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Abstract: Buffer and overlay analysis are fundamental operations which are widely used in
Geographic Information Systems (GIS) for resource allocation, land planning, and other relevant
fields. Real-time buffer and overlay analysis for large-scale spatial data remains a challenging
problem because the computational scales of conventional data-oriented methods expand rapidly
with data volumes. In this paper, we present HiBO, a visualization-oriented buffer-overlay
analysis model which is less sensitive to data volumes. In HiBO, the core task is to determine
the value of pixels for display. Therefore, we introduce an efficient spatial-index-based buffer
generation method and an effective set-transformation-based overlay optimization method. Moreover,
we propose a fully optimized hybrid-parallel processing architecture to ensure the real-time
capability of HiBO. Experiments on real-world datasets show that our approach is capable of
handling ten-million-scale spatial data in real time. An online demonstration of HiBO is provided
(http://www.higis.org.cn:8080/hibo).

Keywords: buffer analysis; overlay analysis; big data; real-time; parallel computing

1. Introduction

A buffer is defined as the zone with a certain width around a geometric geographic feature,
according to a specified buffer distance, and an overlay creates a composite map by combining
the geometry and attributes of multiple data layers [1]. Buffer and overlay analysis are two basic
Geographic Information System (GIS) spatial operations for resource allocation, land planning, and
many other relevant fields [2,3]. In practical applications, the two operations are usually combined
to solve spatial decision problems; typically, the site selection problem [4]. In this paper, we use
buffer-overlay analysis to represent the combined operation.

Buffer-overlay analysis is computationally intensive and time-consuming. Moreover, with the
rapid development of surveying and mapping technology, the computational limitation becomes more
prominent as greater volumes of large-scale spatial data is produced.

Buffer and overlay generation are the keys to buffer-overlay analysis. Several methods for solving
generation problems have been proposed. These methods can be summarized into two categories,
by the types of results they produce: Vector-based methods and raster-based methods. Vector-based
methods use vector polygons to represent results, while raster-based methods use values of pixels in
raster images to indicate result zones. Table 1 lists the advantages and disadvantages of the two types
of methods. Due to their large storage space occupancy, raster-based methods are generally not applied
to large-scale spatial data, and the related research mainly focuses on the calculation of raster buffers
using a serial computing model [5,6]. For vector-based methods, the edge constraint triangulation
method [7] and the buffer equation approximation strategy are widely used [8] in buffer generation;

ISPRS Int. J. Geo-Inf. 2019, 8, 21; doi:10.3390/ijgi8010021 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-7510-5638
https://orcid.org/0000-0003-2665-6086
http://dx.doi.org/10.3390/ijgi8010021
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/8/1/21?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 21 2 of 14

in addition, in order to deal with large-scale data, several parallel strategies have been proposed to
solve the vector-based buffer and overlay generation problems [9–17]. However, the performance
is still far from satisfactory as it is impossible to support real-time buffer-overlay analysis using the
traditional methods, even when high-performance computing technologies are applied. For example,
Shen [10] proposed a parallel vector buffer generation method, HPBM, based on Spark [18], and
conducted an experiment on a high-performance cluster which compared HBPM to three optimized
parallel methods and the popular GIS software programs (Table 2); as shown in the table, HBPM
outperformed the other traditional data-oriented methods and is able to generate buffers for 597k
linestring objects in around 3 min. As another example, Puri [16] presented a parallel GIS system,
MPI-GIS, for polygon overlay processing of two GIS layers which employs R-tree for efficient indexing
and identification of potentially intersecting sets of polygon objects; using MPI-GIS, the processing
time of hundred-thousand-scale datasets is in the ten-second-level.

Table 1. Advantages and disadvantages of traditional methods.

Methods Advantages Disadvantages

Vector-based (i) Small storage space; (ii) no
resolution loss while zooming in.

(i) High computational complexity; (ii) distortion
occurs while zooming in (see Figure 1a: In vector
polygons, circles or circular-arcs are simplified to
regular-polygons or regular-polygon segments).

