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Abstract: This paper presents an analysis of the effects of cognitive agents employing selfish routing 

behavior in traffic networks with linear latency functions. Selfish routing occurs when each agent 

traveling on a network acts in a purely selfish manner, therefore the Braess Paradox is likely to 

occur. The Braess Paradox describes a situation where an additional edge with positive capacity is 

added to a given network, which leads to higher total system delay. By applying the concept of 

cognitive agents, each agent is able to make a range of non-selfish and selfish decisions. In addition, 

each agent has to cope with uncertainty in terms of travel time information associated with the 

traffic system, a factor in real-world traffic networks. This paper evaluates the influence of travel 

time uncertainty, and possible non-selfish decisions of the agents on overall network delay. The 

results indicate that both non-selfish behavior and uncertainty have an influence on overall travel 

delay. In addition, understanding the influence of cognitive agents on delay can help to better plan 

and influence traffic flows resulting in “closer to optimal” flows involving overall lower delays. 

Keywords: Braess Paradox; agent-based simulation; cognitive agents 

 

1. Introduction 

The shortest path problem is well studied in the literature and has been applied in many 

different types of applications in the field of Geographic Information Science and Technology that 

range from habitat connectivity to vehicle routing. Shortest path algorithms form the basis for 

personal and vehicle navigation, where a path of least travel time, travel cost, or some other metric is 

used. People tend to use navigation aids in order to find their way in unfamiliar environments. In 

addition, many cars are equipped with a built-in or mobile navigation system that is capable of 

receiving (near) real-time traffic information—e.g., closed roads or traffic congestion, and many may 

guide drivers to routes that are less congested (e.g., Waze). Many products like Waze give the same 

guidance to everyone, which can lead to creating new evolving areas of congestion. 

Navigation is comprised of two activities “way finding” (planning) and “locomotion” (execution 

of movements) [1]. Due to the fact that (near) real-time information is now integrated into the 

navigation process, the separation between “planning” and “execution of movements”, described as 

wayfinding and locomotion in [1], appears to be diminishing. We argue that the separation of the 

processes wayfinding strictly happening before locomotion is questionable. In the literature, 

navigation is described in a way that the user selects a destination and one or a combination of costs 

(e.g., time, fuel cost, travel distance) that can be used in evaluating possible routes. Based on the 

chosen cost function the navigation system responds with the minimum cost route from the current 

location to the destination. This planning process is valid for non-dynamic traffic situations but does 
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not consider traffic as a “living” system, that displays certain dynamics. This is due to the fact that 

there are a number of players on a road network, each making their own decisions, where those 

decisions affect in concert the state of the network in the future. Hence, the network and associated 

attributes are time-dependent, and an accurate deterministic prediction cannot be made. In order to 

find shortest paths in a dynamic network several methods have been developed [2–6]. These 

algorithms try to “react” to dynamic conditions in the road network, and identify one shortest path 

for exactly one agent navigating in the network in a given situation—i.e., network status within the 

time-frame of the shortest path traversal). 

From the literature it is evident that route planning models are tailored towards one single user, 

and thus do not address the fact that other agents are also making their decisions, each impacting the 

outcomes of others. In order to simulate decisions of a group of agents, game theory is employed in 

the literature [7]. Braess [8] identified a problem in traffic modeling that has since been called “Braess 

Paradox”, which describes a situation where a given set of players in a traffic network each try to find 

their “best route” in a selfish manner. Hence, selfish players choose the fastest route from their own 

perspective, neglecting the effect for other players. Given that an extra edge is added to the network, 

a layman could assume that the average travel time of the players will be the same or lower than the 

original network layout as the overall capacity has been increased. For the Braess example, the travel 

times are higher than what happens on the original network without the extra edge. 

Roughgarden [7] and Braess [8] both assume a non-cooperative game, where players are purely 

selfish. In this paper, we apply the concept of a group of cognitive agents where each agent/player is 

able to make decisions accordingly—and change the strategy accordingly. In order to investigate the 

effect of the behavior of cognitive agents the approach in this paper evaluates: 

• Varying probabilities of agents acting in a non-selfish way. 

• Varying levels of uncertainty in travel time information. That is, the information available on 

network congestion-status may be fuzzy for some agents. 

The basic research question addressed in this paper is: “How do different compositions of selfish 

& non-selfish decisions of agents affect the delay or latency of all agents acting on the network, 

considering possible uncertainties in the information regarding network status?” The rationale 

behind the contributions of this paper is as follows. Due to the fact that selfish routing depends on 

selfish behavior of agents in a network, decisions can be considered to be crisp rather than fuzzy. This 

holds true for situations in which agents have accurate information on the network status and act 

purely selfish—one type of condition involving machines but probably never in a complete sense for 

humans. In a transport network with cognitive agents, we assume that each agent has the ability to 

act in a non-selfish way, as well as that traffic information may be defined as uncertain. The driver is 

not able to fully evaluate the accuracy of the traffic situation ahead, due to the following reasons: 

(a) Real-time traffic applications (like Waze) are dependent on the number of users collecting & 

providing data. Such real-time applications have a high market share in certain countries, but 

they do not have a significant market penetration in all regions of the earth. In some European 

capital cities the numbers of Waze users are at a maximum. For example, in Paris approximately 

51,000 users per/1 million citizens use the app. Other cities lag behind, for example Vienna 

involves only 1000 users/1 million citizens [9].  

(b) Traffic Message Channels (TMC) provide traffic information for vehicle drivers sent via FM 

radio frequency. This information can be included into any satnav system for routing purposes. 

The system is designed so that traffic information is only provided for major traffic 

junctions/locations collected in a location table—which results in inaccuracies in the location and 

extent of any traffic congestion.  

(c) As TMC or FM radio provided traffic information requires that traffic information be collected, 

checked and published thereafter, there is a temporal delay between the incident and the 

publishing of the traffic information. In FM radio stations, the updates on traffic may be 

broadcasted every 30 min, which means an incident may have cleared by the time that the 

information is broadcasted.  
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(d) As we deal with a dynamic situation, the traffic conditions ahead of an agent may alter as the 

agent moves toward an incident location that is along the desired route. Hence, any agent has 

to rely on a prediction on how the situation might change—especially when the agent does not 

receive any timely update on the situation as he/she comes closer to the incident location. 

