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Abstract: Global efforts to end the tuberculosis (TB) epidemic by 2030 (SDG3.3) through improved TB
case detection and treatment have not been effective to significantly reduce the global burden of the
TB epidemic. This study presents an analytical framework to evaluate the use of TB case notification
rates (CNR) to monitor and to evaluate TB under-detection and under-diagnoses in Bangladesh. Local
indicators of spatial autocorrelation (LISA) were calculated to assess the presence and scale of spatial
clusters of TB CNR across 489 upazilas in Bangladesh. Simultaneous autoregressive models were fit to
the data to identify associations between TB CNR and poverty, TB testing rates and retreatment rates.
CNRs were found to be significantly spatially clustered, negatively correlated to poverty rates and
positively associated to TB testing and retreatment rates. Comparing the observed pattern of CNR
with model-standardized rates made it possible to identify areas where TB under-detection is likely
to occur. These results suggest that TB CNR is an unreliable proxy for TB incidence. Spatial variations
in TB case notifications and subnational variations in TB case detection should be considered when
monitoring national TB trends. These results provide useful information to target and prioritize
context specific interventions.

Keywords: tuberculosis; case notification; National Tuberculosis program; MATCH; patient pathway;
access to care; health system performance; GIS; spatial analysis; SDG 3

1. Introduction

Global efforts to end the tuberculosis (TB) epidemic by 2030 (Sustainable Development Goal 3.3)
through improved TB case detection and treatment have not been effective to significantly reduce the
global burden of the TB epidemic. TB prevalence surveys have shown that only 61% of the estimated
number of incident TB patients are detected and subsequently reported by national TB programs
(NTPs) globally [1]. This finding has led the global TB community to prioritize the development of
interventions and monitoring tools to improve TB case detection in order to reach the SDG goal 3.3 to
end the global TB epidemic by 2030 [1,2].

The main global indicator used to monitor progress in ending TB by 2030 is the TB incidence rate
(number of new TB cases per 100,000 population per year). TB incidence rates are classified as a TIER 1
indicator by the UN SDG statistics division. This means that it is regarded to be: “conceptually clear,
has an internationally established methodology and standards are available, and data are regularly
produced by countries for at least 50 percent of countries and of the population in every region where
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the indicator is relevant . . . ” [2]. As TB incidence rates cannot be directly measured from routine
surveillance data, indirect methods are commonly used and recommended to estimate national TB
incidence rates. In countries where TB prevalence studies have been conducted, the gap between the
reported rates of TB as compared to the actual burden can be estimated [3]. Where recent TB prevalence
results are not available, alternative methods utilizing TB case notification rates as a proxy to estimate
TB incidence are used [4,5]. Case notification rates (CNR) are defined as the total number of people
with TB who have been diagnosed with TB and are routinely reported to national health authorities
per 100,000 population per year. TB notifications are routinely reported and monitored by National TB
Programs (NTP). It is generally recognized that the number of TB patients reported to NTPs is highly
influenced by the coverage of, and access to health services and the quality of clinical and diagnostic
conduct. The ability of people with TB to access TB services and obtain a proper diagnosis is highly
variable, as it depends on social, cultural, economic and programmatic factors which influence the
coverage, cost and quality of TB services available to target populations [6–8]. Therefore, estimating
the gap between TB incidence and TB case notification is a key step to determine where people with
TB are missed by health systems, as well as to estimate TB incidence, which is required to monitor
progress towards the 2030 SDG target to end the global epidemic of TB.

Using information of TB risk, access to TB services and TB case detection is required to generate
insight into where and why people with TB are “missed”, either because they are not diagnosed,
or diagnosed but not reported within NTP surveillance systems. NTPs usually rely on nationally
aggregated surveillance statistics to assess program performance and effectiveness, which are used to
strategize future interventions. Using such a blanket approach to implement TB interventions ignores
the existence of subnational variations in the TB epidemic and programmatic responses. A growing
body of literature has now shown how targeted interventions can significantly improve the timely
detection and treatment of TB [8–13]. The routine analysis of subnational data is expected to become a
crucial step to identify and locate TB transmission hot spots and links these to geographic patterns of
key populations at risk of TB, TB diagnostic and treatment service delivery [14].

