 C, which translates 

to water depths of approximately 50–1000 m at high latitudes and down to 4000 m at low latitudes 

[1]. CWCs in the north-east Atlantic Ocean tolerate a wide range of environmental conditions 
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although they appear to be limited to intermediate water masses within a certain density envelope 

[16]. At local scales, CWC occurrence is linked to the availability of fresh labile organic matter [17] 

and the presence of hard substrate for larval settlement. CWC reefs frequently occur on positive-relief 

landforms, such as bedrock ridges and submarine slide terrains [18,19]. Glacial landforms, such as 

iceberg ploughmarks, drumlins and megascale glacial lineations may provide hard bottom 

substrates, which are frequently exposed to enhanced currents that carry food towards the reef 

structures [18,20].  

There are different approaches of mapping CWC species and reefs with the aim to provide 

crucial information for marine spatial planning and conservation. One relies on coral reef databases, 

such as those from the United Nations Environment World Conservation Monitoring Centre [21]. 

Databases provide occurrence records, but spatial coverage is variable and limited while positioning 

accuracy might occasionally be low, e.g., when fishermen’s records are included. Another more 

widespread approach involves the species distribution modelling of framework-building. Based on 

records of the presence (and absence) of CWC species and relevant environmental variables, it is 

feasible to spatially predict the probabilities of occurrence of coral species, such as Lophelia pertusa. 

However, such models might perform poorly when tested against independent field validation data 

due to the lack of recorded species absences, low precision of bathymetry models and lack of data on 

the geomorphology and substrate at scales that are appropriate to the modelled taxa [22]. A third 

approach is directly mapping the carbonate mounds that are the geological products of CWC reefs 

[23]. This is becoming possible with the increased availability of high-resolution multibeam 

echosounder (MBES) data. Although case studies have been presented that demonstrate how 

carbonate mounds can be mapped in a semi-automated way [24,25], manual mapping is still 

commonplace [26].  

Carbonate mounds are comprised of different zones or facies [27], ranging from living corals to 

dead coral matrix to coral rubble. Such facies zonation is not recognizable even in high-resolution 

MBES data but a skilled analyst can identify mound features in shaded relief maps [28]. In Norwegian 

offshore waters, the marine mapping program MAREANO (Marine AREA database for Norwegian 

coast and sea areas)  has published regional-scale maps of the spatial distribution of bioclastic 

sediments (Figure 1), which are essentially sediments interpreted to originate from living or dead 

CWC reefs [26]. These maps are based on expert interpretation and manual digitizing. These methods 

that typically may risk being subjective and time-consuming could be improved by utilizing semi-

automated mapping methods. 

The main objectives of this study are (1) to develop and test semi-automated rule-based methods 

and (2) to assess whether such methods could replace manual methods in the future. We compare 

the mapping outputs from two different semi-automated approaches and manual expert 

interpretation against a reference dataset of carbonate mound presence and absence. The goal is to 

investigate if semi-automated rule-based methods produce more accurate, quicker, repeatable and 

cost-efficient products.  

2. Methods 

Among a range of possible semi-automated methods of mapping carbonate mounds, we selected 

two for this study: Geographic Object-Based Image Analysis (GEOBIA) and classification based on 

terrain analysis of pixels (Figure 1). The mapping experiments were conducted separately by two 

individual researchers, with a third making a manually digitized map based on expert interpretation. 

All three method testers were working independently but all had access to the same bathymetry 

dataset and derived terrain variables (Table 1). Terrain variable datasets (BPI and Surface area to 

Planar area) were derived from the bathymetry using the Benthic Terrain Modeler tool for ESRI 

ArcGIS [29]. Previous works [26,30,31] have suggested that suitable derivatives of bathymetry for 

classification of carbonate mounds are the slope, curvature and bathymetric positioning index (BPI). 

In addition, we included surface area to planar area and second-order polynomial transformation, 

which were used to increase precision in creating the reference dataset. In this study, GEOBIA was 
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conducted using the software eCognition [32] and all bathymetric derivatives were produced in ESRI 

ArcGIS.  

 

Figure 1. Flowchart summarizing the experiment. 

Table 1. Bathymetric derivates utilized in the study. 