Therefore, the provided traffic information can be regarded as only partly accurate. An agent 

does not necessarily have full trust in the provided traffic information—as the situation might differ 

from what is expected when the agent arrives at the incident location. Generally speaking, in real 

world situations any agent in a network does not necessarily have an accurate, timely overview on 

the network status. Kattan et al. [10] concluded that commuters who sought information from many 

traffic update sources were likely to be more compliant with the traffic advice when they received it. 

Hence, agents do not necessarily react to traffic updates accordingly, when they only have one single 

source of information or when updates are less frequent.  

A key component in Intelligent Transportation Systems (ITS) is to forecast the number of 

vehicles and their positions in a traffic system [11]. The traffic forecasting is done with the collection 

of current traffic data. These data are amended with ancillary data as well as a trip demand model. 

In literature a number of traffic forecast models have been proposed. The classic approach is the Four-

Step model [12]. The theoretical approach of this model is based upon the decomposing the process 

into four steps: Trip generation, trip distribution, mode choice and route assignment. Route 

assignment describes the allocation of trips between origin and destination. Wardrop’s principle [13], 

equivalent to the Nash equilibrium, is applied in the route assignment step. This problem is a so-

called bi-level problem, as the travel times are a function of the demand along route segments and 

demand is a function of travel time along those very same segments. Other approaches utilize the 

Stackelberg competition model, where agents in a traffic network respond to actions of a leading 

instance.  

The contribution of the paper is as follows. With the help of agent-based approach we show that 

the behavior and the agents influence the overall latency. This aspect in itself is not new, but what is 

new is the fact that we model agents where they are provided traffic information where there is a 

degree of uncertainty as to its accuracy. Agent decisions based upon this uncertain information on 

the traffic status may decrease/increase the overall latency, as they tend to make “wrong” decisions 

with respect to the real network status and in relation to their chosen strategy (i.e., selfish verses non-

selfish behavior).  

This paper is organized as follows. In the next section the relevant literature is briefly discussed 

and analyzed, followed by a section on the methodology applied in this paper to evaluate the effect 

of cognitive agents displaying varying degrees of selfish routing behavior and reliance on imperfect 

traffic information. Section 4 presents the results and analysis, and is followed by a summary in the 

final section. 

2. Network Flows, Routing Games and Selfish Routing 

This section reviews the concepts of the maximum flow problem, the min-cost flow problem and 

relevant theory on routing games. Whereas forms of the minimum cost flow model can be used to 

solve for traffic flows that involve the lowest total network delay, selfish routing involves the concept 

where travelers on the network behave in a strictly selfish manner. Routing games are “games”, in 

the sense of game theory [14], that occur in non-cooperative situations, where several agents try to 

find the best strategy that increases their own benefit at a possible cost to others. Generally, agents 

alter their strategy to improve their own benefit until they cannot increase their benefit any further. 

This situation is described in literature as a state of equilibrium—or Nash equilibrium [15]. Overall, 

selfish routing is a result of different agents acting on a network, each trying to find the best path 

from a strictly personal viewpoint, regardless of the consequence for other agents. 
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2.1. Shortest Paths and Network Flows 

To begin, let us define a basic set of terms that are used in this paper. A network, N = {V,E}, is a 

set of n nodes, V, and a set of m edges, E. Edges are assumed to be directed, i.e., each edge consists of 

an ordered pair of nodes. Roads segments that can be traversed in both directions are represented as 

two network edges, one for each direction of travel. Additionally, each edge is assigned a cost 

function that represents the travel time to traverse that edge, represented as ce:R+→R+. Such travel 

time functions are usually expressed as a function of traffic flow, and increases with increasing traffic. 

In most networks, a number of different directed paths exist that connect an origin or source node 

with a destination or node.  

Network flow problems are classic problems in operations research [16] and capture the essence 

of many real-world applications [17]. These problems are based on the existence of a flow network—

i.e., a directed graph where each edge has an associated non-negative flow capacity c, which 

represents the maximum possible flow on that edge. A feasible set of flows in a network is defined 

as a function f:E→R+ such that 0 ≤ f(u,v) ≤ c(u,v) ∀ (u,v) ∈ E (Capacity Constraints) and Σv ∈ V f(u,v) = 

Σv ∈ V f(v,u), for all u ≠ s,t (Flow Conservation constraints), where s, t denote the source and sink 

nodes of the network. Two of the most well-known flow problems are the max flow and the minimum 

cost flow problems [16]. 

2.2. Routing Games and Selfish Routing 

Routing games are part of the field of game theory [14], and involve routing decisions in a 

network. Game theory addresses problems of decision making involving rational decision makers 

[14] where conflict arises. A well-known example of Game Theory is the Prisoners dilemma [18]. In 

non-cooperative situations, where several agents try to find the best strategy to increase their own 

benefit (i.e., being selfish), the players have a cost for being non-cooperating. This cost externality is 

regarded as the Price of Anarchy [19], and measures the inefficiency of the Nash equilibrium. It is 

defined as the ratio between the worst outcome value and the value of the optimal outcome. For 

routing, we measure the outcome as the total travel time. Obviously, travelers want total travel time 

to be as low as possible. The Price of Anarchy can also be used as a measure of inefficiency in simple 

routing games. In recent papers approaches to mitigate the Price of Anarchy have been proposed. 

Several approaches use coordination solutions to overcome the Price of Anarchy [20–22]. In Reference 

[23] the effects of user preference heterogeneity on the Price of Anarchy are analyzed. [24] presents a 

probability-dominant description of Selfish Routing in a stochastic network, where current travel 

times in the network are available to the players in the system.  

3. Quantifying the Impact of Cognitive Agents within a Collective of Players 

This section outlines our approach to evaluate the effects of cognitive agents within the context 

of a group. We propose an agent-based approach to simulate the behavior of each of the players in a 

network with linear congestion functions as costs, similar to the selfish routing examples given in 

References [7,8]. Our networks will serve as the environment in which the agents act. We analyze the 

impacts that different probability levels of non-selfishness and levels of uncertainty of travel time 

information have on overall average travel delay for the group of agents, going beyond past work 

that involved solely selfish behavior. 