To plan and allocate resources efficiently and effectively, it is imperative for NTPs to integrate,
map and analyze data from a variety of sources to inform locally tailored approaches. A robust and
generally applicable data analysis framework is needed to evaluate the use of TB notification data to
monitor progress towards SDG targets across various epidemic and programmatic contexts. In this
paper, a new analytical framework was proposed to evaluate the effects of TB risk factors and program
response on TB case detection and reporting. This framework was developed as part of a larger health
system strengthening approach called: Mapping and Analysis for Tailored disease Control and Health
system strengthening (MATCH) [15]. Using a case study from Bangladesh, the MATCH analytical
framework is applied to detect subnational variations in TB notification rates and to evaluate the effects
of TB risks and program efforts to detect and report TB cases across the country. The outcomes are
then used to assess the validity of using case notification data as a proxy for TB incidence accounting
for the effects of access to healthcare, diagnostic performance and program quality.

2. Materials and Methods

2.1. MATCH Analytical Framework for TB

A common model used in the monitoring and evaluation of TB programs is the patient pathway
pyramid as shown in Figure 1. This model shows how the number of persons progressing along
each stage of the pathway decreases from those at risk of TB, through diagnoses and treatment, to
those being cured. The effectiveness of the program is then assessed by analyzing the proportions of
drop-out along the pyramid, indicative of gaps in service delivery. The MATCH approach extends this
model by assessing how progression along the pathway within a given subnational area correlates
(or deviates), from its surroundings (Figure 1 open and grey rectangles respectively). This conceptual
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extension distinguishes the MATCH framework from other TB monitoring and evaluation tools in
three main aspects.

Firstly, it requires data analysis to be conducted using a set of adjacent subnational data,
aggregated to the smallest available geographic unit available. Using subnational data allows one to
visualize and quantify geographic variations in TB case notifications. These variations can be used to
investigate spatial anomalies in which areas deviate from their surrounding areas, which then need to
be investigated.

Secondly, data which are commonly not used by health programs, either due to limitations in
accessing data, or due to interoperability issues such as incompatible units of reporting, are included
in the analysis. The use of Geographic information System (GIS) and spatial data allow the integration
of data collected across varying levels of aggregation and spatial delineation into a single unified
spatial database.

Thirdly, subnational variations are explicitly quantified and accounted for by using spatial models
to detect spatial patterns in the pathway. Therefore, it allows one to assess the geographic scale at
which socio-economic, epidemiological and health system processes operate and interact. For example,
small scale clusters of low TB case notifications might coincide with larger geographic clusters of good
health system coverage. This might raise suspicion regarding the low numbers of TB patients being
reported, possibly being caused by limited access to available services. Such findings provide insight
in the effectiveness of health systems to detect and diagnose TB and provide important information for
future planning.

To identify gaps in patient progression along the pathway of care, these principles were applied
by simultaneously analyzing associations between locally observed case notification rates and proxies
of TB risk, access to care and the quality of TB care services, explicitly accounting for spatial trends in
these data.
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Figure 1. Schematic model showing the patient pathway of a tuberculosis (TB) patient along the patient
pathway. Along each step of the pathway a certain proportion of patients is expected not to proceed to
the next step due to barriers in access to health care and TB responses. In the Mapping and Analysis for
Tailored disease Control and Health system strengthening (MATCH) approach, locally observed rates
along the pathway are compared to regional rates to account for geographic dependencies between
nearby areas, for example due to patient movements or high transmission between areas.
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2.2. Bangladesh Case Study Data

TB notification data, as well as the number of patients tested, treated, cured and retreated, reported
by each of the 489 upazilas of Bangladesh (third level administrative units) to the NTP were collected
for the year 2016. These data were complemented with socioeconomic data derived from the national
census, Household Income and Expenditure survey (HIES) and laboratory data. All data were merged
and joined with spatial polygon data of upazilas using a Geographic information System (GIS). All
data obtained from different sources were integrated into one unified source database based on their
common geographies (i.e., upazilas). An overview of the data used in this study is provided in Table 1.