Derivative Description Reference 

Slope [°] The maximum slope gradient. [33] 

Curvature The rate of change of slope. [33] 

Profile and plan 

curvature 

Profile curvature is measured parallel to the 

slope, plan curvature perpendicular. 
[33] 

Bathymetric positioning 

index (BPI) [m] 

Vertical position of a cell relative to its 

neighborhood. 
[34] 

Surface area to Planar 

area* 

Computes a ratio between the three-

dimensional surface area and the planar area 

of the surface. 

[29]  

Second order polynomial 

transformation* 

Creates bend or curved adjusted 

transformation of the dataset 
[35] 

* Derivates only used to produce the reference dataset 

2.1. Data Input and Study Area 

We performed the analyses with data from a 76 km2 area located on Skjoldryggen on the 

continental shelf in Northern Norway with water depth of 270–680 m (Figure 1). The carbonate 

mounds in the study area are typically elongated, positive-relief features, which are often 10–20 m 

wide and 30–90 m long. Many curvilinear, kilometer-long iceberg ploughmarks of varying relief 

intersect the study area, measuring up to 100 m berm to berm (Figure 2 c–e). Skjoldryggen is a very 

large terminal moraine, marking the furthest advance of the full-glacial Fennoscandian ice sheet 

located offshore Norway [36]. Bioclastic sediment distribution has previously been mapped in this 

area. Shaded relief and terrain variables were derived from a MBES bathymetry dataset with a 

horizontal resolution of 5 m × 5 m.  
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Figure 2: (a) Location of study area located on Skjoldryggen on the Mid-Norwegian continental shelf. 

(b) Close-up of study area; also shown are bioclastic sediments mapped by the MAREANO program 

as a proxy for CWC carbonate mounds [26]. (c) Area presented later in Figure 3 and 4. (d) Area 

presented later in Figure 2. (e) Area presented later in Figure 7. Elongated carbonate mounds can be 

seen growing in a NW–SE direction on a surface furrowed by iceberg plough marks (c–e). 

2.2. Manual Digitizing  

In manually digitizing mound features in ESRI ArcMap, the curvature (including plan and 

profile curvature) and slope were found to be the terrain variables that best aided expert 

interpretation of the study area. To accurately outline the features and to distinguish between 

assumed carbonate mounds and any other ridges or mounds present in the area that are related to 

iceberg plough marks (Figure 3), the interpreter used the shaded relief map. The scale of digitizing 

was approximately 1:5000, meaning that in locations where mounds were clustered, these were 

clumped together into larger polygons rather than separate small polygons in accordance with the 

mapping scale. 
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Figure 3. Different derivatives overlaid by manually mapped carbonate mounds (in green): (a) BPI20, 

(b) slope, (c) plan curvature and (d) profile curvature. 

2.3. Pixel-based Terrain Analysis 

To automatically identify carbonate mounds in the bathymetry dataset, the method tester 

working with ESRI ArcGIS raster-based tools started by making a visual assessment of the available 

terrain variables (Table 1). The aim was to identify a suitable variable that could reliably differentiate 

between mound-like features and other morphological elements, such as iceberg ploughmarks. A 

number of specialized tools for terrain modeling are available as extensions to the ArcGIS package, 

including those found in the toolsets of Benthic Terrain Modeler [29] and Geomorphometry & 

Gradient Metrics [35]. These were initially considered for this study but were deemed no more 

suitable for this relatively simple presence/absence categorization than standard ArcGIS Spatial 

Analyst tools. Following the visual inspection of the products of various tools, a small-neighborhood 

bathymetric positioning index (BPI3) was selected as the basis for further analysis. BPIs are scale 

dependent [34]. They highlight different terrain features based on the relation between the size of the 

feature, the image resolution and the neighborhood size of the BPI. The chosen BPI3 best highlighted 

the carbonate mounds relative to iceberg ploughmark berms. The workflow is summarized below 

and in Figure 4. 

 Selecting a cut-off value: The BPI3 raster data were initially displayed in a GIS with different 

raster classification methods to facilitate the selection of a cut-off value. After visual 

examination of the results for false positives, we decided upon a cut-off value of +0.3 to 

classify the BPI3 raster into the presence and absence of mounds. With the raster resolution 

and feature properties given in this case, a BPI3 value that is higher than 0.3 is likely to 

represent a mound feature.  

 Creating polygons from classified raster data: The ArcGIS Raster to Polygon tool was used 

to create a layer of polygons representing high-BPI areas.  
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 Buffering polygons: A BPI-based method of identifying elevated structures will 

predominantly highlight the highest elevations. By adding a 10-m buffer zone, we aim to 

include the whole area of each mound feature in the study area (Figure 5). The size of the 

buffer was selected after trials and visual assessment of the results. 