For our experiments, the traffic network is defined as a directed Graph G = (V,E) with linear cost 

functions ce:R+→R+. That is, we can express travel delay or latency as ce(x) = ax + b. A Graph G has k 

source and destination vertex pairs {s1,t1}, … ,{sk,tk}. A simple pair of source and destination, si − ti, is 

denoted as Pi and the set of pairs is designated as P = {Pi}. Any network flow is defined as a function 

f:P→R+, and a fixed flow f is defined as 𝑓𝑒 = ∑ 𝑓𝑃𝑃:𝑒𝜖𝑃𝑖
. In addition, a finite, positive rate ri is associated 

with each pair (si,ti), which represents the demand for travel or flow between source si and destination 

ti. Generally, a flow is feasible if ∀𝑖 ∑ 𝑓𝑝 = 𝑟𝑖𝑃∈𝑃𝑖
. Each edge e ∈ E is given a load-dependent latency 

or travel time function that is denoted as le(∙). The latency function is non-negative, differentiable and 

non-decreasing. Hence, the triple (G,r,l) represents a specific problem instance. The latency of a path 
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P with respect to a feasible flow f is the sum of latencies of the edges in the path represented by 

𝑙𝑃(𝑓) =  ∑ 𝑙𝑒(𝑓𝑒)𝑒∈𝑃 . The cost C(f) of an entire set of flows f in G is the total latency incurred by f and 

is defined by: 

𝐶(𝑓) = ∑ 𝑙𝑃(𝑓)𝑓𝑃𝑃∈𝑃 . (1) 

In order to create a “testbed” for selfish routing we define a problem instance (G,r,l) comprised 

of a network, travel demands, and travel delay functions. The network that we use in our experiments 

is a directed Graph G that has four nodes and four edges with linear latency functions. This network 

is depicted in Figure 1 together with the latency functions l for each edge. Two edges are assigned 

the latency functions lAB = lCD = x/100 and the others are assigned lBD = lAC = 45—which are the latency 

functions used by Braess [8]. In order to evaluate the effects of cognitive agents within the context of 

Braess Paradox, an “additional” edge is depicted with a dashed line from node B to node C. The extra 

edge is assigned a latency function of lBC = 1. 

 

Figure 1. The simple network used to simulate the effect of cognitive agents and demonstrate Braess 

Paradox. By adding an edge (which should intuitively help) a negative impact on all users of a 

congested network can be observed. The latency function l of each edge with respect to the number 

of agents on the edge x is given accordingly. 

The Braess Paradox involves a non-intuitive outcome, associated with a traffic network, like that 

given in Figure 1. For this network, all original road segments (non-dashed edges) suffer increasing 

congestion as traffic flow increases. In order to simulate traffic on the original network we assume 

4000 agents traveling from node A to node D along the given edges. Considering the original network 

without the additional edge eBC the players in the game will behave as players in a non-cooperative 

game. Hence, 2000 agents will take the path P1 = {A,B,D} and the remaining 2000 agents choose path 

P2 = {A,C,D} (see the left hand side of Figure 2). The given result is a flow at Nash equilibrium [25–

28], which indicates that each agent is behaving “greedily”, without regard to the overall cost of travel 

on the network. Hence, each player travels along the minimum latency path currently available, with 

respect to the flow created by the other players. If a flow is at Nash equilibrium for an instance (G,r,l) 

assuming 𝑖 ∈ {𝑖, … , 𝑘} and 𝑃1, 𝑃2 ∈ 𝑃𝑖  with 𝑓𝑃1
> 0, 𝑙𝑃1

(𝑓) ≤  𝑙𝑃2
(𝑓) then all used si − ti paths have 

equal total latency. In the example employed here, the overall latency (cost of flow) C(f) equals 260,000 

units (or 65 units of delay per agent). If the additional edge with high capacity (i.e., low latency lBC = 

1) is added to the network, a flow at Nash equilibrium exists (assuming a non-cooperative game). 

The flow results in the following situation: All 4000 agents take the path P3 = {A,B,C,D} (see the right 

hand side of Figure 2, indicated by the red colored edges). The unique flow at equilibrium has a total 

cost C(f) which equals 324,000 units (or 81 units of delay per agent) [7,13,26,29]. Therefore, adding an 

additional edge and associated capacity can actually impede traffic flow rather than improve traffic 

flow, given that the agents act in a non-cooperative manner. This is an instance of Braess paradox. 
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Figure 2. Nash equilibrium flow and corresponding cost per agent C(f)/agent = 65 in the original 

network (left), and Nash flow after insertion of a high capacity edge (right). After adding the high 

capacity edge to the network, the total cost per agent C(f)/agent = 81, which is higher than in the 

original network. 

Methodology to Evaluate the Effects of Cognitive Agents 

To evaluate the effect of cognitive agents on Braess Paradox, we first introduce the concept of 

cognitive agents used in this work. After that, the evaluation approach is highlighted, which will 

incorporate varying levels of selfishness and uncertainty of travel times of the available paths from 

node A to D. 

As opposed to non-cooperative games, where agents act in a strictly selfish manner, the 

approach presented here is comprised of cognitive agents. These agents are capable of making their 

own decisions based on their perceptions of the environment in which they act [30,31]. The concept 

of cognitive agents has been applied to wayfinding in built environments [32–35], and thus seems 

appropriate for traffic simulations as well. Hence, the agents in this work are able to make their own 

decisions while acting in the traffic network. In this work the reason for an agent’s decision is not a 

research focus, hence we just include simple cognitive abilities of the agent. Any agent is able to 

perceive the network status, i.e., congestion and latency, of a certain path (say by means of traffic 

news on a radio or by a navigation aid). In addition, an agent can decide their own action and choose 

a specific path to travel from node A to D. Therefore, the behavior of an agent has an effect on the 

other agents in terms of latency (and travel time). Of significant importance here is the fact that an 

agent’s decision does not necessarily have to be purely selfish, i.e., an agent may choose a path with 

a perceived higher latency (longer travel time), for whatever reason. Possible justifications for that 

behavior could be in personal preferences regarding the route choice, past experience that the route 

seems to be low in latency, toll roads/taxes (e.g., Reference [36]), or assumptions that the agent has 

regarding the behavior of other agents in terms of prospective memory [37]. 