Raster-based Low computational complexity
in overlay generation

(i) Large storage space; (ii) sawtooth distortion
while zooming in (see Figure 1b).

(a) Vector-based (b) Raster-based

Figure 1. Distortion of vector-based and raster-based results while zooming in.

Table 2. Performance of traditional buffer generation methods.

Algorithm 40,927 Linestrings 208,067 Linestrings 597,829 Linestrings

HPBM [10] 10.334 s 26.859 s 172.889 s
OA1 [19] 17.041 s 84.311 s 672.722 s
OA2 [20] 14.266 s 280.771 s 661.857 s
OA3 [9] 19.082 s 280.8 s 2534.29 s
PostGIS 34.9 s 295.8 s 2380.2 s

QGIS 129 s 2788 s >7200 s
ArcGIS 139 s 2365 s >7200 s

Citus Data 20.134 s 200.436 s >7200 s

Figure 2 presents the general buffer-overlay analysis flow using existing generation methods.
In the flow, buffers of spatial objects are generated separately and merged to create buffer layers of
datasets, then the buffer layers are combined to get the final overlay layer. It is data-oriented and
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straightforward, with computational scales expanding rapidly with the volume of spatial objects. The
final overlay layer is provided to users on screens, though it can be extremely large and complex.

Based on this, we present a visualization-oriented parallel buffer-overlay analysis model, HiBO,
to provide interactive and online buffer-overlay analysis of large-scale spatial data. In our previous
work, we presented a visualization-oriented buffer analysis method named HiBuffer, which is capable
of handling large-scale spatial point and linestring data in real time [21]. Our previous experiments
showed that HiBuffer has the striking performance of generating buffers for all of the datasets shown
in Table 2 in less than 1 s. In addition, HiBuffer is able to provide interactive buffer analysis for much
larger datasets. In this paper, we extend HiBuffer to support buffer analysis of polygon objects and
overlay analysis as well, which also achieves remarkable effects. The buffer-overlay analysis flow in
HiBO is shown in Figure 3, its core task is to determine the value of pixels for display. To the best of
our knowledge, the approach is a brand new idea for buffer and overlay analysis, with the advantage
of being insensitive to data volumes. Experimental results verify that HiBO is capable of handling
ten-million-scale data in real time.
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Figure 2. Buffer-overlay analysis flow using traditional methods.

Datasetm

…
…

ScreenDisplay

Dataset1

DisplayRange

Determine the 

value of pixels 

for display

Figure 3. Buffer-overlay analysis flow in HiBO.

The remainder of this paper proceeds as follows: Section 2 introduces the core ideas of the buffer
and overlay generation methods in HiBO. In Section 3, the architecture of HiBO is described in detail.
Section 4 provides an online demonstration, as well as an experiment to validate the performance of
HiBO. The conclusions are drawn in Section 5.

2. Methodology

In this section, the core ideas of buffer and overlay generation methods in HiBO will be introduced.
In HiBO, we utilize spatial indexes to determine whether a pixel is in the buffers of spatial objects,
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and accordingly, an efficient buffer generation method named Spatial-Index-Based Buffer Generation
(SIBBG) is proposed. Specifically, compared with the SIBBG proposed in our previous work [21],
we have extended SIBBG to support polygon objects. As for overlay analysis, HiBO is designed
to support complex mixed set operations of multiple buffer analysis results, and we propose the
Set-Transformation-Based Overlay Optimization (STBOO) method.

2.1. Spatial-Index-Based Buffer Generation

Spatial indexes are used to optimize spatial queries. As an efficient tree data structure widely used
for indexing spatial data, R-tree is implemented by grouping nearby objects and representing them
with their Minimum Bounding Rectangle (MBR) in the next higher level of the tree. The spatial queries
using R-tree, including bounding-box query and nearest-neighbor search, has been fully optimized
theoretically and practically by researchers [22]. In SIBBG, we employ R-tree to determine whether a
pixel is in the buffers of spatial objects.