 Removing results based on polygon size: Many false positives in pixel-based classification 

will be single cells that happen to have a value above the cut-off limit as we would risk 

missing actual features if we set the cut-off value too high. These can optionally be removed 

at the polygon stage by deleting polygons that are smaller than a specified size (700 m2). 

 

Figure 4. Flowchart summarizing the process of pixel-based terrain analysis. 

 

Figure 5. Classified polygons based on BPI3. (a) Classified polygons without buffer. (b) Classified 

polygons after applying 10-m buffer zone. 
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2.4. GEOBIA 

In GEOBIA, a crucial first step is image segmentation [37,38], in which the image is divided into 

non-overlapping polygons (objects) in image space based on homogeneity [39] in order to minimize 

heterogeneity within image objects [25]. These objects are the main analysis units, which make object-

based classification fundamentally different from pixel-based methods. The resulting image objects 

can be characterized by various features, such as layer values (mean, standard deviation, skewness, 

etc.), geometry (extent, shape, etc.) and image texture. The subsequent classification is based on 

combinations of these image object features. This can be performed by systematically applying rules 

that formulate the analyst’s understanding of the image or in a data-driven way through supervised 

classification (e.g. machine learning). Here, rule-based classification was performed. All rule set 

parameters were selected following trials and visual assessment of the results. We used eCognition 

software v9.2 for GEOBIA analysis. The workflow is summarized below and in Figure 6. 

 Segmentation: all bathymetric derivatives were imported to eCognition [32] and segmented 

using the multiresolution segmentation with a scale parameter of 5 and composition of 

homogeneity criterion compactness of 0.1. A weighting of 2 was given to BPI5, BPI20, slope 

and curvature, while 1 was given to the second order polynomial transformation. 

 Classification: a rule-based classification of the objects was performed. The following rules 

were applied: mean value of BPI5 and BPI20  0, mean slope  5, standard deviation of the 

slope  2.3 and standard deviation of curvature  20.  

 Export to ArcGIS: the classified data were exported to an ArcGIS shapefile as a smoothed 

polygon. 

 Buffering polygons: A 5-m buffer was applied around the classified polygons with the aim 

to include the lower parts of carbonate mounds. The size of the buffer was selected after trials 

and visual assessment of the results (Figure 7). 

 

Figure 6. Flowchart summarizing the process of GEOBIA. 
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Figure 7: (a) Close-up of the semi-automatic classification exported from eCognition and (b) close-up 

result of semi-automatic classification with 5-m buffer in orange used for comparison. 

2.5. Reference Data and Accuracy Assessment 

Estimating the accuracies of the three map outputs involves three elements: sampling design, 

response design and analysis of map accuracy [40,41].  

2.5.1. Sampling Design  

We selected a stratified-random sampling design with the maximum extent of carbonate 

mounds (as derived by merging all three outputs) and the absence of mounds as the two strata. 

Stratified random sampling is a recommended practical design that satisfies the basic accuracy 

assessment objectives [40]. The sample size was estimated according to the following formula [40,42]: 

� =
(∑ ����)

�

�������
�

+  (1/�) ∑ ����
�
 (1) 

where N is the number of units in the region of interest, S(Ô) is the standard error of the estimated 

overall accuracy that we would like to achieve, Wi is the mapped proportion of area of class i and Si 

is the standard deviation of stratum i, �� = ���(1 − ��) with Ui being the user’s accuracy of class i.  

2.5.2. Response Design  

Once the reference data points were created (Figure 8), these were labelled by three experts 

based on a visual assessment of higher-resolution (2 m × 2 m) derivatives (plus surface area to planar 

area) and shaded relief maps (Figure 1). The reference labelling protocol required the analysts to label 

the reference points as carbonate mound presence or absence and give a subjective confidence rating 

(high, moderate, low). Assessments were initially carried out independently. When there was any 

disagreement between the labels after the initial submission, analysts were asked to find a consensus. 