In order to evaluate the effect of non-selfish behavior, different levels of selfishness are 

employed. This is represented by a parameter of non-selfishness probability PNS. The values of the 

parameter can range from 0 to 100, where 0 indicates that all decisions taken are selfish and 100 

assumes that all decisions taken are of non-selfish nature. Usually probability levels have values from 

0 to 1. In this paper, we use probability values multiplied by the factor 100, for the sake of readability. 

A PNS value of 50 means that there is a 50% probability that the decision of an agent will be non-

selfish. Thus, the agents in the simulation may have selfish and non-selfish behavior. A non-selfish 

decision means, that the agent will not take the “obvious” faster path P3 = {A,B,C,D}, but chooses one 

of the “slower” paths P1 or P2, for whatever reasons. In order to evaluate the effect of non-selfish 

behavior, we have varied an agent’s probabilities of non-selfish decisions, from 0 to 100 in 5-unit 

steps—i.e., 0, 5, 10, …, 100. 

Because agents in a traffic environment do not necessarily have accurate information on the 

status of traffic network, as discussed in Section 1. Therefore, we include an uncertainty factor for 

travel times in our approach, as this fact leads to a certain degree of uncertainty when making 

decisions. In order to evaluate the influence of varying levels of uncertainty on the Braess Paradox 

and the group of agents, we added uncertainty in latency and travel time information, denoted as ∆t, 
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to the path P3 = {A,B,C,D} in the network. Hence, the total latency with uncertainty at P3 is denoted as 

C0(f). The calculation of C0(f) is defined in Equation (2), 

𝐶0(𝑓) =  ∑ 𝑙𝑃(𝑓)𝑓𝑃 + (∑ 𝑙𝑃(𝑓)𝑓𝑃𝑃𝜖𝑃3
) ∗ (1 + 𝑟𝑎𝑛𝑑∆𝑡

/100)𝑃𝜖(𝑃1,𝑃2) , (2) 

where 𝑟𝑎𝑛𝑑∆𝑡
 is a randomized positive number of the closed interval [0,∆t]. The ∆t is assigned a value 

ranging from 0 to 100 in 10-unit steps—i.e., 0, 10, 20, …, 100, according to the level of uncertainty that 

is applied in a specific test simulation. 

We have evaluated the impact of various levels of selfishness of the decisions of cognitive agents 

under varying levels of latency uncertainty by simulating the group of cognitive agents in traveling 

from the origin and the destination. For each combination of level of non-selfishness PNS and 

uncertainty applied to latency of P3, 5000 simulation runs were performed (see Figure 3). In every 

simulation run 4000 agents have to travel from node A to node D, where they have to make decisions 

on the route taken based upon their cognitive and decision abilities. Overall, there are 231 

combinations of P(NS) and ∆t. Given 5000 simulations for each distinct combination, there are 1,155,000 

simulation runs. For each test run, we collected the following result variables: Total latency C0(f), the 

number of agents traversing edge eAB, the number of agents traversing edge eBD, the number of agents 

traversing edge eAC, the number of agents traversing edge eCD, the number of agents traversing edge 

eBC, and the number of selfish and non-selfish decisions made. For each distinct combination of ∆t and 

P(NS) the variables collected in each of the 5000 simulation runs were statistically analyzed. Hence, the 

mean value, the standard deviation and variance of each result variable for each combination of ∆t 

and PNS was calculated. 

 

Figure 3. Overview of the methodology to quantify the impact of cognitive agents, levels of selfishness 

and uncertainty on routing for a group of agents. 

4. Experimental Results 

This section presents the results of the evaluation approach highlighted in the previous section. 

The computational results are given in respective tables, elaborating on the effect of cognitive agents 

with respect to the experiment settings. The results were obtained using the Repast Simphony 

framework [38]. 

In Figure 3, the variable name for total latency 𝐶′̅̅̅(𝑓) value represents various levels of non-

selfishness and travel time uncertainty. For example 𝐶′̅̅̅(𝑓)∆10,𝑁𝑆100 denotes the total latency value 

that occurs when the uncertainty level is 10 and the non-selfishness probability is set at 100. This 



ISPRS Int. J. Geo-Inf. 2018, 7, 345 8 of 16 

 

means that 𝐶′̅̅̅(𝑓)∆0,𝑁𝑆0 represents delay incurred when the uncertainty in travel is at its lowest and 

when all agents’ decisions are selfish. The superscript (∗1) denotes that the additional edge BC is used, 

and superscript of (∗2) denotes that the edge BC is not used. This means that 𝐶′̅̅̅(𝑓)∆0,𝑁𝑆100, marked 

with (∗2), denotes C(f) of the flow at Nash equilibrium without edge BC.  

Our evaluation starts with the calculation of C(f) of the Nash flow on the original network i.e., 

without extra edge—and Ce(f) of the Nash flow of the extended network—i.e., with edge BC. Based 

on these “anchors”, the variable conditions of uncertainty of travel times and variable probability 

levels of non-selfishness were tested. The calculation of C(f) and Ce(f) is done according to the 

methodology mentioned in Section 3.1. Therefore, a non-cooperative game is created and evaluated 

until no agent can improve their individual situation by changing their behavior. Hence, C(f) results 

in 65 latency units per agent traveling from A to D, where 2000 agents traverse the edges AB-BD and 

the other 2000 agents choose AC-CD. For the network with the extra edge BC (having low latency) 

Ce(f) results in 81 units of latency per agent. In this case all 4000 agents traverse the edges AB-BC-CD. 

This paradox, of higher latency values due to an extra high capacity edge, is described in literature 

as Braess Paradox (e.g., Reference [8]). 

In Table 1 the average latency values (i.e., total travel time over 5000 simulations) per agent are 

given for different levels of travel time uncertainty and probability of non-selfishness. The results 

indicate that the higher the level of uncertainty in terms of travel time ∆t is, the lower is the latency 

or delay per agent (given a fixed probability of non-selfishness P(NS)). This is depicted in Figure 4 and 

Table 1. Generally, the prior statement holds true except for the set of latency times highlighted in 

orange in Table 2. The highlighted 𝐶′̅̅̅(𝑓) values at a given P(NS) level are the lowest calculated values 

for given ∆t values. With increasing ∆t the values of 𝐶′̅̅̅(𝑓) increase. In Figure 5 the behavior of 

latency values for varying P(NS) with a given ∆t value is depicted (see Table 1 for numerical values). 

