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Abstract: This paper presents an analysis of the effects of cognitive agents employing selfish routing
behavior in traffic networks with linear latency functions. Selfish routing occurs when each agent
traveling on a network acts in a purely selfish manner, therefore the Braess Paradox is likely to
occur. The Braess Paradox describes a situation where an additional edge with positive capacity is
added to a given network, which leads to higher total system delay. By applying the concept of
cognitive agents, each agent is able to make a range of non-selfish and selfish decisions. In addition,
each agent has to cope with uncertainty in terms of travel time information associated with the
traffic system, a factor in real-world traffic networks. This paper evaluates the influence of travel
time uncertainty, and possible non-selfish decisions of the agents on overall network delay. The
results indicate that both non-selfish behavior and uncertainty have an influence on overall travel
delay. In addition, understanding the influence of cognitive agents on delay can help to better plan
and influence traffic flows resulting in “closer to optimal” flows involving overall lower delays.

Keywords: Braess Paradox; agent-based simulation; cognitive agents

1. Introduction

The shortest path problem is well studied in the literature and has been applied in many
different types of applications in the field of Geographic Information Science and Technology that
range from habitat connectivity to vehicle routing. Shortest path algorithms form the basis for
personal and vehicle navigation, where a path of least travel time, travel cost, or some other metric is
used. People tend to use navigation aids in order to find their way in unfamiliar environments. In
addition, many cars are equipped with a built-in or mobile navigation system that is capable of
receiving (near) real-time traffic information—e.g., closed roads or traffic congestion, and many may
guide drivers to routes that are less congested (e.g., Waze). Many products like Waze give the same
guidance to everyone, which can lead to creating new evolving areas of congestion.

Navigation is comprised of two activities “way finding” (planning) and “locomotion” (execution
of movements) [1]. Due to the fact that (near) real-time information is now integrated into the
navigation process, the separation between “planning” and “execution of movements”, described as
wayfinding and locomotion in [1], appears to be diminishing. We argue that the separation of the
processes wayfinding strictly happening before locomotion is questionable. In the literature,
navigation is described in a way that the user selects a destination and one or a combination of costs
(e.g., time, fuel cost, travel distance) that can be used in evaluating possible routes. Based on the
chosen cost function the navigation system responds with the minimum cost route from the current
location to the destination. This planning process is valid for non-dynamic traffic situations but does
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not consider traffic as a “living” system, that displays certain dynamics. This is due to the fact that
there are a number of players on a road network, each making their own decisions, where those
decisions affect in concert the state of the network in the future. Hence, the network and associated
attributes are time-dependent, and an accurate deterministic prediction cannot be made. In order to
find shortest paths in a dynamic network several methods have been developed [2-6]. These
algorithms try to “react” to dynamic conditions in the road network, and identify one shortest path
for exactly one agent navigating in the network in a given situation —i.e., network status within the
time-frame of the shortest path traversal).

From the literature it is evident that route planning models are tailored towards one single user,
and thus do not address the fact that other agents are also making their decisions, each impacting the
outcomes of others. In order to simulate decisions of a group of agents, game theory is employed in
the literature [7]. Braess [8] identified a problem in traffic modeling that has since been called “Braess
Paradox”, which describes a situation where a given set of players in a traffic network each try to find
their “best route” in a selfish manner. Hence, selfish players choose the fastest route from their own
perspective, neglecting the effect for other players. Given that an extra edge is added to the network,
a layman could assume that the average travel time of the players will be the same or lower than the
original network layout as the overall capacity has been increased. For the Braess example, the travel
times are higher than what happens on the original network without the extra edge.

Roughgarden [7] and Braess [8] both assume a non-cooperative game, where players are purely
selfish. In this paper, we apply the concept of a group of cognitive agents where each agent/player is
able to make decisions accordingly —and change the strategy accordingly. In order to investigate the
effect of the behavior of cognitive agents the approach in this paper evaluates:

e  Varying probabilities of agents acting in a non-selfish way.
e  Varying levels of uncertainty in travel time information. That is, the information available on
network congestion-status may be fuzzy for some agents.

The basic research question addressed in this paper is: “How do different compositions of selfish
& non-selfish decisions of agents affect the delay or latency of all agents acting on the network,
considering possible uncertainties in the information regarding network status?” The rationale
behind the contributions of this paper is as follows. Due to the fact that selfish routing depends on
selfish behavior of agents in a network, decisions can be considered to be crisp rather than fuzzy. This
holds true for situations in which agents have accurate information on the network status and act
purely selfish—one type of condition involving machines but probably never in a complete sense for
humans. In a transport network with cognitive agents, we assume that each agent has the ability to
act in a non-selfish way, as well as that traffic information may be defined as uncertain. The driver is
not able to fully evaluate the accuracy of the traffic situation ahead, due to the following reasons:

(a) Real-time traffic applications (like Waze) are dependent on the number of users collecting &
providing data. Such real-time applications have a high market share in certain countries, but
they do not have a significant market penetration in all regions of the earth. In some European
capital cities the numbers of Waze users are at a maximum. For example, in Paris approximately
51,000 users per/1 million citizens use the app. Other cities lag behind, for example Vienna
involves only 1000 users/1 million citizens [9].

(b) Traffic Message Channels (TMC) provide traffic information for vehicle drivers sent via FM
radio frequency. This information can be included into any satnav system for routing purposes.
The system is designed so that traffic information is only provided for major traffic
junctions/locations collected in a location table —which results in inaccuracies in the location and
extent of any traffic congestion.