2.1.1. SIBBG for Point and Linestring

In SIBBG, we utilize R-tree to organize point and linestring objects. Simply, point and segment are
used as value types of nodes in R-tree (see Table 3). In R-tree, the intersect operation works well only
for a bounding-box query (instead of queries using other polygon shapes), and the nearest-neighbor
search has much higher computational complexity than the bounding-box query. Thus, we design
SIBBG, as follows, for point and linestring objects (Algorithm 1). In SIBBG, we introduce inner and
outer boxes (Figure 4) to optimize spatial queries. As a result of the optimizations, the performance of
SIBBG is less sensitive to data volumes.

Table 3. R-tree for point and linestring objects.

Contents Value Types

Point point (x,y)
Linestring segment (point (x1,y1), point (x2,y2))

P
R

Outer Box

Inner Box

Figure 4. Inner and outer boxes of pixel P with a given radius R [21].
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Algorithm 1 SIBBG for point and linestring objects [21]
Input: Pixel P, radius R, spatial index Rtree.
Output: True or False (whether P is in the buffers of spatial objects with a given radius R).

1: r ← R×
√

2
2

2: InnerBox ← BOX(P.x− r, P.y− r, P.x + r, P.y + r)
3: Tmp← satisfying Rtree.INTERSECT(InnerBox)
4: if Tmp is not null then return True
5: else
6: OuterBox ← BOX(P.x− R, P.y− R, P.x + R, P.y + R)
7: Tmp← satisfy Rtree.INTERSECT(OuterBox) and Rtree.NEAREST(P)
8: if Tmp is not null && DISTANCE(Tmp,P) ≤ R then return True
9: return False

2.1.2. SIBBG for Polygon

The buffer generation of polygon objects in HiBO has two issues: The buffer generation of polygon
edges, and filling the areas inside polygon objects. As the polygon edges can be treated as linestring
objects, we use the same solution adopted for linestring objects. For filling problems, we design a
multi-level index architecture to accelerate judging whether a point is inside polygon objects.

As listed in Table 4, we build a two level R-tree for polygon objects. Each polygon edge is stored
as a segment in RtreeB; additional node information includes the ID of a given polygon (PolygonID)
and whether the edge is parallel to the x-axis (IsLevel). The polygon MBRs are stored as boxes in
RtreeMBR. The pseudo-code of SIBBG for Polygon objects is given as follows (Algorithm 2). As shown
in line 1–8, for polygon edges we use the same solution adopted for linestring objects. For the areas
inside polygon objects, we first use the TmpMBR to find the candidate polygons (line 9) and then judge
the spatial relationship between the pixel and each candidate polygon, one by one, until we find the
polygon which contains the pixel (line 11–22). We apply the ray-casting algorithm [23] to determine
whether a pixel is inside a polygon. To be more specific, given a pixel and a polygon, draw a segment
(QuerySegment) from the MBR boundaries of the polygon to the pixel which is parallel to the x-axis,
and then use the RtreeB to test how many times the segment intersects the edges of the polygon. The
pixel is inside the polygon if the number of crossings is odd, or outside if it is even. The result holds
for polygons with inner rings. Moreover, two optimizations (line 10 and line 14–17) have been made to
minimize the length of the QuerySegment, as a longer QuerySegment may intersect large numbers of
edges which belong to other polygons, and thus cause performance degradation.

Table 4. R-tree for polygon objects.

Spatial Indexes Contents Value Types

RtreeB Polygon Boundary tuple (segment (point (x1,y1), point (x2,y2)), PolygonID, IsLevel)
RtreeMBR Polygon MBR pair (box (point (minx,miny), point (maxx,maxy)), PolygonID)



ISPRS Int. J. Geo-Inf. 2019, 8, 21 6 of 14

Algorithm 2 SIBBG for polygon objects
Input: Pixel P, radius R, spatial indexes RtreeB and RtreeMBR.
Output: True or False (whether P is in the buffers of spatial objects with a given radius R).