There, the latency values for ∆t values 0, 30, 60, 100 are depicted, showing decreasing latency values 

per agent with increasing P(NS). This monotonically decreasing behavior is present from P(NS) levels 0 

to 90 (for ∆t ranging from 0–30), for P(NS) levels 0 to 85 (for ∆t ranging from 40–70), and for P(NS) levels 

0 to 80 (for ∆t ranging from 80–100). 

 

Figure 4. Diagram showing the latency values per agent for given non-selfishness probabilities over 

varying travel time uncertainty values ∆t. 
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Figure 5. Diagram showing the latency values per agent for given level of travel time uncertainty ∆t 

over varying probabilities of non-selfishness P(NS). 

Table 1. Average latency times 𝐶′̅̅̅(𝑓) of test runs for given values of varying ∆t and P(NS). 

Latency 𝑪′̅(𝒇)∆𝐭 𝑷(𝑵𝑺)
 per Agent 

Travel Time Uncertainty ∆t 

P(NS) 0 10 20 30 40 50 60 70 80 90 100 

0 81.00 80.55 78.40 76.58 75.05 73.88 72.86 72.02 71.29 70.80 70.22 

5 79.25 78.91 76.95 75.19 73.88 72.75 71.81 71.09 70.39 69.81 69.43 

10 77.78 77.19 75.50 73.99 72.75 71.75 70.86 70.23 69.48 69.04 68.62 

15 76.17 75.75 74.33 72.76 71.72 70.72 69.95 69.37 68.87 68.28 67.89 

20 74.66 74.37 73.01 71.78 70.84 69.79 69.14 68.67 68.09 67.68 67.42 

25 73.33 73.02 71.84 70.70 69.77 69.04 68.40 67.87 67.49 67.16 66.84 

30 72.20 71.82 70.64 69.79 68.99 68.39 67.76 67.41 66.99 66.66 66.41 

35 70.78 70.64 69.73 68.92 68.35 67.63 67.21 66.86 66.57 66.28 66.09 

40 69.82 69.57 68.83 68.21 67.63 67.11 66.74 66.45 66.15 65.93 65.75 

45 68.76 68.75 68.08 67.56 67.06 66.70 66.30 66.04 65.82 65.65 65.48 

50 67.97 67.95 67.34 66.93 66.55 66.21 65.91 65.72 65.55 65.41 65.27 

55 67.24 67.20 66.77 66.42 66.17 65.86 65.64 65.49 65.33 65.21 65.14 

60 66.61 66.59 66.28 66.06 65.80 65.55 65.41 65.26 65.15 65.07 65.00 

65 66.02 66.03 65.85 65.66 65.48 65.31 65.19 65.08 65.01 64.95 64.91 

70 65.58 65.59 65.47 65.33 65.20 65.10 65.01 64.95 64.90 64.87 64.84 

75 65.25 65.24 65.16 65.09 65.00 64.94 64.89 64.86 64.83 64.82 64.81 

80 65.00 64.99 64.96 64.92 64.88 64.84 64.83 64.81 64.80 64.80 64.80 

85 64.85 64.85 64.84 64.82 64.81 64.80 64.80 64.80 64.81 64.81 64.82 

90 64.80 64.80 64.80 64.80 64.81 64.81 64.82 64.83 64.84 64.85 64.86 

95 64.86 64.85 64.86 64.86 64.87 64.88 64.89 64.90 64.91 64.92 64.92 

100 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 

Both “anomalies”, depicted in Table 2, describe the fact that, when all agents follow the Nash 

flow without the edge BC, i.e., with latency C(f), then only a few agents choose to traverse edge BC. 

Thus, the agents act purely selfish by avoiding the edge BD with latency 45, which reduces latency 

for the agents (65 units verses 20 + 1 + (20 + x)/100 where x denotes the number of agents traversing 

edge BC). Hence, in this particular experiment setting a small number of agents in traversing edge 

BC can reduce the average latency per agent, which is depicted in Figures 4 and 5 and Table 2. 
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In order to justify the latency values of Table 1—we show the number of agents traversing the 

respective edges in Appendix A Table A1 for edges AB and CD, and in Appendix A Table A2 for 

edges BD and AC. Appendix A Table A3 lists the number of agents traversing edge BC. These 

numbers are the basis for calculating the latency values given in Table 1 in conjunction with the 

latency functions given in Section 3. 

Table 2. Lowest average latency times 𝐶′̅̅̅(𝑓) for varying ∆t and P(NS) are marked with orange colored 

numbers. 

Latency 𝑪′̅(𝒇)∆𝒕 𝑷(𝑵𝑺)
 per Agent    

    Travel Time Uncertainty ∆t    

P(NS) 0 10 20 30 40 50 60 70 80 90 100 

0 81.00 80.55 78.40 76.58 75.05 73.88 72.86 72.02 71.29 70.80 70.22 

... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... 

80 65.00 64.99 64.96 64.92 64.88 64.84 64.83 64.81 64.80 64.80 64.80 

85 64.85 64.85 64.84 64.82 64.81 64.80 64.80 64.80 64.81 64.81 64.82 

90 64.80 64.80 64.80 64.80 64.81 64.81 64.82 64.83 64.84 64.85 64.86 

95 64.86 64.85 64.86 64.86 64.87 64.88 64.89 64.90 64.91 64.92 64.92 

100 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 

In order to evaluate the stability in the number of agents traversing a certain edge the absolute 

standard deviation values and coefficient of variation have been computed. The coefficient of 

variation for edges AB and CD is between 0% and 31%, showing the highest variation coefficients at 

P(NS) values from 50 to 65 across all ∆t levels. In contrast to those numbers, the coefficient of variation 

for edges BD and AC are in the range between 8% and 395%, having decreasing coefficients of 

variation with higher P(NS) levels—except for P(NS) = 0. Hence, within the conducted test runs the 

standard deviation of edges BD and AC show higher values in comparison to AB and CD especially 

at low P(NS) and ∆t values. This is due to the fact that at low P(NS) and ∆t values edges BD and AC are 

not traversed by many agents, as most follow the path P3 = {A,B,C,D}. The coefficient of variation for 

edge BC ranges between 0% and 401% showing a high influence of P(NS) levels—i.e., increasing P(NS) 

leads to increasing variation.  