Table 1. Data collected and used in the study.

Component Description Source

TB
NOTIFICATION

DATA

Total numbers of new and relapse cases and retreatment
cases reported per upazila in 2016, age and gender

disaggregated

National Tuberculosis Control
program (NTP), Bangladesh

POPULATION
DATA

Population numbers derived from the population census
conducted in 2011 aggregated to the level of upazila

projected to 2016

Bangladesh household and
population census 2011, Bangladesh

bureau of statistics 2012

TB RISK FACTOR
DATA

Literacy rate and poverty headcount (people living
below the lower poverty line) derived from the

household income and expenditure survey conducted in
2010 aggregated to the level of upazila

Household Income and Expenditure
survey (HIES, 2010). Bangladesh

bureau of statistics 2012

HEALTH
SYSTEMS DATA

Number of persons with presumptive TB who had
bacteriological diagnostic testing for TB performed;
number of people initiating TB treatment and the

number of retreatment cases per upazila for the year 2016

National Tuberculosis Control
program (NTP), Bangladesh

SPATIAL DATA:
Polygon features of administrative boundaries of

upazilas in Bangladesh in the year 2015; Line features of
road network in Bangladesh

UN OCHA (via the Humanitarian
data exchange) accessed March 2017;

Open Street Map 2018

As routine surveillance data are likely to contain a certain amount of error, all data were validated
by means of their internal consistency. Internal consistency [16] was measured as the observed
deviation of each observation from the overall mean of all observations. This showed that 12 out of
the 489 upazilas (12/489 = 2.5%) reported case notification rates that were more than three standard
deviations above the national mean of 125 cases per 100,000 population per year, which is usually
indicative of reporting errors. The inclusion of outlying observations can potentially result in severe
bias of parameter estimates of interest [17]. Therefore, outlying values were substituted by imputing
new values based on an unconditional random draw from a distribution with a mean and standard
deviation equal to those of the remaining 477 upazilas included in the analysis [18]. Five upazilas did
not report TB patients to the NTP in 2016. These were omitted from the analysis, resulting in a final
dataset including 484 upazilas.

Data were processed and stored in standardized thematic tables and stored in a PostgreSQL
database. Data management and analyses were conducted using R language for statistical analysis
(packages used: rgdal, spdep, reshape2, ncf) [19]. Maps were made using QGIS 3.2 Geographic
Information System [20].

2.3. Data Analysis

To assess whether case notification rates across upazilas are spatially auto correlated and to locate
clusters reporting high or low TB case notification rates, local indicators of spatial autocorrelation [21]
were calculated. A spatial correlogram was used to assess at which scale TB case notification rates are
spatially clustered.

Next, the geographic pattern of TB case notification rates was compared to factors related to TB
risk, access to health care and program performance. As subnational measures of TB prevalence were
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not available, poverty was used as an indicator of TB risk. The Bangladesh TB prevalence survey of
2007–2009 showed that TB incidence was significantly higher in people living in the lowest wealth
quintile (incidence rate ratio: 1.73) [22]. Other social and economic factors which are associated with
an increased risk are often causally linked to poverty. Therefore, poverty was used as the key indicator
of TB risk. Access to TB services was assessed using the TB testing rate, which was calculated as the
total number of people tested for TB per 100,000 population. Finally, the retreatment rate was used to
evaluate the effect of program performance on TB notifications. As the objective of the analysis was to
simultaneously evaluate the effect of these factors on the drop-out of patients along the pathway, all
variables were simultaneously entered into the model.

