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Abstract: Adaptation to climate change requires prediction of its impacts, especially on ecosystems.
In this work we simulated the change in bird species richness in the boreal forest of Quebec, Canada,
under climate change scenarios. To do so, we first analyzed which geographical and bioclimatic
variables were the strongest predictors for the spatial distribution of the current resident bird
species. Based on canonical redundancy analysis and analysis of variance, we found that annual
temperature range, average temperature of the cold season, seasonality of precipitation, precipitation
in the wettest season, elevation, and local percentage of wet area had the strongest influence on
the species’ distributions. We used these variables with Random Forests, Multivariate Adaptive
Regression Splines and Maximum Entropy models to explain spatial variations in species abundance.
Future species distributions were calculated by replacing present climatic variables with projections
under different climate change pathways. Subsequently, maps of species richness change were
produced. The results showed a northward expansion of areas of highest species richness towards the
center of the province. Species are also likely to appear near James Bay and Ungava Bay, where rapid
climate change is expected.

Keywords: climate change; boreal Quebec; biogeography; species richness; bioclimatic modelling;
redundancy analysis (RDA); ecological change; random forest (RF)

1. Introduction

During the last two decades, climate change has been receiving growing attention in
environmental studies, and it has been named as one of the main possible drivers of ecological
change in the upcoming decades [1–3]. In its 2013 assessment report, the Intergovernmental Panel on
Climate Change (IPCC) concluded that most of the natural systems on earth will be affected at different
levels of intensity [4]. Terrestrial ecosystems have to adapt to early springs and fauna and flora have
already started migrating, in most cases towards higher latitudes or elevations, where topography
allows [4–7]. The IPCC conclusions highlight that a large number of ecosystems will be disturbed in the
coming years, and that climate change impacts on the environment will encompass, amongst others,
melting of ice caps, thawing of permafrost and vulnerability and instability of slopes in mountainous
areas [4]. Parmesan (2006) reports on the many consequences of anthropogenic climate change on fauna
and flora, highlighting the modification in spatial distribution of species. Similar research projects
completed in North America, specifically for bird species, conclude that migration in the direction of
higher latitudes or elevations has been observed when topography allows it [8–10]. This hypothesis
is corroborated by studies developed in Antarctica, the Arctic and northern hemisphere temperate
areas [3,10]. Furthermore, if temperatures continue to rise, particularly in the boreal areas, forest
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ecosystems may be facing considerable changes [11–13] which could in consequence facilitate shifts
and reductions in suitable bird habitats [14].

Located in east-central Canada, the province of Quebec is the largest province in the country
with a surface area of over 1.6 million km2. Its territory comprises various bioclimatic domains,
from temperate forests to arctic tundra. Approximately 70% of Québec’s territory is covered by
the boreal forest [15]. It creates a belt over 1000 km wide between the 48th and 58th parallels,
which comprises four distinct bioclimatic domains, going from deciduous and mixed forest stands
within the Northern Temperate zone in the south, to the Arctic zone in the north, where no tree
grows [16]. Quebec’s boreal forest also provides critical habitat for birds, nesting from 150 to 300
migrant bird species, which could be greatly affected by climate change in the years to come [17].

In order to estimate the influence of climate change on the spatial distribution of boreal avian
fauna, it is essential to identify the important predictors associated with the birds’ spatial distribution.
Following the above-mentioned literature concerning the effects of climate change on the habitats
of bird species and possible consequent migrations [3,8–14], we assume that the spatial distribution
of species is highly correlated to climate, more particularly to precipitation and average annual
temperature. Thus, bioclimatic projections should favor a migration of species towards higher latitudes
or elevations. Moreover, this research aims to widen the knowledge about boreal bird species’ responses
to climate change, to help decision makers adapt their conservation policies. In order to accomplish this
goal, we have divided our methodology in two steps as follows. First, we identified the explanatory
variables linked to the spatial distribution of 37 boreal bird species via statistical modeling methods
applied to multivariate data, such as redundancy canonical analysis (RDA) and variation partitioning.
After the first part of the analysis, we calculated different species distribution models (SDMs) via
bioclimatic modeling techniques and identified future trends in boreal avian fauna for the province of
Quebec under different climate scenarios.