In general, the coefficient of variation values reveals situations (i.e., distinct combinations of ∆t 

and P(NS)) which are volatile. Volatility in this context indicates test runs with high standard 

deviations, which in turn are unstable in terms of the number of traversing agents. Hence, a forecast 

or simulation of such situations is hardly possible, due to the variability of the system itself. For the 

experimental settings in this paper the edges AB and CD have an average coefficient of variation of 

16% which is lower than the average coefficient of variation for edges BD and AC (53%). Hence, we 

can assume that the number of traversing agents of AB and CD are considered more stable than on 

AC and BD. For low ∆t values and low P(NS) levels coefficient of variation for edges AC and BD show 

especially high volatility due to the fact that the number of agents traversing these edges is low. The 

edge BC also shows unstable behavior in the test runs where the path P3 is seldom traversed.  

The influence of the two variables ∆t and P(NS) on the average travel time per agent is also worth 

evaluating. In general, both variables have an influence on 𝐶′̅̅̅(𝑓) per agent, while P(NS) has a greater 

impact on 𝐶′̅̅̅(𝑓) per agent, than ∆t. This is justified by the numerical values given in Table 1, and by 

the correlation coefficients given in Tables 3 and 4. In the tables the dependence of the latency values 

on the variables ∆t and P(NS) is given, where Table 4 indicates that P(NS) has higher impact on the 𝐶′̅̅̅(𝑓) 

values due to higher correlation coefficients in comparison to Table 3. 
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Table 3. Correlation % between 𝐶′̅̅̅(𝑓) for given ∆t levels and P(NS), which indicates the dependence 

of travel delay on the uncertainty in travel information. 

𝑪′̅(𝒇) on ∆t 

 𝛒∆𝐭
 

P(NS) 1 1 

∆t = 0 −0.947 

∆t = 10 −0.947 

∆t = 20 −0.944 

∆t = 30 −0.941 

∆t = 40 −0.936 

∆t = 50 −0.926 

∆t = 60 −0.918 

∆t = 70 −0.911 

∆t = 80 −0.902 

∆t = 90 −0.890 

∆t = 100 −0.880 

On a global level the results reveal that the fastest route for an individual (i.e., shortest path in 

terms of travel time) does not necessarily have to be the fastest route for a group of people and for 

the individual itself, with respect to a defined network with latency functions. This is due to the 

behavior of other agents of the group and the latency due to the traffic volume on each edge, which 

is mentioned in Roughgarden [7]. Braess [8] and Roughgarden et al. [26] assume that each agent in 

the routing game acts in a strictly selfish manner, which results in the Braess Paradox. Therefore, if 

any player in a traffic situation would be equipped with a navigation system and would strictly 

follow the instructions of the navigation device the Braess Paradox is likely to occur. Thus, each 

member of the group travels with higher latency than without an extra high-capacity road present in 

the network. Roughgarden [7] mentions that the Price of Anarchy in networks with linear latency 

functions is at most 4/3. Of particular interest is that individual shortest paths do not necessarily lead 

to an “optimal” flow in the network if everyone acts selfish. 

Table 4. Correlation % between 𝐶′̅̅̅(𝑓) for given P(NS) levels and ∆t, which indicates the dependence 

between travel delay and the probability of selfishness. 

𝑪′̅(𝒇) on P(NS) 

 𝝆𝐏(𝑵𝑺)
 

∆t 1 

P(NS) = 0 −0.980 

P(NS) = 5 −0.980 

P(NS) = 10 −0.982 

P(NS) = 15 −0.982 

P(NS) = 20 −0.981 

P(NS) = 25 −0.980 

P(NS) = 30 −0.981 

P(NS) = 35 −0.981 

P(NS) = 40 −0.982 

P(NS) = 45 −0.982 

P(NS) = 50 −0.979 

P(NS) = 55 −0.982 

P(NS) = 60 −0.982 
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P(NS) = 65 −0.982 

P(NS) = 70 −0.978 

P(NS) = 75 −0.972 

P(NS) = 80 −0.956 

P(NS) = 85 −0.746 

P(NS) = 90 0.963 

P(NS) = 95 0.984 

P(NS) = 100 N/A 

Nevertheless, if we consider real-world situations where agents in a network have uncertain 

information on the status of the network, they may act differently. Therefore, agents can make non-

selfish decisions and take the longer path in terms of latency due to their preferences or their 

assumptions/view/information on the traffic situation. This behavior reduces the latency in the 

network, which is depicted in Tables 1 and 2. Thus, in situations where a small number of agents 

travel on P3 the travel latency per agent is actually lower than in the network without the extra edge 

(see Figures 4 and 5 and Tables 1 and 2). 

In that context, there is a possible impact on an Intelligent Transportation System (ITS) that tries 

to influence the decisions of agents which would result in an “optimal” flow. This could be realized 

by edge removal or with a special tax applied to high-capacity roads (see Reference [36]) or with 

“recommendations” for agents delivered by the navigation system. In addition, an agent could get 

rewards for taking detours (i.e., the longer path in terms of travel time). In Reference [36] the authors 

argue that the maximum benefit of taxes in networks with linear latency functions is 4/3, and with 

arbitrary latency functions is n/2, where n denotes the number of nodes in the network. The results 

here suggest that an approach to provide the agents in a traffic network with recommendations for 

the “optimal” paths that lead to the least global traffic latency, could easily be comprised by real-time 

communications that are directed to navigation systems (e.g., by utilizing the traffic message 

channel). 