Simultaneous autoregressive models (SAR) [23,24], using a spatially correlated error structure,
were used to analyze the combined effect of TB risk populations, access and program performance on
TB case notification rates. Using a spatially explicit model allows the discernment of factors explaining
variations in TB notification rates, while correcting for the lack of dependence between individual
observations. This was of particular importance as a lack of independence between observations could
result in type I errors when fitting regression models to the data [25]. For example, the movement of
patients commuting across upazilas from where they live to where they seek health care could lead to
spatial diffusion of locally increased case notification rates, leading to biased results. Such processes
are explicitly accounted for by using SAR models, as it prevents false significant associations between
CNR and factors included in the model.

To assess the existence and magnitude of spatial autocorrelation (SAC) in the data, six
different SAR models including the same covariates, but with varying spatial weight matrices (e.g.,
conceptualizations of the spatial surrounding areas) were fitted to the data: directly adjacent spatial
neighbors; the five and 10 nearest neighbors; the neighbors within 20 and 15 km distances; and inverse
travel distance weighted neighbors. Travel distances were based on smallest travel distance calculated
along the primary and secondary road network in Bangladesh using the “Dijkstra” shortest distance
algorithm calculated in postGIS [26]. The best fitting model was identified based on the model with
the lowest log likelihood. The effect of data imputation on the model fit was assessed by comparing
Nagelkerke’s pseudo R-squared [27] of a model fit to the data to that of the model fit using the imputed
data. The final model fit was evaluated by means of diagnostic plots of observed and predicted values
as well as residual plots.

To identify areas where TB under-detection and diagnosis are expected to occur, the best fitting
model was used to predict the expected CNR based on the covariates (e.g., trend) and spatial
dependencies (e.g., signal) in the data [28]. Next, a standardized CNR, accounting for effects of
poverty, testing and retreatment rate, was calculated by subtracting the predicted trend component
from the observed CNR. The resulting prediction reflects the expected CNR when poverty, testing
and retreatment would not affect case notification rates. Finally, the incidence rate ratio (IRR) of the
observed divided by the predicted CNR were calculated for each upazila and mapped to identify areas
which over- or under-reported TB.

3. Results

In 2016, a total of 220,273 cases of all forms of TB, consisting of 175,116 new and relapse cases of
TB, were reported from 485 upazilas to the national TB program. Five upazilas (0.8%) did not report
any cases and were omitted. The national case notification rate of 138/10,000 population varied greatly
between upazilas [interquartile range: 73.3–145.2]. In total, 1641 patients who had previously started
TB treatment were retreated in 2016, resulting in a national retreatment rate of 0.75% [interquartile
range: 0.0–1.1%].

The spatial correlogram, testing for spatial autocorrelation over incremental distances, showed
that significant autocorrelation of TB notification rates existed at scales of 5–70 km (Moran’s I range:
0.32–0.09, p < 0.01; Figure 2a). Local clusters of low case notification areas were identified across the



ISPRS Int. J. Geo-Inf. 2019, 8, 14 6 of 11

central-west and central Bangladesh (Figure 2b). Notably, clusters of consistently low CNR were found
directly adjacent to areas that were consistently reporting a high CNR.

Figure 2. (a) Spatial correlogram showing the strength of the spatial autocorrelation that was observed
between adjacent upazilas of incremental distances. Significant autocorrelations (p < 0.01) at various
distances are labeled with red dots. (b) Cluster map showing clusters of upazilas reporting high (red)
and low (blue) case notification rates in 2016.

Table 2 shows the results of fitting models with different autocorrelation structures to the case
notification rate data for 2016 in Bangladesh. Regardless of the spatial correlation structure used
in the model, case notifications rates were found to be positively associated with the number of
persons receiving bacteriological testing for TB and negatively correlated to the retreatment rate. In
three models, negative correlations were found between CNR and poverty rates. Spatial models
with autocorrelation structures corresponding to the ten nearest neighbors outperformed models
which with correlation structures accounting for higher order levels of contiguity or distance based
neighborhood models (Log-Likelihood = 2439; Table 2). The best fitting model showed a good fit
to the observed TB case notification rates (Figure 3). The Nagelkerke’s pseudo R2 of goodness of fit
showed that the model based on the imputed data outperformed that of a model based on the raw
data (Nagelkerke R2: 0.50 versus 0.18, respectively).