2. Materials and Methods

2.1. Study Area, Species Abundance, and Predictors Data

The geographic area subject of this study is the boreal forest of Quebec, Canada (44.99◦ N,
62.58◦ N, 79.75◦ W, 56.93◦ W) (Figure 1). The two statistical modeling methods implemented in our
research require different inputs; the redundancy canonical analysis (RDA) needs a dataset where the
observations are noted by sampling site. Since data are available in raster format, for the whole province,
a random sampling was done to reduce the number of observation points. In total, fifty sites were
randomly selected in the bioclimatic domains of Quebec (Figure 1), using the random uniform point
creation tool in ArcGIS [18]. The attribute table, to which the bird abundance data and explanatory
variables are linked, was then exported to be used in the R statistical software [19] for multivariate
analysis. In order to project the bird species distribution using bioclimatic models, the full dataset,
corresponding to the study area, was used. These projections were obtained using the biomod2 package,
in R, which takes raster layers as inputs.

Birds’ abundance data were provided by eBird [20]. The eBird dataset contains, for Quebec only,
more than 1.3 million entries. Even though these data do not go through any rigorous standardization
and validation process, the enormous quantity of data available allows us to minimize biases related
to data quality. The thirty-seven bird species used in this research (Appendix A), were selected by
browsing a list of boreal birds [21]. The only criterion of selection was that the species is resident to the
boreal forest of Quebec.
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From each record, spatial coordinates and the number of observations were selected for analysis. 
Multivariate statistical analyses (RDA and variation partitioning) require another step. In order to 
allow a random sampling of abundance for every species using the same sites, the maximum 
distribution area was interpolated for each species. This interpolation produced a raster layer of 
abundance for each species based on real observations, simulating a convex distribution hull, but 
working in a matrix environment composed of cells with values. In order to achieve that, a nearest 
neighbor interpolation method was used in ArcGIS [18]. The output is a raster layer showing the 
maximum area of distribution for each species with abundance values for the cells located inside the 
convex hull, giving 37 raster layers. Interpolation was necessary because multivariate statistics 

Figure 1. Map of bioclimatic domains found in the province of Quebec and sampled sites randomly
selected for the analysis.

From each record, spatial coordinates and the number of observations were selected for analysis.
Multivariate statistical analyses (RDA and variation partitioning) require another step. In order to allow
a random sampling of abundance for every species using the same sites, the maximum distribution
area was interpolated for each species. This interpolation produced a raster layer of abundance for
each species based on real observations, simulating a convex distribution hull, but working in a matrix
environment composed of cells with values. In order to achieve that, a nearest neighbor interpolation
method was used in ArcGIS [18]. The output is a raster layer showing the maximum area of distribution
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for each species with abundance values for the cells located inside the convex hull, giving 37 raster
layers. Interpolation was necessary because multivariate statistics require a data table with the same
sites for the 37 species. The results of the interpolation of bird sightings give abundances ranging
from 0 (absence) to 720 (highest abundance found, corresponding to the Surf Scoter sighted at the
Île-aux-Basques bird sanctuary). A Shapiro-Wilk normality test, with the null hypothesis stating the
data follows a normal distribution and the alternative hypothesis implying an skewed distribution,
allows to conclude that the bird sightings are very skewed [22]. A log transformation of response
variables was executed to reduce skewness and, thus, improve the strength of statistical tests. For the
second step, bioclimatic modeling, raw observations were used as input (latitude-longitude) because
species are modelled one at a time.

The goal of our multivariate analysis is the identification of spatialized variables influencing the
spatial distribution of boreal birds. In order to do so, the selection of explanatory variables, also called
predictors or independent variables, is of paramount importance. From the variables that affect birds’
distribution, only the significant ones are used in the forecasts. The explanatory variables’ coordinates
are in the world geodesic system of 1984, or WGS84, and are available in raster format (with an extent
of 2112 lines by 2721 columns). The area goes from 51.1◦ W to 79.78◦ W in longitude and from 44.98◦ N
to 62.58◦ N in latitude. The spatial resolution is 0.0083 decimal degree by cell, or 787 m by 787 m, under
one square kilometer. The bioclimatic data were provided by the WorldClim database and the variables
were named BIO1 to BIO19 (Table 1) (Hijmans et al., 2005). The data were derived from monthly
temperature and precipitation to give rise to more relevant variables in ecology, such as average
summer temperature, annual range of precipitation, precipitation seasonality, and so on. The nineteen
bioclimatic variables were considered initially, in order to determine which were associated to bird
species distribution. During the selection of variables, some of them were discarded because of their
low contribution to the models.