5. Conclusions and Future Work 

This paper presents an analysis on the effect of cognitive agents on selfish routing in the context 

of a street network with a latency function on each edge. In contrast to the concept of a purely selfish 

routing problem, which is based upon the assumption of a non-cooperative game and strictly selfish 

agents [7,26], we consider cognitively enabled agents that can act in an environment with a given 

level of uncertainty associated with the status of the network in terms of latency information. In 

addition, each player in the system is able to act in both selfish and non-selfish ways, in contrast to a 

system with strictly selfish agents. 

5.1. Crititcal Discussion of Obtained Results 

The simulation environment consists of a network with linear latency functions and a group of 

4000 agents that have to travel from an origin node to a destination node, by choosing amongst three 

different paths in the network. The network is defined in such a way that the Braess Paradox exists. 

The results indicate that both non-selfish behavior, and the uncertainty of traffic information (in terms 

of latency along a path), have an impact on overall travel time. The simulation results show that non-

selfish decisions help to decrease the overall latency. While non-selfishness and uncertainty both have 

an influence on the total latency, non-selfish decisions taken by agents have a greater impact on 

latency than travel time uncertainty. 

Of particular interest is the reduction of latency because of the travel time uncertainty, which 

might not be intuitive. As agents acting in the traffic network may have a “blurred” view of the 

network status ahead of them. As this issue affects the decision of each agent, having inaccurate 

information on, for example the current latency in the network, some agents might make “wrong” 

decisions that might not fit their chosen strategy, just because they have the wrong information. These 
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situations may lead to some kind of distrust and dissatisfaction of real drivers. Thus, accurate, timely 

information on the status of the traffic network may be helpful for agents to come up with an 

appropriate route decision. In addition, Kattan et al. [10] conclude that agents having accurate and 

identical information from different information outlets are more likely to comply to the suggestions 

of a traffic management system. 

In general, it can be observed that the fastest route for an individual does not correspond with 

the fastest route for a group of people, if all individuals follow their individual fastest route—with 

respect to a given network with linear latency functions. Hence, agents acting on a traffic network 

and strictly following route suggestions of e.g., a navigation systems (without TMC), may result in 

higher latency or travel time for all agents. If the majority of agents act in a non-selfish manner (i.e., 

taking what appears to be the slower path), while only some take the fast path, a low total latency 

can be observed, even slightly lower than the latency of the original network (65 min latency verses 

64.8 mins latency). 

5.2. Future Work and Connection to ITS 

In the context of ITS, the results of this paper can be of interest, due to the fact that guidance 

systems could influence the decisions of agents which can result in an “optimal” traffic flow. In order 

to influence the traffic flow, the literature suggests the application of tolls on certain edges [36] or to 

remove certain edges of the network [39]. In addition, traffic could be influenced by rewarding agents 

for traversing longer paths in terms of travel time. Nevertheless, Kattan et al. [10] suggest that a 

proper information provision is a crucial part for “influencing” agents’ decisions. According to their 

work drivers that obtain the same information from different information outlets are more likely to 

comply to the suggestions.  

Future work includes the evaluation of cognitive agents in larger networks with arbitrary 

latency functions. In addition, the concept of predictive memory could be applied to agents—

currently being utilized in Personal Information Management (e.g., Reference [37]). In addition, 

predictive memory—a concept based on the recognition-prediction framework—could enable agents 

to learn from previous experiences [40,41]. Agents are then capable of making assumptions regarding 

the behavior of other agents and they can gradually build up and act upon a set of past experiences. 
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Appendix A. Supplementary Results 

Table A1. Average number of agents traversing edge AB and CD for given values of ∆t and P(NS). 

Agents Traversing Edge AB and CD 

Travel Time Uncertainty ∆t 

P(NS) 0 10 20 30 40 50 60 70 80 90 100 

0 4000 3974.81 3849.15 3734.76 3632.05 3547.62 3469.37 3401.86 3339.55 3295.05 3241.06 

5 3900.07 3879.95 3758.69 3641.37 3547.75 3461.11 3384.27 3321.4 3257.16 3200.6 3162.78 

10 3811.04 3774.2 3663.04 3555.4 3460.76 3379.4 3300.79 3242.36 3167.76 3120.97 3073.99 

15 3708.08 3679.9 3580.8 3461.63 3376.74 3287.77 3215.32 3155.59 3101.99 3033.97 2986.3 

20 3604.07 3583.16 3481.59 3381.52 3298.92 3199.16 3132.09 3080.07 3010.67 2959.26 2923.24 

25 3505.82 3482.06 3386.4 3286.22 3196.58 3120.97 3048.38 2983.14 2933.44 2886.59 2838.81 

30 3416.31 3384.71 3280.88 3199.04 3115.95 3046.93 2969.3 2922.98 2861.46 2809.34 2767.17 

35 3294.03 3280.85 3192.62 3107.43 3042.72 2952.77 2894.61 2841.55 2794.96 2743.55 2707.56 
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40 3201.92 3176.84 3097.61 3025.9 2952.37 2879.66 2823.73 2775.24 2720.1 2675.26 2636.41 

45 3089.87 3088.58 3009.95 2943.63 2872.17 2815.76 2748.1 2697.71 2652.49 2612.29 2569.12 

50 2995.9 2994.26 2912.51 2852.01 2791.12 2731.5 2671.15 2629.46 2587.19 2548.21 2507.01 

55 2898 2892.6 2827.96 2769.3 2724.01 2660.53 2608.99 2570.34 2526.3 2485.34 2460.01 

60 2800.92 2798.16 2743.45 2702.34 2646.85 2587.73 2548.51 2503.55 2465.33 2432.68 2401.98 

65 2694.2 2694.99 2658.81 2615.55 2568.78 2519.65 2478.97 2436.63 2404.11 2375.98 2348.21 

70 2594.52 2596.72 2566.77 2525.5 2482.91 2443.28 2405.1 2371.54 2340.83 2315.53 2291.25 

75 2500.25 2497.14 2469.29 2441.55 2402.34 2366.42 2336.04 2310.01 2282.15 2260.36 2241.7 

80 2401.09 2394.62 2381 2353.58 2323.59 2292.75 2273.31 2250.37 2222.16 2205.35 2191.58 

85 2296.75 2295.48 2290.35 2267.5 2242.06 2224.12 2205.9 2184.36 2166.27 2153.98 2141.78 

90 2196.33 2202.09 2194.23 2174.59 2158.42 2150.37 2131.68 2118.38 2111.17 2100.74 2091.57 

95 2094.3 2104.05 2092.21 2086.44 2081.78 2072.18 2065.88 2059.27 2054.71 2048.08 2043.54 

100 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Table A2. Average number of agents traversing edge BD and AC for given values of ∆t and P(NS). 