(¢) As TMC or FM radio provided traffic information requires that traffic information be collected,
checked and published thereafter, there is a temporal delay between the incident and the
publishing of the traffic information. In FM radio stations, the updates on traffic may be
broadcasted every 30 min, which means an incident may have cleared by the time that the
information is broadcasted.
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(d) As we deal with a dynamic situation, the traffic conditions ahead of an agent may alter as the
agent moves toward an incident location that is along the desired route. Hence, any agent has
to rely on a prediction on how the situation might change —especially when the agent does not
receive any timely update on the situation as he/she comes closer to the incident location.

Therefore, the provided traffic information can be regarded as only partly accurate. An agent
does not necessarily have full trust in the provided traffic information —as the situation might differ
from what is expected when the agent arrives at the incident location. Generally speaking, in real
world situations any agent in a network does not necessarily have an accurate, timely overview on
the network status. Kattan et al. [10] concluded that commuters who sought information from many
traffic update sources were likely to be more compliant with the traffic advice when they received it.
Hence, agents do not necessarily react to traffic updates accordingly, when they only have one single
source of information or when updates are less frequent.

A key component in Intelligent Transportation Systems (ITS) is to forecast the number of
vehicles and their positions in a traffic system [11]. The traffic forecasting is done with the collection
of current traffic data. These data are amended with ancillary data as well as a trip demand model.
In literature a number of traffic forecast models have been proposed. The classic approach is the Four-
Step model [12]. The theoretical approach of this model is based upon the decomposing the process
into four steps: Trip generation, trip distribution, mode choice and route assignment. Route
assignment describes the allocation of trips between origin and destination. Wardrop’s principle [13],
equivalent to the Nash equilibrium, is applied in the route assignment step. This problem is a so-
called bi-level problem, as the travel times are a function of the demand along route segments and
demand is a function of travel time along those very same segments. Other approaches utilize the
Stackelberg competition model, where agents in a traffic network respond to actions of a leading
instance.

The contribution of the paper is as follows. With the help of agent-based approach we show that
the behavior and the agents influence the overall latency. This aspect in itself is not new, but what is
new is the fact that we model agents where they are provided traffic information where there is a
degree of uncertainty as to its accuracy. Agent decisions based upon this uncertain information on
the traffic status may decrease/increase the overall latency, as they tend to make “wrong” decisions
with respect to the real network status and in relation to their chosen strategy (i.e., selfish verses non-
selfish behavior).

This paper is organized as follows. In the next section the relevant literature is briefly discussed
and analyzed, followed by a section on the methodology applied in this paper to evaluate the effect
of cognitive agents displaying varying degrees of selfish routing behavior and reliance on imperfect
traffic information. Section 4 presents the results and analysis, and is followed by a summary in the
final section.

2. Network Flows, Routing Games and Selfish Routing

This section reviews the concepts of the maximum flow problem, the min-cost flow problem and
relevant theory on routing games. Whereas forms of the minimum cost flow model can be used to
solve for traffic flows that involve the lowest total network delay, selfish routing involves the concept
where travelers on the network behave in a strictly selfish manner. Routing games are “games”, in
the sense of game theory [14], that occur in non-cooperative situations, where several agents try to
find the best strategy that increases their own benefit at a possible cost to others. Generally, agents
alter their strategy to improve their own benefit until they cannot increase their benefit any further.
This situation is described in literature as a state of equilibrium —or Nash equilibrium [15]. Overall,
selfish routing is a result of different agents acting on a network, each trying to find the best path
from a strictly personal viewpoint, regardless of the consequence for other agents.



ISPRS Int. ]. Geo-Inf. 2018, 7, 345 4 of 16

2.1. Shortest Paths and Network Flows

To begin, let us define a basic set of terms that are used in this paper. A network, N ={V,E}, is a
set of n nodes, V, and a set of m edges, E. Edges are assumed to be directed, i.e., each edge consists of
an ordered pair of nodes. Roads segments that can be traversed in both directions are represented as
two network edges, one for each direction of travel. Additionally, each edge is assigned a cost
function that represents the travel time to traverse that edge, represented as c..R*—R*. Such travel
time functions are usually expressed as a function of traffic flow, and increases with increasing traffic.
In most networks, a number of different directed paths exist that connect an origin or source node
with a destination or node.

Network flow problems are classic problems in operations research [16] and capture the essence
of many real-world applications [17]. These problems are based on the existence of a flow network —
i.e, a directed graph where each edge has an associated non-negative flow capacity ¢, which
represents the maximum possible flow on that edge. A feasible set of flows in a network is defined
as a function f.E—R* such that 0 < f(u,v) < c(u,v) V (u,v) € E (Capacity Constraints) and Z. € V f(u,v) =
Yo € V flv,u), for all u # s,t (Flow Conservation constraints), where s, ¢ denote the source and sink
nodes of the network. Two of the most well-known flow problems are the max flow and the minimum
cost flow problems [16].

2.2. Routing Games and Selfish Routing

Routing games are part of the field of game theory [14], and involve routing decisions in a
network. Game theory addresses problems of decision making involving rational decision makers
[14] where conflict arises. A well-known example of Game Theory is the Prisoners dilemma [18]. In
non-cooperative situations, where several agents try to find the best strategy to increase their own
benefit (i.e., being selfish), the players have a cost for being non-cooperating. This cost externality is
regarded as the Price of Anarchy [19], and measures the inefficiency of the Nash equilibrium. It is
defined as the ratio between the worst outcome value and the value of the optimal outcome. For
routing, we measure the outcome as the total travel time. Obviously, travelers want total travel time
to be as low as possible. The Price of Anarchy can also be used as a measure of inefficiency in simple
routing games. In recent papers approaches to mitigate the Price of Anarchy have been proposed.
Several approaches use coordination solutions to overcome the Price of Anarchy [20-22]. In Reference
[23] the effects of user preference heterogeneity on the Price of Anarchy are analyzed. [24] presents a
probability-dominant description of Selfish Routing in a stochastic network, where current travel
times in the network are available to the players in the system.