1: r ← R×
√

2
2

2: InnerBox ← BOX(P.x− r, P.y− r, P.x + r, P.y + r)
3: TmpS← satisfying RtreeB.INTERSECT(InnerBox)
4: if TmpS is not null then return True
5: else
6: OuterBox ← BOX(P.x− R, P.y− R, P.x + R, P.y + R)
7: TmpS← satisfy RtreeB.INTERSECT(OuterBox) and RtreeB.NEAREST(P)
8: if TmpS is not null && DISTANCE(TmpS.Segment,P) ≤ R then return True
9: TmpMBR← satisfying RtreeMBR.INTERSECT(P)

10: SORT(TmpMBR) . Polygon with smaller x span has higher priority.
11: for v ∈ TmpMBR do
12: EdgeCount← 0
13: vMinx ← v.Box.minx, vMaxx ← v.Box.maxx
14: if P.x− vMinx < vMaxx− P.x then
15: QuerySegment← SEGMENT(vMinx, P.y, P.x, P.y)
16: else
17: QuerySegment← SEGMENT(P.x, P.y, vMaxx, P.y)
18: TmpS← satisfy RtreeB.INTERSECT(QuerySegment)
19: for s ∈ TmpS do
20: if (not s.IsLevel)&&s.PolygonID == v.PolygonID then
21: EdgeCount ++

22: if EdgeCount is odd then return True
23: return False

2.2. Set-Transformation-Based Overlay Optimization

As shown in Figure 5, HiBO supports the four basic set operations on buffer analysis results:
Intersection (∩), Union (∪), Difference (−) and Complement (∼). By mixing the operations, most
overlay analysis problems can be covered. In STBOO, we reduce computational load by transforming
the set operation expressions of overlay analysis. The process of STBOO is as follows.

Step 1 Simplify Expressions

The total computation cost of overlay analysis in HiBO consists of the buffer generation cost and
the set operation cost. As illustrated in Equation (1), Bu f f er(Di, Ri) represents the buffer generation
of dataset Di with radius Ri, Operate(Oj) is the process of set operation Oj, and C represents the cost.

COverlay=∑
i

CBu f f er(Di ,Ri)
+ ∑

j
COperate(Oj) (1)

Table 5 presents the expression simplification of STBOO, which reduces the cost. Take the
transformation in the Distributivity Law as an example: Where the expression is transformed from
(a∪ b)∩ (a∪ c) to a∪ (b∩ c), the cost changes from 2Ca + Cb + Cc + 2C∪ + C∩ to Ca + Cb + Cc + C∪ +
C∩, with the buffer generation and set operation cost both reduced.
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 a b

a∩b
(a) Intersection

 a b

a∪b
(b) Union

 a b

a-b
(c) Difference

 a

~a
(d) Complement

Figure 5. Set operations of overlay analysis in HiBO.

Table 5. Expression Simplification of STBOO.

Set Laws Transformation CBuffer COperate

Idempotence a ∩ a→ a a ∪ a→ a Reduced Reduced

Distributivity
(a ∪ b) ∩ (a ∪ c)→ a ∪ (b ∩ c) Reduced Reduced
(a ∩ b) ∪ (a ∩ c)→ a ∩ (b ∪ c) Reduced Reduced

DeMorgan’s laws
(a− b) ∪ (a− c)→ a− (b ∪ c) Reduced Reduced
(a− b) ∩ (a− c)→ a− (b ∩ c) Reduced Reduced

Absorption
a ∩ (a ∪ b)→ a Reduced Reduced

a ∪ (a ∩ b)→ a Reduced Reduced

Complements
a∪∼a→ E a∩∼a→ Φ Reduced Reduced

∼∼a→ a Unchanged Reduced
Empty & a ∩Φ→ Φ a ∪ E→ E Reduced Reduced

Universal Set a ∩ E→ a a ∪Φ→ a Unchanged Reduced

a, b, c are buffer analysis results; E represents universal Set; Φ represents empty Set.

Step 2 Reorder Parameters

In HiBO, overlay analysis can be decomposed into tasks of determining the value of each pixel,
according to the set operation expressions. The computation cost of a pixel P can be expressed as in
Equation (2). SIBBG(Di, Ri, P) represents the process of determining whether P is the buffer of Di with
radius Ri, and BoolCalc(Oj) is the process of Boolean operation Oj. Compared with SIBBG, the cost of
a Boolean operation is much less, and thus BoolCalc is omitted. Accordingly, the computation cost
of a pixel P is roughly equal to the sum of SIBBG process costs. As the performance of SIBBG is less
sensitive to data size, the optimization target in Step 2 is to reduce the number of SIBBG processes.