The resulting reference data points were used to estimate map accuracies (Figure 1). 
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2.5.3. Analysis 

The predicted classes (mound presence or absence) were attached to the reference data set using 

a Spatial Join in ArcGIS. Accuracies were analyzed using the function confusionMatrix() of the package 

caret [43] in R. We assessed the accuracy of the predictions with three widely applied metrics, which 

can be derived from a contingency table (Table 2). These are namely the overall accuracy (percent 

classified correctly, PCC), sensitivity and specificity. PCC is the proportion of correctly classified 

presences and absences (Table 2 and Equation (2)). Sensitivity is the amount of true presence 

predictions as a proportion of the total number of presence observations (Table 2 and Equation (3)). 

Specificity is the amount of true absence predictions as a proportion of the total number of absence 

observations (Table 2 and Equation (4)). 

Table 2. Contingency table for presence–absence predictions and selected associated accuracy 

metrics. 

 Observed Absence Observed Presence 

Predicted absence True negative (TN) False negative (FN) 

Predicted presence False positive (FP) True positive (TP) 

 

PCC =
(�� � ��)

(�� � �� � �� � ��)
  (2) 

Sens =
��

(�� � ��)
  (3) 

Spec =
��

(�� � ��)
  (4) 

The statistical significance of the differences in the estimated overall accuracies of the maps was 

tested with McNemar’s 2 test for related samples with continuity correction [44]. From the calculated 

2 values and the degrees of freedom (df = 1), a p-value can be derived from published tables or online 

calculators (e.g., https://www.socscistatistics.com/pvalues/chidistribution.aspx). For a p-value of 

0.05, the 2 value needs to be higher than 3.84. 
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Figure 8: (a) The distribution of reference points in the whole study area. (b) Example with definition 

of mounds based on merging all 3 classifications into one for random selection of reference points 

dataset. 

3. Results  

3.1. Reference Data 

The maximum extent of carbonate mounds accounted for was 12.3% of the total area and hence, 

the absence of mounds had a relative area of 87.7%. The number of units in the study area was 3271 

individual polygons. Based on previous experience [45], we estimated user accuracies of 0.9 for the 

mound presence and 0.85 for mound absence. We specified a target standard error for an overall 

accuracy of 0.02. Hence, we estimated a sample size of 303 according to Equation (1). A proportional 

allocation of sample points would have resulted in 37 samples for mound presence and 266 for 

mound absence. To allow for a sufficient number of samples for mound presence, we allocated 100 

sample points to this class and the remainder (203) to the mound absence class. 

The class labels assigned independently by the three analysts agreed in 280 out of 303 cases 

(92.4%). When there was disagreement, the confidence in the labelling was typically rated as low or 

moderate. After a consensus was reached in undecided cases, 73 sample points were labelled as 

mound presence and 230 as mound absence, leading to a prevalence of 0.24 and a no-information 

rate (NIR) of 0.76 (Table 3). 

Table 3. Summary of the reference dataset. 

 No. of observations Fraction Meaning 

Presence 73 0.241 = Prevalence 

Absence 230 0.759 = No-information Rate 

Sum 303 1  
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3.2. Map Accuracy 

Based on the reference dataset, we estimated the map accuracies of the three different 

approaches (Table 4). All methods achieved overall accuracies (PCC) above the no-information rate 

(NIR = 0.759). Differences in PCC were small, ranging from 91.09% (manual) to 89.11% (terrain 

analysis) to 88.45% (GEOBIA). Furthermore, the 95% confidence intervals overlapped (Figure 9). In 

fact, differences in PCC were not significant based on McNemar’s 2 test for related samples with 

continuity correction (Table 5). 

The sensitivity was highest for the terrain analysis with 80.82% and lowest for GEOBIA with 

64.38%. On the other hand, specificity was highest with 96.09% for both manual and GEOBIA 

classification. 

 

Figure 9: Comparison of overall accuracy (PCC) mean (dot) and 95% confidence intervals (whiskers) 

for the three methods. 

Table 4. Contingency table for presence–absence predictions with results for 3 classifications. PA, PP, 

OA and OP denotes predicted absence/presence or observed absence/presence, respectively. 