Table 1. List of explanatory variables used in the multivariate analysis with their description and the
labels used for the purpose of the analysis.

Variable Name Description

Bioclimatic Variables

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp–min temp))
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality (standard deviation ×100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter

Other Variables

elevation Elevation in meter
pct_for Percentage of forested area
pct_wet Percentage of wet area
linear Linear disturbances
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Present climate data represent the 1950–2000 average. Future data represent years 2050 (2041–2060
average) and 2070 (2061–2080 average) for the four representative concentration pathways (RCP)
scenarios, determined by the IPCC [4,23]. In its fifth report, the IPCC defined a new set of climate
scenarios, named Representative Concentration Pathways (RCPs). These scenarios are named by
their total radiative forcing for year 2100 in comparison with 1750, preindustrial reference year.
The scenarios, named RCP2.6, RCP4.5, RCP6.0 and RCP8.5 represent a radiative forcing of 2.6 Wm−2,
4.5 Wm−2, 6.0 Wm−2, and 8.5 Wm−2 respectively [24]. Climate simulations are available to be used,
with atmospheric CO2 concentrations of 421 ppm (RCP2.6), 538 ppm (RCP4.5), 670 ppm (RCP6.0) and
936 ppm (RCP8.5) for the year 2100 [4,24].

Elevation data were provided by the National Topographic Data Base of Canada [25]. This raster
layer displays elevation, in meters, for the whole province of Quebec. Shorelines, riverbanks,
oceans and estuaries have a value of zero. The median sea level (MSL) is assigned according to the
geodesic height reference system of 1928 and the vertical resolution is one meter [25]. Anthropogenic
disturbances dataset for Quebec was provided by Global Forest Watch Canada and is comprised of
four type of disturbances: (1) linear (roads, pipelines, high voltage lines); (2) polygons (harvested
forest, oil/gas well, agricultural land); (3) reservoirs; and (4) active mines [26]. No reservoir, mine
or polygonal disturbance is found on the sampled sites, therefore only linear disturbances are kept
for the analyses. Finally, forest inventory dataset was taken from the Canadian Forest Inventory of
2001 [27]. From this feature layer, two fields were extracted to a raster format: (1) a map showing
the percentage of forest area for each cell; and (2) a map showing the percentage of wet area per
cell. All the variables were grouped in three categories: the resource variables, containing forest
and elevation datasets, the bioclimatic variables, BIO1 to BIO19, and the anthropogenic variables,
containing linear disturbances.

The datasets required for the analysis were all provided by open data sources [20,23,25–27].
The tools used for analysis were the R 3.1.0 [19] statistical programming language and the ESRI ArcGIS
for Desktop 10.1 [18] for some cartographic transformations and map production.

2.2. Methods

In order to predict the future spatial distribution of boreal bird species, a first stage consisted
of identifying the variables linked to the spatial distribution of the 37 species through a multivariate
analysis aiming to distinguish the shared predictors for the species under study. These variables being
identified, a second step is the projection of species future distribution. In total, 37 species distribution
models (SDMs) are generated, one for each species.

2.2.1. Statistical Analyses

The redundancy canonical analysis was first used on every variable [28]. After this step, collinear
variables are successively removed from the model, in order to have a variance inflation factor (VIF)
under 10 for each of the variables kept in the model. In order to keep only the more significant variables,
a progressive bidirectional stepwise selection is executed. This type of approach does a selection of the
most relevant variables in regards to the Akaike information criterion (AIC) and to the representatively
p-value [29]. A stepwise selection using R squared as a selection criteria was used, in order to compare
the result of these two selection approaches [29]. These three analyses are repeated until only the
significant variables, with a VIF under 10, are integrated to the model.