CPixelOverlay=∑
i

CSIBBG(Di ,Ri ,P) + ∑
j

CBoolCalc(Oj)

≈ ∑
i

CSIBBG(Di ,Ri ,P)
(2)

According to the Commutativity Law of set operations, for Intersection or Union, reordering
parameters will not change the final results. Meanwhile, sometimes the operation results can be
determined once the value of the first parameter is calculated, and it is unnecessary to know the value
of the second parameter. Typically, if x is false the result of x ∩ y will be false, and if y is true the result
of x ∪ y will be true. Thus, the number of SIBBG processes can be reduced by parameter reordering.

The parameter reordering rules of STBOO are listed in Table 6. It should be noted that parameter
reordering is only used for the buffer-overlay analysis of point and linestring objects, as polygon
objects involve the filling problem and it is hard to estimate the probability of a pixel in the buffers
of polygon objects. The rules are simple, efficient, and highly effective. For the Intersection or Union
operations of two overlay analysis expressions, we calculate the expression with fewer input dataset
layers first (conditions i and ii). For the Intersection operation of two buffer analysis expressions, we
calculate the expression with smaller buffer area first (condition iii), as an expression with smaller
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buffer zone area is more likely to be false. Simply, we assume that a buffer analysis expression with
smaller size and radius simultaneously has smaller buffer zone area. And, for the Union operation of
two buffer analysis expressions, we calculate the expression with larger buffer area first (condition iv).

Table 6. Parameters Reordering of STBOO.

(i) Condition: M < N
Overlay(Di1 · · ·DiN , Ri1 · · · RiN ) ∩Overlay(Dj1 , · · ·DjM , Rj1 · · · RjM )

→ Overlay(Dj1 · · ·DjM , Rj1 · · · RjM ) ∩Overlay(Di1 , · · ·DiN , Ri1 · · · RiN )

(ii) Condition: M < N
Overlay(Di1 · · ·DiN , Ri1 · · · RiN ) ∪Overlay(Dj1 , · · ·DjM , Rj1 · · · RjM )

→ Overlay(Dj1 · · ·DjM , Rj1 · · · RjM ) ∪Overlay(Di1 , · · ·DiN , Ri1 · · · RiN )

(iii) Condition: Size(D2) < Size(D1)&&R2 < R1

Bu f f er(D1, R1) ∩ Bu f f er(D2, R2)→ Bu f f er(D2, R2) ∩ Bu f f er(D1, R1)

(iv) Condition: Size(D2) > Size(D1)&&R2 > R1

Bu f f er(D1, R1) ∪ Bu f f er(D2, R2)→ Bu f f er(D2, R2) ∪ Bu f f er(D1, R1)

Default: Do not reorder parameters.

D represents dataset of point or linestring objects.

3. Architecture

The architecture of HiBO is illustrated in Figure 6. It adopts the browser-server model. Specially,
analysis results are organized into a tile-pyramid structure, provided as a Web Map Tile Service
(WMTS). Tiles of different levels are selected for the screen display, according to zoom levels. When a
user browses the analysis results, only tiles in the screen range need to be generated. Zooming in the
results, tiles with higher levels and higher resolution will be used, and there is no sawtooth distortion.
The server side of HiBO comprises three parts: Multi-Thread Tile Service (MTTS), In-Memory
Messaging Framework (IMMF), and Hybrid-Parallel Analysis Engine (HPAE).
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Figure 6. Architecture of HiBO.
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3.1. Multi-Thread Tile Service

MTTS encapsulates the buffer-overlay analysis service as a WMTS. We treat the analysis task
in one tile range as an independent task. In the Check&Parse Requests process, MTTS analyzes the
tile requests and filters out improper tasks, including (1) tasks with wrong operation expressions in
the requests; and (2) tasks once processed with analysis results are still in the Result Pool. In the
Render Tiles process, MTTS gets analysis results from the Result Pool and renders tiles according to
the styles in the requests. To be more specific, the analysis results in the Result Pool are stored in the
form of two-dimensional boolean arrays (true indicates zones in analysis results). In order to improve
concurrency, multi-thread technology is adopted in the tile server.