3. Quantifying the Impact of Cognitive Agents within a Collective of Players

This section outlines our approach to evaluate the effects of cognitive agents within the context
of a group. We propose an agent-based approach to simulate the behavior of each of the players in a
network with linear congestion functions as costs, similar to the selfish routing examples given in
References [7,8]. Our networks will serve as the environment in which the agents act. We analyze the
impacts that different probability levels of non-selfishness and levels of uncertainty of travel time
information have on overall average travel delay for the group of agents, going beyond past work
that involved solely selfish behavior.

For our experiments, the traffic network is defined as a directed Graph G = (V,E) with linear cost
functions c.:R*—R*. That is, we can express travel delay or latency as c(x) = ax + b. A Graph G has k
source and destination vertex pairs {si,t1}, ... ,{sk#}. A simple pair of source and destination, si— t;, is
denoted as P:i and the set of pairs is designated as P = {Pi}. Any network flow is defined as a function
fP—R, and a fixed flow fis defined as f, = Yp.ccp, fp- In addition, a finite, positive rate ri is associated
with each pair (s ti), which represents the demand for travel or flow between source si and destination
ti. Generally, a flow is feasible if Vi Y pcp, f, = 1. Each edge e € E is given a load-dependent latency
or travel time function that is denoted as I(-). The latency function is non-negative, differentiable and
non-decreasing. Hence, the triple (G,r,l) represents a specific problem instance. The latency of a path
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P with respect to a feasible flow f is the sum of latencies of the edges in the path represented by
Ip(f) = Yeeple(fe). The cost C(f) of an entire set of flows fin G is the total latency incurred by f and
is defined by:

C(f) = Ypep lP(f)fP' 1)

In order to create a “testbed” for selfish routing we define a problem instance (G,r,l) comprised
of anetwork, travel demands, and travel delay functions. The network that we use in our experiments
is a directed Graph G that has four nodes and four edges with linear latency functions. This network
is depicted in Figure 1 together with the latency functions [ for each edge. Two edges are assigned
the latency functions 4z = Icp = x/100 and the others are assigned Isp = lac = 45—which are the latency
functions used by Braess [8]. In order to evaluate the effects of cognitive agents within the context of
Braess Paradox, an “additional” edge is depicted with a dashed line from node B to node C. The extra
edge is assigned a latency function of /sc=1.

Lap(x)=x/100 Lep(x)=45

co(X)=x/100

Figure 1. The simple network used to simulate the effect of cognitive agents and demonstrate Braess
Paradox. By adding an edge (which should intuitively help) a negative impact on all users of a
congested network can be observed. The latency function ! of each edge with respect to the number
of agents on the edge x is given accordingly.

The Braess Paradox involves a non-intuitive outcome, associated with a traffic network, like that
given in Figure 1. For this network, all original road segments (non-dashed edges) suffer increasing
congestion as traffic flow increases. In order to simulate traffic on the original network we assume
4000 agents traveling from node A to node D along the given edges. Considering the original network
without the additional edge esc the players in the game will behave as players in a non-cooperative
game. Hence, 2000 agents will take the path P1 = {A,B,D} and the remaining 2000 agents choose path
P> ={A,C,D} (see the left hand side of Figure 2). The given result is a flow at Nash equilibrium [25-
28], which indicates that each agent is behaving “greedily”, without regard to the overall cost of travel
on the network. Hence, each player travels along the minimum latency path currently available, with
respect to the flow created by the other players. If a flow is at Nash equilibrium for an instance (G,7,!)
assuming i € {i,... ,k} and P;,P, € P; with fp > 0,lp (f) < Ip,(f) then all used si- ti paths have
equal total latency. In the example employed here, the overall latency (cost of flow) C(f) equals 260,000
units (or 65 units of delay per agent). If the additional edge with high capacity (i.e., low latency lsc =
1) is added to the network, a flow at Nash equilibrium exists (assuming a non-cooperative game).
The flow results in the following situation: All 4000 agents take the path Ps = {A,B,C,D} (see the right
hand side of Figure 2, indicated by the red colored edges). The unique flow at equilibrium has a total
cost C(f) which equals 324,000 units (or 81 units of delay per agent) [7,13,26,29]. Therefore, adding an
additional edge and associated capacity can actually impede traffic flow rather than improve traffic
flow, given that the agents act in a non-cooperative manner. This is an instance of Braess paradox.
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O,
La(x)=x/100 Usp(x)=45

L45(x)=x/100 Upp(X)=45

Lic(x)=45 lep(x)=x/100

© O
Figure 2. Nash equilibrium flow and corresponding cost per agent C(f)/agent = 65 in the original

network (left), and Nash flow after insertion of a high capacity edge (right). After adding the high
capacity edge to the network, the total cost per agent C(f)/agent = 81, which is higher than in the

e0(X)=x/100

original network.

Methodology to Evaluate the Effects of Cognitive Agents

To evaluate the effect of cognitive agents on Braess Paradox, we first introduce the concept of
cognitive agents used in this work. After that, the evaluation approach is highlighted, which will
incorporate varying levels of selfishness and uncertainty of travel times of the available paths from
node A to D.

As opposed to non-cooperative games, where agents act in a strictly selfish manner, the
approach presented here is comprised of cognitive agents. These agents are capable of making their
own decisions based on their perceptions of the environment in which they act [30,31]. The concept
of cognitive agents has been applied to wayfinding in built environments [32-35], and thus seems
appropriate for traffic simulations as well. Hence, the agents in this work are able to make their own
decisions while acting in the traffic network. In this work the reason for an agent’s decision is not a
research focus, hence we just include simple cognitive abilities of the agent. Any agent is able to
perceive the network status, i.e., congestion and latency, of a certain path (say by means of traffic
news on a radio or by a navigation aid). In addition, an agent can decide their own action and choose
a specific path to travel from node A to D. Therefore, the behavior of an agent has an effect on the
other agents in terms of latency (and travel time). Of significant importance here is the fact that an
agent’s decision does not necessarily have to be purely selfish, i.e., an agent may choose a path with
a perceived higher latency (longer travel time), for whatever reason. Possible justifications for that
behavior could be in personal preferences regarding the route choice, past experience that the route
seems to be low in latency, toll roads/taxes (e.g., Reference [36]), or assumptions that the agent has
regarding the behavior of other agents in terms of prospective memory [37].