Agents Traversing Edge BD and AC 

Travel Time Uncertainty ∆t 

P(NS) 0 10 20 30 40 50 60 70 80 90 100 

0 0 25.2 150.85 265.25 367.96 452.39 530.65 598.17 660.47 705 758.97 

5 99.93 120.06 241.32 358.65 452.26 538.91 615.76 678.64 742.88 799.45 837.27 

10 188.96 225.81 336.97 444.62 539.27 620.64 699.24 757.69 832.29 879.08 926.07 

15 291.92 320.09 419.22 538.4 623.3 712.27 784.74 844.47 898.08 966.08 1013.76 

20 395.93 416.84 518.42 618.52 701.13 800.9 867.97 920 989.38 1040.81 1076.82 

25 494.18 517.94 613.63 713.82 803.47 879.08 951.68 1016.92 1066.64 1113.47 1161.24 

30 583.68 615.29 719.14 800.99 884.09 953.13 1030.75 1077.09 1138.6 1190.71 1232.91 

35 705.97 719.16 807.4 892.6 957.32 1047.28 1105.45 1158.51 1205.12 1256.52 1292.52 

40 798.08 823.16 902.42 974.12 1047.68 1120.38 1176.34 1224.83 1279.97 1324.81 1363.66 

45 910.13 911.42 990.07 1056.4 1127.87 1184.3 1251.96 1302.35 1347.58 1387.78 1430.94 

50 1004.09 1005.74 1087.51 1148.02 1208.94 1268.55 1328.9 1370.62 1412.87 1451.87 1493.05 

55 1102 1107.41 1172.06 1230.75 1276.05 1339.54 1391.08 1429.74 1473.78 1514.74 1540.07 

60 1199.08 1201.85 1256.56 1297.71 1353.2 1412.33 1451.55 1496.53 1534.73 1567.4 1598.09 

65 1305.8 1305.01 1341.21 1384.49 1431.27 1480.41 1521.1 1563.45 1595.96 1624.09 1651.85 

70 1405.47 1403.29 1433.25 1474.53 1517.13 1556.78 1594.95 1628.52 1659.21 1684.53 1708.8 

75 1499.75 1502.86 1530.74 1558.48 1597.72 1633.63 1664.01 1690.05 1717.91 1739.7 1758.34 

80 1598.9 1605.38 1619.01 1646.45 1676.45 1707.29 1726.74 1749.67 1777.88 1794.69 1808.45 

85 1703.25 1704.52 1709.66 1732.52 1757.97 1775.93 1794.13 1815.68 1833.76 1846.06 1858.25 

90 1803.68 1797.91 1805.78 1825.43 1841.59 1849.65 1868.34 1881.64 1888.85 1899.29 1908.44 

95 1905.7 1895.96 1907.78 1913.57 1918.23 1927.83 1934.13 1940.75 1945.3 1951.93 1956.47 

100 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

Table A3. Average number of agents traversing edge BC for given values of ∆t and P(NS). 

Agents Traversing Edge BC 

Travel Time Uncertainty ∆t 

P(NS) 0 10 20 30 40 50 60 70 80 90 100 

0 4000 3949.61 3698.31 3469.51 3264.09 3095.23 2938.71 2803.68 2679.09 2590.05 2482.09 

5 3800.14 3759.89 3517.36 3282.72 3095.49 2922.2 2768.52 2642.76 2514.28 2401.15 2325.51 

10 3622.09 3548.39 3326.07 3110.78 2921.49 2758.76 2601.55 2484.67 2335.47 2241.89 2147.92 

15 3416.16 3359.81 3161.58 2923.23 2753.44 2575.5 2430.58 2311.12 2203.9 2067.89 1972.54 

20 3208.14 3166.32 2963.17 2763 2597.78 2398.26 2264.12 2160.07 2021.29 1918.45 1846.42 

25 3011.63 2964.12 2772.76 2572.4 2393.1 2241.89 2096.7 1966.23 1866.79 1773.12 1677.57 

30 2832.63 2769.42 2561.74 2398.05 2231.86 2093.81 1938.55 1845.89 1722.86 1618.63 1534.26 

35 2588.06 2561.69 2385.22 2214.83 2085.4 1905.49 1789.16 1683.04 1589.84 1487.03 1415.04 

40 2403.84 2353.68 2195.19 2051.78 1904.69 1759.28 1647.39 1550.42 1440.13 1350.45 1272.75 

45 2179.75 2177.16 2019.88 1887.23 1744.3 1631.47 1496.15 1395.37 1304.91 1224.51 1138.18 

50 1991.81 1988.52 1824.99 1703.99 1582.17 1462.94 1342.25 1258.84 1174.32 1096.34 1013.95 

55 1796.01 1785.18 1655.9 1538.55 1447.95 1320.99 1217.91 1140.6 1052.52 970.6 919.93 
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60 1601.83 1596.3 1486.89 1404.63 1293.66 1175.4 1096.96 1007.02 930.6 865.28 803.88 

65 1388.41 1389.98 1317.6 1231.07 1137.51 1039.24 957.87 873.18 808.16 751.88 696.36 

70 1189.05 1193.43 1133.51 1050.97 965.78 886.51 810.15 743.02 681.62 631 582.46 

75 1000.51 994.29 938.55 883.07 804.62 732.79 672.03 619.96 564.24 520.66 483.36 

80 802.19 789.24 761.99 707.13 647.15 585.46 546.57 500.7 444.28 410.66 383.13 

85 593.49 590.96 580.69 534.98 484.1 448.19 411.77 368.68 332.51 307.92 283.53 

90 392.65 404.18 388.46 349.16 316.83 300.73 263.34 236.75 222.32 201.45 183.13 

95 188.59 208.09 184.43 172.87 163.55 144.35 131.74 118.52 109.41 96.15 87.06 

100 0 0 0 0 0 0 0 0 0 0 0 
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