3.2. In-Memory Messaging Framework

IMMF is a messaging framework based on Redis, which is an In-Memory Key-Value database.
In this messaging framework, tasks and results are transferred rapidly in memory without disk I/O.
The tasks are stored in a first-in-first-out (FIFO) queue in Redis. Tasks are pushed to the queue
and popped to suspended MPI processes. To avoid errors in parallel processing, the push and pop
operations are performed in blocking mode. After a task is finished, the analysis result will be written
to Redis, and a task completion message will be sent to MTTS using the subscribe/publish functions
in Redis. To avoid taking up too much memory, analysis results are set with expiry time, and expired
data will be cleaned up once the max memory limit is exceeded.

3.3. Hybrid-Parallel Analysis Engine

HPAE adopts the hybrid MPI-OpenMP parallel processing model to achieve real-time
buffer-overlay analysis. In HiBO, each task is processed with multiple OpenMP threads in one MPI
process. As the task requests are generated by way of streaming, the tasks are dynamically allocated to
the MPI processes. An MPI process will be suspended after the assigned task is accomplished, and
new tasks will be handled on a first in, first served basis. The parallel strategy has the property of
good load balancing. An example of the task process is shown in Figure 7.

New task request?

Assign the task to multiple 

threads & Conduct analysis 

based on SIBBG

Write result & Send task 

completion message

Yes

Suspend the process 

& Wait for new task
No

256

256

Thread 1

Thread 2

Thread 3

Thread 4

Optimize the task 

based on STBOO

Figure 7. Buffer-Overlay analysis of a tile range with 256 × 256 pixels in an MPI process with 4
OpenMP threads.
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4. Validation

In this section, we validate the effects of HiBO. First, we provide an online demo, and an
application scenario of HiBO is designed. Then, we conduct an experiment to further evaluate
the performance of HiBO.

4.1. Setup

The server side of HiBO is implemented using C++ (based on MPICH 3.4), Boost C++ 1.64, and
the Geospatial Data Abstraction Library 2.1.2, and the webpage is implemented using JavaScript
(based on Mapbox GL 0.49). HiBO is deployed in two high-performance computing environments: An
Elastic Compute Service (ECS) server and a Symmetrical Multi-Processing (SMP) server. The hardware
environments of the servers are shown in Table 7. The ECS server is used for the online demonstration
of HiBO. The SMP server, with more CPU cores and larger memory space, is used to demonstrate the
capability of handling large-scale spatial data in HiBO.

Table 7. Hardware environments.

Servers CPU Memory

ECS 4 cores*2, Intel(R) Xeon(R) E5-2680@2.50 GHz 32 GB
SMP 32 cores*2, Intel(R) Xeon(R) E5-4620@2.60 GHz 256 GB

4.2. Demonstration

An online demonstration of HiBO is provided on the web (https://github.com/MemoryMmy/
HiBO), and we use the datasets of Spain from OpenStreetMap as test data. The demonstration is
set to run with 4 MPI processes and 8 OpenMP threads. We have designed a housing site selection
scenario to show the effect of the demonstration. The datasets used in the scenario are listed in Table 8.
Suppose that a new immigrant in Spain wants to choose a place to live, which meets the following
conditions: (1) Convenient to traffic (within 500 m of highways); (2) convenient for children’s education
(within 200 m of education amenities); (3) convenient to medical care (within 2000 m of healthcare
amenities); (4) near to leisure places (within 1000 m of entertainment, arts & culture amenities, or
waterways but not in water area); (5) quiet (at least 300 m away from railways). The conditions can be
translated into the following expression (see Equation (3)). Enter the expression into HiBO and click
the Create-Overlay-Layer button (Figure 8), and then the result layer will be added to the map in real
time. In addition, as the analysis results are preserved in the Result Pool, the color and transparency
of the result layer can be adjusted with even faster response. Figure 9 shows the analysis results, in
which the red areas are the recommended housing areas for the immigrant.