In order to evaluate the effect of non-selfish behavior, different levels of selfishness are
employed. This is represented by a parameter of non-selfishness probability Pns. The values of the
parameter can range from 0 to 100, where 0 indicates that all decisions taken are selfish and 100
assumes that all decisions taken are of non-selfish nature. Usually probability levels have values from
0 to 1. In this paper, we use probability values multiplied by the factor 100, for the sake of readability.
A Pns value of 50 means that there is a 50% probability that the decision of an agent will be non-
selfish. Thus, the agents in the simulation may have selfish and non-selfish behavior. A non-selfish
decision means, that the agent will not take the “obvious” faster path Ps ={A,B,C,D}, but chooses one
of the “slower” paths P1 or P2, for whatever reasons. In order to evaluate the effect of non-selfish
behavior, we have varied an agent’s probabilities of non-selfish decisions, from 0 to 100 in 5-unit
steps—i.e., 0, 5, 10, ..., 100.

Because agents in a traffic environment do not necessarily have accurate information on the
status of traffic network, as discussed in Section 1. Therefore, we include an uncertainty factor for
travel times in our approach, as this fact leads to a certain degree of uncertainty when making
decisions. In order to evaluate the influence of varying levels of uncertainty on the Braess Paradox
and the group of agents, we added uncertainty in latency and travel time information, denoted as A,



ISPRS Int. ]. Geo-Inf. 2018, 7, 345 7 of 16

to the path Ps = {A,B,C,D} in the network. Hence, the total latency with uncertainty at P3is denoted as
Co(f). The calculation of C(f) is defined in Equation (2),

c°(f) = ZPG(Pl,PZ) (A fp + (ZP6P3 lp (f)fP) *(1+ TandAt/IOO), (2)

where rand,, is arandomized positive number of the closed interval [0,A:]. The Atis assigned a value
ranging from 0 to 100 in 10-unit steps—i.e., 0, 10, 20, ..., 100, according to the level of uncertainty that
is applied in a specific test simulation.

We have evaluated the impact of various levels of selfishness of the decisions of cognitive agents
under varying levels of latency uncertainty by simulating the group of cognitive agents in traveling
from the origin and the destination. For each combination of level of non-selfishness Pns and
uncertainty applied to latency of Ps, 5000 simulation runs were performed (see Figure 3). In every
simulation run 4000 agents have to travel from node A to node D, where they have to make decisions
on the route taken based upon their cognitive and decision abilities. Overall, there are 231
combinations of Pws) and A«. Given 5000 simulations for each distinct combination, there are 1,155,000
simulation runs. For each test run, we collected the following result variables: Total latency C(f), the
number of agents traversing edge eas, the number of agents traversing edge esp, the number of agents
traversing edge eac, the number of agents traversing edge ecp, the number of agents traversing edge
esc, and the number of selfish and non-selfish decisions made. For each distinct combination of Arand
Ps) the variables collected in each of the 5000 simulation runs were statistically analyzed. Hence, the
mean value, the standard deviation and variance of each result variable for each combination of A:
and Pns was calculated.

Travel time
uncertainty
At’
0% » 100%
0%
E'(OA(ZNSO(sU S E'(OAI(JO,NSO
Probability of
non-selfishness
Pavs)
E’(OAO,NSIDOPQ) & = 2 C_‘,(OAIOD,NSIDO
\ 4
100%

Figure 3. Overview of the methodology to quantify the impact of cognitive agents, levels of selfishness
and uncertainty on routing for a group of agents.

4. Experimental Results

This section presents the results of the evaluation approach highlighted in the previous section.
The computational results are given in respective tables, elaborating on the effect of cognitive agents
with respect to the experiment settings. The results were obtained using the Repast Simphony
framework [38].

In Figure 3, the variable name for total latency C’(f) value represents various levels of non-
selfishness and travel time uncertainty. For example C’(f)a10ns100 denotes the total latency value
that occurs when the uncertainty level is 10 and the non-selfishness probability is set at 100. This
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means that C'(f)aonso Tepresents delay incurred when the uncertainty in travel is at its lowest and
when all agents’ decisions are selfish. The superscript (*!) denotes that the additional edge BC is used,
and superscript of (*2) denotes that the edge BC is not used. This means that C'(f)aoys100, marked
with (*2), denotes C(f) of the flow at Nash equilibrium without edge BC.

Our evaluation starts with the calculation of C(f) of the Nash flow on the original network i.e.,
without extra edge —and C.(f) of the Nash flow of the extended network —i.e., with edge BC. Based
on these “anchors”, the variable conditions of uncertainty of travel times and variable probability
levels of non-selfishness were tested. The calculation of C(f) and Ce(f) is done according to the
methodology mentioned in Section 3.1. Therefore, a non-cooperative game is created and evaluated
until no agent can improve their individual situation by changing their behavior. Hence, C(f) results
in 65 latency units per agent traveling from A to D, where 2000 agents traverse the edges AB-BD and
the other 2000 agents choose AC-CD. For the network with the extra edge BC (having low latency)
Ce(f) results in 81 units of latency per agent. In this case all 4000 agents traverse the edges AB-BC-CD.
This paradox, of higher latency values due to an extra high capacity edge, is described in literature
as Braess Paradox (e.g., Reference [8]).