  Manual 
Terrain 

analysis  
GEOBIA 

 OA OP OA OP OA OP 

PA 221 18 211 14 221 26 

PP 9 55 19 59 9 47 

PCC 0.9109 0.8911 0.8845 

95% CI (0.873, 0.9405) (0.8505, 0.9238) (0.843, 0.9182) 

NIR 0.7591 0.7591 0.7591 

P-Value [Acc > NIR] 7.40E-12 4.44E-09 2.85E-08 

Sensitivity  0.7534 0.8082 0.6438 

Specificity 0.9609 0.9174 0.9609 

 



ISPRS Int. J. Geo-Inf. 2019, 8, 40 12 of 17 

Table 5. Evaluation of statistical significance of differences in classification accuracy based on 

McNemar’s 2 test for related samples with continuity correction. For a p-value of 0.05, the 2 value 

needs to be higher than 3.84. 

p-values \ 2 Manual 
Terrain 

Analysis 
GEOBIA 

manual - 0.521 1.225 

terrain analysis 0.471 - 0.025 

GEOBIA 0.268 0.874 - 

3.3. Spatial Comparison 

Manual digitalization produced 3559 polygons (Table 6). The semi-automated classification 

based on pixel-based analysis resulted in 3247 polygons, while GEOBIA gave 4866 features. The 

mapped carbonate mound areas amounted to 6.01 km2, 7.35 km2 and 5.01 km2 for manual mapping, 

terrain analysis and GEOBIA, respectively. A comparison of the different map outputs is shown in 

Figure 10. 

Table 6. Mapped carbonate mounds expressed as the number of polygons and area by method. 

 Manual Terrain Analysis GEOBIA 

Number of polygons 3559 3247 4866 

Area (km2) 6.01 7.35 5.01 

 

Figure 10. Area showing the distribution of reference points and overlapping of all three 

classifications together with bioclastic sediments [26]. 
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4. Discussion 

We have presented three different methods (manual digitization, pixel-based terrain analysis 

and object-based image analysis) for classifying carbonate mounds from 5-m grid bathymetry and its 

derivatives and estimated the map accuracies based on a reference dataset. We selected two rule-

based methods (one pixel-based, the other object-based) as they allow for an easier incorporation of 

the analyst’s understanding of the image and contextual information. More recently, machine 

learning and deep learning methods have been adopted in image analysis. Such data-driven 

classification methods hold promise and have been shown to be applicable to CWC carbonate mound 

mapping [25]. However, results are highly dependent on the quality of the data available for 

mapping, which can still be a limiting factor in marine mapping applications. Furthermore, the 

incorporation of the analyst’s knowledge, which is often necessary when data quality issues must be 

overcome, is more complicated. Therefore, while it would be interesting to further investigate the 

performance of advanced data-driven classification methods, this is beyond the scope of this paper. 

Besides, all methods applied in this study achieved high overall accuracies of approximately 90%. 

Differences between methods in accuracy were small and statistically not significant. 

To our knowledge, the method used to derive a reference dataset is novel in marine mapping. 

Typically, direct observations of the seafloor with underwater videos and still images or physical 

samples taken with grabs and corers are used as reference data. However, these are often costly to 

retrieve and analyze and hence limited in number. In this case, we decided to create a reference 

dataset by directly analyzing high-resolution multibeam echosounder bathymetry data. The process 

of creating a reference dataset has to be of higher quality than the map-making process [40]. Here, 

we used the same MBES data gridded to a finer resolution (2 m vs 5 m) and the consensual labelling 

from three analysts to produce a reference dataset. Thus, we deem the reference labelling process to 

be of higher quality than the map-making processes. This approach is viable here because carbonate 

mounds are well-recognizable features to a skilled analyst. To limit uncertainty in the reference data, 

we applied a reference labelling protocol that minimized interpreter variability. From the results, it 

is obvious that the inter-analyst variability is low as the reference points were labelled differently in 

only 8% of cases. This occurred most frequently in transition areas at the bottom of mound slopes. 

The low disagreement is likely due to (1) the fact that carbonate mounds are conspicuous features 

readily identifiable from MBES data [25] and (2) the use of a simple binary (presence/absence) 

classification [46]. 

The reference labelling approach we have taken has several advantages. There is no geolocation 

error in the reference dataset as the labelling is based on the same MBES data (albeit processed to a 

higher resolution) as the data used for mapping. Likewise, there are no temporal mismatches as the 

data used for mapping and deriving the reference dataset are of the same age. Most importantly, the 

reference dataset could be created cheaply and quickly (within a day), which allowed us to follow 

recommendations for appropriate sample size and sampling design [40,41]. This is in contrast with 

data partitioning, in which one set of ground-truth data points is split into training and testing 

datasets [47]. Such an approach is frequently conducted when it is not possible to specifically collect 

independent ground-truth data in a separate survey after map production. It does, however, 

invariably mean that it is not possible to apply well-established recommendations for sampling 

design. As a result, such single splits into training and testing data frequently lead to high variance 

in estimates of accuracy [48] although this problem might be alleviated by applying bootstrap 

aggregation [45]. 