Bu f f er(Highway, 500) ∩ Bu f f er(Education, 2000) ∩ Bu f f er(Healthcare, 2000)∩
(Bu f f er(EntertainArtCulture, 1000) ∪ Bu f f er(Waterway, 1000)
−Bu f f er(WaterArea, 0))− Bu f f er(Railway, 2000)

(3)

Table 8. Datasets used in the scenario.

Dataset Type Records Size

Spain Highway Linestring 3,132,496 42,497,196 segments
Spain Education Point 6994 6994 points
Spain Healthcare Point 14,757 14,757 points

Spain Entertainment, Arts & Culture Point 6928 6928 points
Spain Waterway Linestring 33,214 4,254,732 segments
Spain Water Area Polygon 60,319 2,044,622 edges

Spain Railway Linestring 97,675 309,716 segments

https://github.com/MemoryMmy/HiBO
https://github.com/MemoryMmy/HiBO
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Figure 8. Input of the housing site selection in Spain.

Figure 9. Analysis result of the housing site selection in Spain.

4.3. Experimental Evaluation

We conduct an experiment on the SMP server to demonstrate the capability of handling
ten-million-scale data in HiBO. HiBO is set to run with 32 MPI processes and 2 OpenMP threads in each
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process. Table 9 shows the datasets used in the experiment. We test the performance of different types
of buffer and overlay analysis requests. For each type of request, we generate 5000 tasks, through a test
program which randomly requests tiles from different zoom levels. In order to test the performance of
analysis engine accurately, HiBO is set to run with no results preserved in the Result Pool. We analyze
the tile rendering logs, and the experimental results are shown in Figure 10.

Table 9. Datasets of China.

Dataset Abbreviation Type Records Size

China roads L1 Linestring 21,898,508 163,171,928 segments
China points P1 Point 20,258,450 20,258,450 points

China farmland A1 Polygon 10,520,644 133,830,561 edges

Figure 10. Tile rendering time distributions.

As shown in Figure 10, the tile rendering time distributions of different request types are visualized
with box plots (’◦’ represents outliers and ’×’ represents average rendering time). For buffer analysis,
datasets of polygon objects produce poorer performance; this is because polygon objects involve the
filling process. As illustrated by the figure, the computing time of overlay analysis with two buffer
layers as inputs is less than the sum of the generation time of the two buffer layers. This is because of
the optimization strategy used in STBOO. Of all request types, Bu f f er(A1, 50) produces the poorest
performance, though most of the requested tiles are rendered in 0.4 s with the longest rendering time
not exceeding 0.7 s. As the number of tiles in a screen range is generally no more than 50, we assume
that a browser requests 50 tiles at once. Considering that there are 32 MPI processes, the 50 tasks will
be processed in two rounds with 14 (=32processes × 2− 50tasks) MPI processes suspended in the second
round—namely, it will be most likely completed in less than 0.8s (=0.4 s × 2). In conclusion, HiBO is
able to provide interactive and online buffer-overlay analysis of ten-million-scale spatial data.

5. Conclusions and Future Work

This paper presents a parallel processing model, HiBO, for real-time buffer-overlay analysis when
the data scale becomes extremely large. Differing from the traditional data-oriented methods, HiBO is
visualization-oriented, with the core task transformed into determining the value of pixels for screen
display. In HiBO, we employ R-tree to determine whether a pixel is in the buffers of spatial objects,
and propose an efficient buffer generation method named SIBBG. HiBO supports complex mixed
set operations of multiple buffer analysis results, and we present an effective overlay optimizaation
method named STBOO. Parallel computing technologies are used to accelerate analysis in HiBO,
and we propose a fully optimized hybrid-parallel processing architecture with good load balancing.
Experiments on real-world datasets show that our approach is capable of handling ten-million-scale
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spatial data. In the future, we will apply our approach to solve the problem of rapid visualization for
large-scale vector data.
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