In Table 1 the average latency values (i.e., total travel time over 5000 simulations) per agent are
given for different levels of travel time uncertainty and probability of non-selfishness. The results
indicate that the higher the level of uncertainty in terms of travel time At is, the lower is the latency
or delay per agent (given a fixed probability of non-selfishness Ps)). This is depicted in Figure 4 and
Table 1. Generally, the prior statement holds true except for the set of latency times highlighted in
orange in Table 2. The highlighted C"(f) values at a given P level are the lowest calculated values
for given At values. With increasing At the values of C’(f) increase. In Figure 5 the behavior of
latency values for varying Pws) with a given At value is depicted (see Table 1 for numerical values).
There, the latency values for At values 0, 30, 60, 100 are depicted, showing decreasing latency values
per agent with increasing Pvs). This monotonically decreasing behavior is present from Ps) levels 0
to 90 (for At ranging from 0-30), for Pws) levels 0 to 85 (for At ranging from 40-70), and for Pws) levels
0 to 80 (for At ranging from 80-100).

85.00
80.00 -
E
o
oo
L
5 75.00 i s,
a == non-selfishness probability: 0
w
'§ wnon-selfishness probability: 25
:é - non-selfishness probability: 50
E ' = non-selfishness probability: 75
o
] \ non-selfishness probability: 100
65.00 -
60.00

0 10 20 30 40 50 60 70 80 90 100
Travel time uncertainty A,

Figure 4. Diagram showing the latency values per agent for given non-selfishness probabilities over
varying travel time uncertainty values At.
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85.00

80.00

70.00

travel time units per agent

75.00 -

=== yncertainty: 0%

== uncertainty: 30%

uncertainty: 60%

=== uncertainty: 100%

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
non-selfishness probability

Figure 5. Diagram showing the latency values per agent for given level of travel time uncertainty At

over varying probabilities of non-selfishness Ps).

Table 1. Average latency times C'(f) of test runs for given values of varying At and Ps).

Latency C'(f)a Pus, Per Agent

Travel Time Uncertainty At

Ps) 0 10 20 30 40 50 60 70 80 90 100
0 81.00 80.55 7840 76.58 75.05 73.88 7286 72.02 7129 7080 7022
5 7925 7891 7695 7519 7388 7275 7181 71.09 7039 69.81 6943

10 7778 7719 7550 7399 7275 7175 7086 7023 6948 69.04 68.62
15 76.17 7575 7433 7276 7172 7072 6995 6937 68.87 6828 67.89
20 7466 7437 7301 7178 7084 6979 69.14 68.67 68.09 67.68 67.42
25 7333 73.02 7184 7070 69.77 69.04 6840 6787 6749 67.16 66.84
30 7220 7182 7064 69.79 68.99 6839 67.76 6741 6699 66.66 66.41
35 7078 70.64 69.73 6892 6835 67.63 6721 66.86 6657 6628 66.09
40 6982 6957 6883 6821 6763 6711 66.74 6645 6615 6593 65.75
45 68.76 6875 68.08 67.56 67.06 6670 6630 66.04 6582 6565 6548
50 67.97 6795 6734 6693 6655 6621 6591 65.72 6555 6541 6527
55 6724 6720 66.77 6642 6617 6586 65.64 6549 6533 6521 65.14
60 66.61 6659 6628 66.06 6580 6555 6541 6526 65.15 65.07 65.00
65 66.02 66.03 6585 6566 6548 6531 6519 65.08 65.01 6495 6491
70 6558 65.59 6547 6533 6520 6510 6501 6495 6490 64.87 64.84
75 6525 6524 6516 65.09 65.00 6494 6489 6486 64.83 6482 64.81
80 65.00 64.99 6496 6492 6488 64.84 6483 6481 6480 64.80 64.80
85 6485 6485 06484 6482 6481 6480 6480 6480 6481 64.81 64.82
90 6480 64.80 64.80 6480 6481 64.81 6482 64.83 6484 64.85 64.86
95 6486 64.85 064.86 6486 64.87 64.88 6489 6490 6491 6492 6492
100 65.00 65.00 65.00 65.00 65.00 65.00 65.00 6500 6500 65.00 65.00

Both “anomalies”, depicted in Table 2, describe the fact that, when all agents follow the Nash
flow without the edge BC, i.e., with latency C(f), then only a few agents choose to traverse edge BC.
Thus, the agents act purely selfish by avoiding the edge BD with latency 45, which reduces latency
for the agents (65 units verses 20 + 1 + (20 + x)/100 where x denotes the number of agents traversing
edge BC). Hence, in this particular experiment setting a small number of agents in traversing edge

BC can reduce the average latency per agent, which is depicted in Figures 4 and 5 and Table 2.
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In order to justify the latency values of Table 1 —we show the number of agents traversing the
respective edges in Appendix A Table Al for edges AB and CD, and in Appendix A Table A2 for
edges BD and AC. Appendix A Table A3 lists the number of agents traversing edge BC. These
numbers are the basis for calculating the latency values given in Table 1 in conjunction with the
latency functions given in Section 3.

Table 2. Lowest average latency times C'(f) for varying At and Ps) are marked with orange colored
numbers.