Table 2. Results of fitting a spatial autoregressive model to estimate the number of TB cases reported
per 100,000 population per upazila in 2016. Spatial dependencies were accounted for by fitting different
models using varying spatial neighborhood matrixes to account for spatially auto correlated errors
(* p < 0.01; ** p < 0.01, *** p < 0.0001).

Model Covariate Neighborhood Matrix

Direct
Adjacent

Five
Nearest

Ten
Nearest

Within 20
km

Within 50
km

Travel
Distance

Intercept 42.9 *** 41.3 *** 41. 8 *** 53.1 *** 35.8 *** 45.3 ***
Poverty rate (% headcount) −6.7 −8.7 * −8.3 * −7.9 −8.4 * −3.9

Testing rate (test per 100,000 population) 0.09 *** 0.09 *** 0.09 *** 0.08*** 0.10 *** 0.08 ***
Retreatment rate (% of all cases reported) −9.0 *** −9.0 *** −8.5 *** −10.1 *** −9.0 *** −10.0 ***

λ (spatial autocorrelation) 0.516 *** 0.514 *** 0.644 *** 0.286 *** 0.719 *** 0.423 ***
Model Log Likelihood −2440 −2442 −2439 −2462 −2443 −2465

The best fitting model based on poverty (β = −8.7, p = 0.04), testing rate (β =0.09, p < 0.0001)
and retreatment rate (β = −8.5, p < 0.0001) was used to predict the expected case notification. The
geographic pattern of the IRR map showed that low IRRs, indicative of TB under-detection and under
notification, are expected to occur in the mid-central and northern central regions of Bangladesh
(Figure 4). Likewise, regions of high IRR were found in the southern and south-east of the country.
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Figure 4. Maps of observed and predicted case notification rates across 484 upazilas in Bangladesh
in 2016. Predicted case notification rates (CNRs) were created by accounting for differences in
poverty, testing rates, retreatment rates and spatial correlations between each upazila and its 10
nearest neighboring upazilas. Incidence Rate Ratios (IRR) were calculated by dividing the observed
CNR by the predicted CNR.

4. Discussion

The MATCH analytical framework was applied to analyze routinely collected, geographically
disaggregated data in order to evaluate gaps in TB case detection and reporting in Bangladesh. The
application of the MATCH framework allowed to assess the scale and strength of spatial trends in
TB case notification rates at various spatial scales. The results of these analyses showed that TB
notifications rates vary greatly across the country. Small clusters of geographically adjacent upazilas
reporting similar TB rates were identified across the country. Accounting for spatial dependencies
within clusters of geographically contiguous upazilas made it possible to assess the effects of TB
risk and program delivery while taking into consideration the effect of the wider geographical
surroundings. SAR modeling showed that significant spatial dependence in reported TB CNR existed
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between upazilas. These findings provide important insights regarding the location, scale and possible
causes of TB under detection and underreporting. They provide valuable information required to
target interventions, accounting for context specific factors causing the observed variations in TB
case notifications.

Based on the model presented, TB case notifications were found to be negatively associated with
poverty rates. This finding contrasts the results of the Bangladesh TB prevalence study in which TB
was found to be most prevalent in the lowest quintile (IRR 1.74 (137.9/79.4) [21]. However, poverty
has been shown to be an important factor limiting access to healthcare [29,30]. Therefore, the negative
association found between TB case notification rates and poverty is likely to be caused by the limitation
of reaching TB diagnostic care and treatment rather than reduced risk of TB. Hence, the dual association
of poverty with TB reporting in Bangladesh should be considered and underlines its importance for
decision support as it is expected to both result in higher TB transmission but also to limit the detection
of TB as a results of reduced financial access to TB services.