A redundancy canonical analysis is an asymmetrical analysis needing a response dataset Y
and an explanatory dataset X. RDA projects sites, response variables and explanatory variables in
one ordination plot, allowing a simpler reading and understanding of the relations between Y and
X [28,30]. Many tests were run on the results of the RDA in order to verify the significance of the results.
The canonical axes and predictors were submitted to permutation tests to calculate the F-statistic and
its associated probability.
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In order to model the spatial distribution of boreal birds, we need a set of explanatory variables
that are independent from one another. Thus, it is necessary to reduce collinearity between variables.
Collinearity exists when two or more explanatory variables are correlated. The bioclimatic variables
provided by WorldClim [23], being based on temperature and precipitation, are all derived from
the same data, and hence are highly correlated. We calculated the variance inflation factors (VIFs)
of variables, by executing, successively, linear regressions of each explanatory variable on all other
explanatory variables. The VIF for variable j is obtained with the following Equation [28]:

VIFj =
1

1 − R2
j

(1)

A maximal threshold is fixed to 10, since a threshold of 5 does not allow, in this case, preservation
of enough environmental variables. The removal of highly correlated variables, showing a high
variance inflation factor, allows us to reduce the collinearity amongst them, and it also enables to better
identify the individual influence of explanatory variables. Removed variables are the ones showing
the highest VIF and being the least significant from an ecological point of view.

In order to better identify the factors influencing the spatial distribution of boreal birds,
the variables are split in three groups: (a) bioclimatic variables; (b) the resource variables such
as elevation, percentage of forest and percentage of wet area; and (c) anthropogenic linear
disturbances [29]. Variation partitioning [30–33] identifies individual and joint effects of explanatory
groups on variations of the response, as well as the proportion of unexplained variations.

2.2.2. Bioclimatic-Based Species Distribution Models

Bioclimatic modelling approaches were used to produce species distribution models (SDMs),
using the R package {biomod2}, a platform for building, calibrating and evaluating species distribution
models, or niche models [34].

To begin, it is essential to define the two concepts behind these static models: the pseudo-
equilibrium postulate and the niche model. The pseudo-equilibrium postulate is defined by
Guisan et al. (2005) as follows: “As both species and environmental data are usually sampled during
a limited period of time or/and space, models fitted using these can only reflect a snapshot view of the
expected relationship. A convenient working postulate is to assume that the modelled species is in
pseudo-equilibrium with its environment” [35,36]. The niche concept states that species distribution
models, and particularly maps produced by them, lay on a combination of Grinnell’s ecological niche,
where a species can be found at any place where the environmental conditions for its reproduction are
found, and the realized niche of Hutchinson, where a species is excluded from its fundamental niche
by predation or competition [36]. This combination is due to the fact that SDMs use real sightings to
identify the ecological niche of a species. However, the observations are the fruit of species competition
and predation; thus, the realized niche serves indirectly to the generation of models.

For the species distribution models, three algorithms were used: RF, MARS and MAXENT
(Table 2). Initially, for each species, the presence data were combined with 10,000 pseudo-absences
randomly generated on the whole study area. Then, these presence/absences were overlapped to the
environmental variables and divided in a training (80%) group, used for the creation of a niche model,
and a test (20%) group, used for validation by discrimination metrics. To reduce the possibility of
errors, the minimal area under the receiver operating characteristic (ROC) curve threshold, or AUC
(Area Under the Curve), was set at 0.7; it is important to keep in mind that a random classification
will have an AUC score of 0.5 while a perfect classification will have an AUC of 1. Through multiple
runs, multiple models were calculated. Those meeting the AUC criterion were kept and others were
excluded. For each of the remaining models, a cut-off threshold was calculated based on their ROC
curve. These thresholds were reported in the output of the BIOMOD_Modeling() function of the
package {biomod2} of R.
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Table 2. List of acronyms and authors’ references of the classification and regression algorithms used
to generate the species distribution models.

Acronym Name Description Source

RF Random Forest Measures variable importance
using multiple permutations. Breiman, 2001

MARS Multivariate Adaptive
Regression Splines

Allows to generate non-linear
models comprising interaction. Friedman, 1991

MAXENT Maximum Entropy
Allows presence-only modelling.
Automated learning approach,
or machine-learning.

Phillips et al., 2004

The ROC curve is shaped by the False Positive (FP) and False Negative (FN) rates of predictions
obtained by applying different thresholds to model outputs. The optimization of performance of the
model based on its ROC curve should consider the prevalence (p) of positive cases as well as relative
costs of FP and FN prediction errors [37,38]. These factors allow to calculate the slope m of the tangent
to the ROC curve at the optimum point using Equation (2) [37,38]:

m =
FP cost
FN cost

× 1 − p
p

(2)

If the ROC plot is a smooth curve, then the optimum point is where the curve has slope m; if ROC
plot is not smooth but stepwise, then the optimum point is where the plot first touches a line with
slope m as the line is moved down from top-left corner of the plot area [37,38]. Bearing in mind that
each point on the ROC plot is the result of application of a threshold, once the optimum point on the
plot is found, its corresponding threshold will be the desired ROC threshold of the model [38].