Latency c (f)AtP(Ns) per Agent
Travel Time Uncertainty At
Pwvs) 0 10 20 30 40 50 60 70 80 90 100
0 81.00 80.55 78.40 76.58 75.05 73.88 72.86 72.02 71.29 70.80 70.22

80 65.00 64.99 64.96 64.92 64.88 64.84 64.83 64.81 64.80 64.80 64.80
85 64.85 64.85 64.84 64.82 64.81 64.80 64.80 64.80 64.81 64.81 64.82
90 64.80 64.80 64.80 64.80 64.81 64.81 64.82 64.83 64.84 64.85 64.86
95 64.86 64.85 64.86 64.86 64.87 64.88 64.89 64.90 64.91 64.92 64.92
100 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00

In order to evaluate the stability in the number of agents traversing a certain edge the absolute
standard deviation values and coefficient of variation have been computed. The coefficient of
variation for edges AB and CD is between 0% and 31%, showing the highest variation coefficients at
Pws) values from 50 to 65 across all At levels. In contrast to those numbers, the coefficient of variation
for edges BD and AC are in the range between 8% and 395%, having decreasing coefficients of
variation with higher Pws) levels—except for Pws) = 0. Hence, within the conducted test runs the
standard deviation of edges BD and AC show higher values in comparison to AB and CD especially
at low Pws) and At values. This is due to the fact that at low Pws) and At values edges BD and AC are
not traversed by many agents, as most follow the path Ps = {A,B,C,D}. The coefficient of variation for
edge BC ranges between 0% and 401% showing a high influence of Pws) levels—i.e., increasing Ps)
leads to increasing variation.

In general, the coefficient of variation values reveals situations (i.e., distinct combinations of At
and Pws) which are volatile. Volatility in this context indicates test runs with high standard
deviations, which in turn are unstable in terms of the number of traversing agents. Hence, a forecast
or simulation of such situations is hardly possible, due to the variability of the system itself. For the
experimental settings in this paper the edges AB and CD have an average coefficient of variation of
16% which is lower than the average coefficient of variation for edges BD and AC (53%). Hence, we
can assume that the number of traversing agents of AB and CD are considered more stable than on
AC and BD. For low At values and low Ps) levels coefficient of variation for edges AC and BD show
especially high volatility due to the fact that the number of agents traversing these edges is low. The
edge BC also shows unstable behavior in the test runs where the path Ps is seldom traversed.

The influence of the two variables At and Pws) on the average travel time per agent is also worth
evaluating. In general, both variables have an influence on C'(f) per agent, while Pws) has a greater
impact on C’(f) per agent, than At. This is justified by the numerical values given in Table 1, and by
the correlation coefficients given in Tables 3 and 4. In the tables the dependence of the latency values
on the variables At and Ps) is given, where Table 4 indicates that Pos) has higher impact on the c'(f)
values due to higher correlation coefficients in comparison to Table 3.
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Table 3. Correlation % between C'(f) for given At levels and Pws), which indicates the dependence

of travel delay on the uncertainty in travel information.

C'(f) onAt
P

Pws) 1 1
At=0 -0.947
At=10 -0.947
At =20 -0.944
At =30 -0.941
At =40 -0.936
At =50 -0.926
At =60 -0.918
At=70 -0.911
At =80 -0.902
At=90 -0.890
At =100 -0.880

On a global level the results reveal that the fastest route for an individual (i.e., shortest path in
terms of travel time) does not necessarily have to be the fastest route for a group of people and for
the individual itself, with respect to a defined network with latency functions. This is due to the
behavior of other agents of the group and the latency due to the traffic volume on each edge, which
is mentioned in Roughgarden [7]. Braess [8] and Roughgarden et al. [26] assume that each agent in
the routing game acts in a strictly selfish manner, which results in the Braess Paradox. Therefore, if

any player in a traffic situation would be equipped with a navigation system and would strictly

follow the instructions of the navigation device the Braess Paradox is likely to occur. Thus, each

member of the group travels with higher latency than without an extra high-capacity road present in
the network. Roughgarden [7] mentions that the Price of Anarchy in networks with linear latency
functions is at most 4/3. Of particular interest is that individual shortest paths do not necessarily lead
to an “optimal” flow in the network if everyone acts selfish.

Table 4. Correlation % between C'(f) for given Pws) levels and At, which indicates the dependence

between travel delay and the probability of selfishness.

C'(f) on Pws
Pp s
At 1

Pwsy=0 —-0.980
Pwsy=5 —-0.980
Pws)=10 -0.982
Pws)=15 -0.982
Pns)=20 -0.981
Pns)=25 -0.980
Pxs) =30 -0.981
Ps)=35 -0.981
Pns) =40 -0.982
Pns)=45 —0.982
Pns) =50 -0.979
Pns)=55 -0.982
Pwsy=60 -0.982
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Pns)= 65 -0.982
Psy=70 -0.978
Pwsy=75 -0.972
Pns) =80 -0.956
Pws)=85 -0.746
Pnsy=90 0.963
Psy=95 0.984
Pwsy=100 N/A

Nevertheless, if we consider real-world situations where agents in a network have uncertain
information on the status of the network, they may act differently. Therefore, agents can make non-
selfish decisions and take the longer path in terms of latency due to their preferences or their
assumptions/view/information on the traffic situation. This behavior reduces the latency in the
network, which is depicted in Tables 1 and 2. Thus, in situations where a small number of agents
travel on Ps the travel latency per agent is actually lower than in the network without the extra edge
(see Figures 4 and 5 and Tables 1 and 2).

In that context, there is a possible impact on an Intelligent Transportation System (ITS) that tries
to influence the decisions of agents which would result in an “optimal” flow. This could be realized
by edge removal or with a special tax applied to high-capacity roads (see Reference [36]) or with
“recommendations” for agents delivered by the navigation system. In addition, an agent could get
rewards for taking detours (i.e., the longer path in terms of travel time). In Reference [36] the authors
argue that the maximum benefit of taxes in networks with linear latency functions is 4/3, and with
arbitrary latency functions is n/2, where n denotes the number of nodes in the network. The results
here suggest that an approach to provide the agents in a traffic network with recommendations for
the “optimal” paths that lead to the least global traffic latency, could easily be comprised by real-time
communications that are directed to navigation systems (e.g., by utilizing the traffic message
channel).