TB case notification rates were found to be significantly associated with both TB testing rates
as well as TB retreatment rates. Although not surprising, this does suggest that the health system in
Bangladesh might not be screening sufficient numbers of people presumptive for TB to detect new
cases. Increasing the number of people screened and tested is expected to lead to an increase in TB
case detection, with 8–10 more cases expected to be detected for every 1000 additional persons being
bacteriologically tested for TB. Naturally, this relation is expected to decrease with increasing case
detection success. Therefore, it is important that the additional value of screening and testing of people
presumptive for TB is closely monitored to find the right balance between the amount of resources
invested and the number of additional cases detected. In large areas where indiscriminate testing for
TB does not result in increased TB case detection, alternative and more targeted TB screening and
testing strategies should be considered.

The negative association between TB case notification rates and TB retreatment rate is used as a
proxy to assess the overall success of the TB program to identify new TB cases. Treatment failure due
to interrupted treatment, drug resistance or other causes could lead the patient to remain infected and
re-enter the health system as a retreatment case. As retreatment is more likely in TB patients who do
not adhere to treatment or due to deficiencies in the medication used, it can reveal limitations in the
effectiveness of the NTP. As retreatment is independent of being reported, the retreatment rate is an
important indicator of program performance. In a well-functioning TB program, TB retreatment rates
are expected to represent a stable proportion of TB cases identified. High retreatment rates, caused by
low treatment success, would be expected to result in continuous transmission, and consequently, in
high rates of new TB. An inversed relation was found in this study. It is expected that the association
between CNR and retreatment rates reflects a gap in the detection of new TB cases by programs.

The spatial pattern of standardized case notification rates, in which the effect of covariate factors
was removed, differed considerably from the spatial pattern of the observed rates. The discrepancy
between these patterns could be indicative of TB under detection and diagnosis and should be
prioritized for targeted interventions. Since the model outputs are based on a conceptual generalization
of the hypothesized relations between factors influencing effective TB case detection and reported
TB notifications, expert opinions are required to verify the causative mechanism resulting in low
notification rates.

The primary objective of this study was to validate the use of case notification rates as a proxy
for TB incidence, accounting for the partial effect of TB risk and health system factors driving TB
notification rates. Therefore, the absence of associations between TB notification rates and covariates
of TB risk does not pose a limitation to the model. However, since the relation between poverty and
TB burden was not found to reflect transmission risks, other factors affecting TB transmission, such
as indoor living conditions and crowding [31], are expected to complement the current findings to
explain residual variation in CNR not accounted for in the model. These should be included in future
models to further investigate how TB transmission risk and health system functions affect TB detection.
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Since the observed spatial pattern of TB notifications could not be fully attributed to the geographic
patterns in the covariates included in the model, other epidemiological factors should still be further
investigated to explain the observed pattern.

5. Conclusions

The reported TB case notification rates in Bangladesh showed considerable spatial heterogeneity
and spatial clustering. TB case notifications showed unambiguous geographic patterns and were
highly associated with factors influencing access to TB care, program coverage and performance.
Accounting for these patterns enabled to identify areas where TB underreporting is likely to occur.

The MATCH analytical framework enabled to evaluate the use of TB notification rate as an
indicator to monitor progress towards the SDG 3 indicator to end the global TB epidemic by 2030.
More specifically, it enabled the identification of geographical anomalies in routine TB reporting which
could be indicative of TB under detection and underreporting. The analysis of subnational data and
integrating various independent data sources using GIS further enabled the identification and location
of target areas where TB under-detection, diagnosis and reporting are expected to occur. Supervision
missions should be targeting these areas to further verify these findings and to allocate resources
more efficiently.

The fact that case notification rates were found to depend on programmatic testing efforts and
performance underscores the recommendation that these should not be used as a proxy of TB incidence
without further consideration of health system functioning. Careful consideration should be given
to local heterogeneities in factors affecting TB case notifications when estimating TB burden (i.e.,
incidence). The MATCH analytical framework has provided a clear approach that will enable TB
managers to plan and evaluate their activities and to identify potential gaps in patient pathways.
When routinely applied to analyze subnational TB surveillance data, the methodology is expected to
progressively provide new insights and generate evidence, which are required to end the TB epidemic
by 2030.
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