There was little difference in the overall map accuracy between the three methods. However, 

differences were more pronounced in terms of sensitivity and specificity. With the parameters used 

in this study, the terrain analysis method was most successful in predicting the presence of mounds 

(highest sensitivity) and predicting the largest carbonate mound area (Table 5). GEOBIA and manual 

classification were superior in the identification of the absence of mounds (highest specificity) in line 

with smaller predicted areas of carbonate mounds when compared with terrain analysis. Choosing 

the most appropriate mapping method will not only depend on these differences in error statistics 

but also on the task in hand. If the requirement is to correctly classify as many carbonate mounds as 
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possible, our results suggest that terrain analysis might be the method of choice. However, if the task 

is to minimize the number of false positives, it might be more appropriate to utilize GEOBIA or 

manual interpretation (Table 7). 

Table 7. Comparison of the strengths of the different methods. 

Method Manual Terrain analysis GEOBIA 

Has highest specificity sensitivity specificity 

Minimizes number of false positives number of false negatives number of false positives 

Best predicts Absence of mounds Presence of mounds Absence of mounds 

The number of produced mound polygons varies from 3247 to 4866. Dependent on the mapping 

scale, manual mapping will lead to generalizations, in which individual carbonate mounds might be 

grouped together when in close proximity. The lower number of polygons resulting from the terrain 

analysis when compared with GEOBIA is likely a result of the larger buffer size (10 m vs 5 m), which 

was chosen separately for each method with the aim to improve mapping performance (as judged by 

the analyst). Whether it is necessary to map individual carbonate mounds as precisely as possible or 

some generalization is acceptable will depend on the usage of the map products. Taken together, this 

indicates that a “one size fits all” mapping approach is unlikely to exist, and it will be important to 

first specify map requirements based on anticipated usage as precisely as possible before choosing 

the most appropriate method. Trade-offs (e.g., favoring high sensitivity over high specificity) will be 

unavoidable. 

The statistically insignificant differences in overall accuracy indicate that semi-automated rule-

based methods can reliably substitute time-consuming and subjective manual methods. The mapped 

area of this case study was small (76 km2) when compared with the size of the Norwegian continental 

shelf (1,400,000 km2) or the area suitable for CWC growth (1,000,000 km2) therein [8]. Such large 

areas can only be mapped manually with increased generalization (decreased mapping scale) as has 

been done previously [26]. To maintain the level of detail contained in 5-m MBES data will require 

some level of automation and as showcased here, rule-based methods are a viable option. The 

GEOBIA rule-set is now developed and tested. However, the parameters potentially need to be tuned 

if applied in a new study area. The same applies for the terrain analysis method with the work flow 

defined but it will take some iterations to obtain satisfactory results or create a model with Model 

Builder. The map accuracy can be reliably assessed by producing reference datasets through labelling 

by experts. Ultimately, this means that the expertise of involved analysts is still needed but the focus 

will shift from manual map production to the creation of reference data. In this way, it should be 

possible to map large areas of the seabed with high spatial resolution and to assess and critically 

evaluate the accuracy of the derived products. Such products are likely to improve the database for 

spatial management and conservation. Estimates of carbonate mound area might also help to 

constrain the rate of carbonate production of CWC reefs [8] and their role as carbonate sinks [7]. 

5. Conclusions 

Two semi-automated rule-based methods (pixel-based terrain analysis and GEOBIA) were 

compared with manual mapping in their ability to accurately map CWC carbonate mounds based on 

high-resolution MBES bathymetry data. To test the accuracy of the methods, we created a reference 

dataset by selecting 303 points in a stratified random way. These points were subsequently classified 

as carbonate mound presence or absence by three expert analysts. Based on the reference data, we 

estimated map accuracy and found that all methods produced highly accurate results with an overall 

accuracy of approximately 90%. Moreover, there were no statistically significant differences in those 

accuracy values, meaning that more time-efficient semi-automated methods can replace laborious 

manual mapping in the future. Application of such methods in seafloor mapping programs will likely 

increase the evidence base for sustainable management and conservation. 
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