5. Conclusions and Future Work

This paper presents an analysis on the effect of cognitive agents on selfish routing in the context
of a street network with a latency function on each edge. In contrast to the concept of a purely selfish
routing problem, which is based upon the assumption of a non-cooperative game and strictly selfish
agents [7,26], we consider cognitively enabled agents that can act in an environment with a given
level of uncertainty associated with the status of the network in terms of latency information. In
addition, each player in the system is able to act in both selfish and non-selfish ways, in contrast to a
system with strictly selfish agents.

5.1. Crititcal Discussion of Obtained Results

The simulation environment consists of a network with linear latency functions and a group of
4000 agents that have to travel from an origin node to a destination node, by choosing amongst three
different paths in the network. The network is defined in such a way that the Braess Paradox exists.
The results indicate that both non-selfish behavior, and the uncertainty of traffic information (in terms
of latency along a path), have an impact on overall travel time. The simulation results show that non-
selfish decisions help to decrease the overall latency. While non-selfishness and uncertainty both have
an influence on the total latency, non-selfish decisions taken by agents have a greater impact on
latency than travel time uncertainty.

Of particular interest is the reduction of latency because of the travel time uncertainty, which
might not be intuitive. As agents acting in the traffic network may have a “blurred” view of the
network status ahead of them. As this issue affects the decision of each agent, having inaccurate
information on, for example the current latency in the network, some agents might make “wrong”
decisions that might not fit their chosen strategy, just because they have the wrong information. These
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situations may lead to some kind of distrust and dissatisfaction of real drivers. Thus, accurate, timely
information on the status of the traffic network may be helpful for agents to come up with an
appropriate route decision. In addition, Kattan et al. [10] conclude that agents having accurate and
identical information from different information outlets are more likely to comply to the suggestions
of a traffic management system.

In general, it can be observed that the fastest route for an individual does not correspond with
the fastest route for a group of people, if all individuals follow their individual fastest route —with
respect to a given network with linear latency functions. Hence, agents acting on a traffic network
and strictly following route suggestions of e.g., a navigation systems (without TMC), may result in
higher latency or travel time for all agents. If the majority of agents act in a non-selfish manner (i.e.,
taking what appears to be the slower path), while only some take the fast path, a low total latency
can be observed, even slightly lower than the latency of the original network (65 min latency verses
64.8 mins latency).

5.2. Future Work and Connection to ITS

In the context of ITS, the results of this paper can be of interest, due to the fact that guidance
systems could influence the decisions of agents which can result in an “optimal” traffic flow. In order
to influence the traffic flow, the literature suggests the application of tolls on certain edges [36] or to
remove certain edges of the network [39]. In addition, traffic could be influenced by rewarding agents
for traversing longer paths in terms of travel time. Nevertheless, Kattan et al. [10] suggest that a
proper information provision is a crucial part for “influencing” agents’ decisions. According to their
work drivers that obtain the same information from different information outlets are more likely to
comply to the suggestions.

Future work includes the evaluation of cognitive agents in larger networks with arbitrary
latency functions. In addition, the concept of predictive memory could be applied to agents—
currently being utilized in Personal Information Management (e.g., Reference [37]). In addition,
predictive memory —a concept based on the recognition-prediction framework—could enable agents
to learn from previous experiences [40,41]. Agents are then capable of making assumptions regarding
the behavior of other agents and they can gradually build up and act upon a set of past experiences.
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Appendix A. Supplementary Results

Table Al. Average number of agents traversing edge AB and CD for given values of At and Ps).

Agents Traversing Edge AB and CD

Travel Time Uncertainty At
Pws) 0 10 20 30 40 50 60 70 80 90 100

0 4000 3974.81 3849.15 3734.76 3632.05 3547.62 3469.37 3401.86 3339.55 3295.05 3241.06

5 3900.07 3879.95 3758.69 3641.37 3547.75 3461.11 338427 33214 3257.16 3200.6 3162.78
10 3811.04 37742 3663.04 35554 3460.76 33794  3300.79 324236 3167.76 312097 3073.99
15 3708.08 3679.9  3580.8 3461.63 3376.74 3287.77 321532 315559 3101.99 3033.97 2986.3
20 3604.07 3583.16 3481.59 3381.52 329892 3199.16 3132.09 3080.07 3010.67 2959.26 2923.24
25 3505.82 3482.06 3386.4 328622 3196.58 312097 3048.38 2983.14 2933.44 2886.59 2838.81
30 341631 3384.71 3280.88 3199.04 311595 304693 29693 292298 2861.46 2809.34 2767.17
35 3294.03 3280.85 3192.62 3107.43 3042.72 295277 2894.61 284155 279496 274355 2707.56
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40 320192 3176.84 3097.61 30259 295237 2879.66 2823.73 277524 27201 267526 2636.41
45 3089.87 3088.58 3009.95 2943.63 2872.17 281576 27481  2697.71 265249 261229 2569.12
50 29959 299426 291251 2852.01 2791.12 27315 2671.15 262946 2587.19 254821 2507.01
55 2898 2892.6 282796 27693  2724.01 2660.53 2608.99 2570.34 25263 248534 2460.01
60 2800.92 2798.16 274345 2702.34 2646.85 2587.73 2548.51 2503.55 2465.33 2432.68 2401.98
65 26942 269499 2658.81 261555 2568.78 2519.65 2478.97 2436.63 2404.11 2375.98 2348.21
70 259452 2596.72 2566.77 25255 248291 244328 24051 2371.54 2340.83 231553 2291.25
75 2500.25 2497.14 246929 244155 240234 2366.42 2336.04 2310.01 2282.15 2260.36 2241.7
80 2401.09 2394.62 2381 2353.58 232359 229275 227331 225037 2222.16 220535 2191.58
85 2296.75 229548 229035 22675 2242.06 222412 22059 218436 2166.27 215398 2141.78
90 2196.33 2202.09 219423 217459 215842 2150.37 2131.68 2118.38 2111.17 2100.74 2091.57
95 2094.3 2104.05 209221 208644 2081.78 2072.18 2065.88 2059.27 2054.71 2048.08 2043.54
100 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Table A2. Average number of agents traversing edge BD and AC for given values of At and Ps).

Agents Traversing Edge BD and AC
Travel Time Uncertainty At

Pws) 0 10 20 30 40 50 60 70 80 90 100
0 0 25.2 150.85 26525 36796 45239  530.65  598.17 = 660.47 705 758.97
5 99.93 120.06 241.32 358.65 452.26 538.91 615.76 678.64 742.88 799.45 837.27
10 18896 22581 33697  444.62  539.27  620.64 699.24  757.69 83229  879.08  926.07
15 291.92 320.09 419.22 538.4 623.3 712.27 784.74 844.47 898.08 966.08  1013.76
20 39593 41684 51842 61852  701.13 800.9 867.97 920 989.38  1040.81 1076.82
25 49418 51794  613.63  713.82 80347  879.08  951.68 1016.92 1066.64 111347 1161.24
30 583.68 615.29 719.14 800.99 884.09 953.13 1030.75 1077.09 1138.6  1190.71 123291
35 70597  719.16 807.4 892.6 95732 104728 110545 115851 1205.12 1256.52 1292.52
40 798.08 823.16 902.42 97412 1047.68 1120.38 1176.34 122483 127997 1324.81 1363.66
45 91013 91142  990.07 1056.4 1127.87 11843 1251.96 130235 1347.58 1387.78 1430.94
50 1004.09 1005.74 1087.51 1148.02 1208.94 1268.55 13289 1370.62 1412.87 1451.87 1493.05
55 1102 110741 1172.06 1230.75 1276.05 1339.54 1391.08 1429.74 147378 1514.74 1540.07
60 1199.08 1201.85 1256.56 1297.71 1353.2 1412.33 145155 1496.53 1534.73 1567.4  1598.09
65 1305.8  1305.01 1341.21 1384.49 1431.27 1480.41 1521.1 1563.45 159596 1624.09 1651.85
70 140547 140329 143325 147453 1517.13 1556.78 1594.95 1628.52 1659.21 168453 1708.8
75 1499.75 1502.86 1530.74 155848 1597.72 1633.63 1664.01 1690.05 171791 1739.7 1758.34
80 1598.9 160538 1619.01 164645 1676.45 170729 1726.74 1749.67 1777.88 1794.69 1808.45
85 170325 1704.52 1709.66 1732.52 175797 177593 1794.13 1815.68 1833.76 1846.06 1858.25
90 1803.68 179791 1805.78 182543 1841.59 1849.65 1868.34 1881.64 1888.85 1899.29 1908.44
95 1905.7 1895.96 1907.78 1913.57 191823 1927.83 1934.13 1940.75 19453  1951.93 1956.47

100 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Table A3. Average number of agents traversing edge BC for given values of At and Ps).

Agents Traversing Edge BC

Travel Time Uncertainty At
Pws) 0 10 20 30 40 50 60 70 80 90 100
0 4000 3949.61 3698.31 3469.51 3264.09 309523 2938.71 2803.68 2679.09 2590.05 2482.09
5 3800.14 3759.89 351736 3282.72 309549 29222  2768.52 2642.76 251428 2401.15 232551
10 3622.09 354839 3326.07 3110.78 292149 2758.76 2601.55 2484.67 233547 2241.89 2147.92
15 3416.16 3359.81 3161.58 292323 275344 25755 243058 2311.12 22039 2067.89 1972.54
20 320814 316632 2963.17 2763 2597.78 2398.26 2264.12 2160.07 202129 191845 1846.42
25 3011.63 296412 277276 25724 2393.1  2241.89  2096.7 1966.23 1866.79 1773.12 1677.57
30 2832.63 276942 2561.74 2398.05 2231.86 2093.81 1938.55 1845.89 1722.86 1618.63 1534.26
35 2588.06 2561.69 2385.22 2214.83 20854 190549 1789.16 1683.04 1589.84 1487.03 1415.04
40 2403.84 2353.68 2195.19 2051.78 1904.69 1759.28 1647.39 1550.42 1440.13 135045 1272.75
45 2179.75 2177.16 2019.88 188723 17443 1631.47 1496.15 139537 1304.91 1224.51 1138.18
50 1991.81 1988.52 1824.99 1703.99 1582.17 146294 134225 1258.84 117432 1096.34 1013.95
55 1796.01 1785.18 16559 153855 144795 1320.99 121791 11406  1052.52 970.6 919.93
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60 1601.83  1596.3 1486.89 1404.63 1293.66 11754 1096.96 1007.02 930.6 865.28 803.88
65 138841 138998 1317.6  1231.07 113751 1039.24 957.87  873.18  808.16  751.88  696.36
70 1189.05 119343 1133.51 1050.97 965.78  886.51 810.15  743.02  681.62 631 582.46
75 1000.51  994.29 938.55 883.07  804.62 732.79 672.03 619.96 564.24 520.66 483.36
80 802.19 789.24 761.99 707.13 647.15 585.46 546.57 500.7 44428 410.66 383.13
85 593.49 590.96 580.69 534.98 484.1 448.19 411.77  368.68 332.51 307.92 283.53
90 392.65 40418 38846  349.16  316.83  300.73 26334  236.75 22232 20145  183.13
95 188.59 208.09 184.43 172.87 163.55 144.35 131.74 118.52 109.41 96.15 87.06
100 0 0 0 0 0 0 0 0 0 0 0
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