In the next step, future environmental conditions were added to the model to replace present
climate data and generate future distribution maps. In order to define presence or absence of a species,
an ensemble modelling method was used [34]. This method allows to calculate the mean of projections
from the different algorithms used. A committee averaging algorithm was applied, where the
probabilities of each model were transformed into binary data using the respective model’s cut-off
threshold. Each method voted in favor or against the presence of the species. Finally, this score was
projected to the interval from 0 (consensual absence) to 1000 (consensual presence). This method
allows us to adapt binary decisions of presence/absence to uncertainties related to projections in the
same map, exhibiting the inherent uncertainties to the different bioclimatic modelling algorithms [39].
A value of 500 means that 50% of the models forecast an absence and 50%, a presence [40]. Figure 2
shows a simplified version of the bioclimatic modelling method used for each of the 37 species.
Parallelograms show inputs/outputs, rectangles, processes, and the cylinder represents the climate
database. The shaded grey rectangle represents the core of the model, the niche model.
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Figure 2. Simplified representation of the bioclimatic modelling technique used in this study (Adapted
from Berteaux et al., 2010 [41]).

3. Results

3.1. Variable Selection

By including all variables in the first RDA and calculating VIFs, some variables showed an
extremely high inflation factors, near 2000 (mean annual temperature—BIO1, mean temperature of
coldest quarter—BIO11, lowest temperature of coldest month—BIO6). The R-squared is 0.854, but the
adjusted R-squared is 0.735. A permutation test applied on the variables showed that the percentage of
forested area (pct_for), precipitation of wettest month (BIO13), mean daily range (BIO2), isothermality
(BIO3) and highest temperature of warmest month (BIO5) are significant (p < 0.05). The permutation
test applied to canonical axes showed that only the axes 1, 7, 11 and 15 are significant (p < 0.01) after
299 permutations.

In order to reduce the number of variables and to strengthen the analyses, collinear variables were
removed one by one, manually. The variables kept are elevation, linear disturbances, percentage of
forested area, percentage of wet area and BIO7, BIO11, BIO15 and BIO16. The mean VIF of these eight
variables is 5.24, with 11.7 as a maximal value (BIO11), which we found acceptable, because BIO11
is slightly over the fixed threshold, even though literature sometimes recommends threshold values
of 15, and even 20 [28]. The RDA was then applied once again, this time only on the non-collinear
variables. The adjusted R2 of the model is 0.58.
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Afterwards, a bidirectional selection of variables led to the suppression of linear disturbances
and percentage of forested area. The final analysis was then applied to six variables, these being the
four bioclimatic variables (BIO7, BIO11, BIO15 and BIO16), the percentage of wet areas and elevation.
At this stage, it became clear that BIO11, or mean temperature of coldest quarter, is the variable that
influences the spatial distribution of species the most. The second most important variable is BIO16,
or precipitations of wettest quarter. On the other hand, two variables were identified to negatively
influence the presence and abundance of species: the seasonal variation of precipitation (BIO15) and
annual range of temperatures (BIO7). One of the interesting facts shown by the RDA analysis is the
species and sites grouping. The technique allows to distinguish the precipitation and temperature
gradients found in Quebec. Table 3 provides information about each sample site (row0 to row49).

Table 3. Complementary information regarding the geographical coordinates as well as the specific
bioclimatic domains where each of the sample sites are located.

Name Latitude Longitude Bioclimatic Domain Name Latitude Longitude Bioclimatic Domain

row0 55.8447 −76.2316 Forest tundra row25 51.9439 −68.9568 Spruce-moss
row1 48.6628 −69.6323 Fir-white birch row26 55.5781 −75.4543 Spruce-lichen
row2 46.8135 −78.6928 Maple-yellow birch row27 56.4672 −67.1192 Spruce-lichen
row3 51.6501 −59.9633 Spruce-moss row28 51.3266 −61.8963 Spruce-moss
row4 47.6502 −73.5156 Fir-Yellow birch row29 52.6880 −73.1066 Spruce-lichen
row5 49.9449 −71.3324 Spruce-moss row30 57.1851 −67.7253 Spruce-lichen
row6 53.0530 −75.8372 Spruce-lichen row31 56.9220 −65.2494 Forest tundra
row7 52.4532 −77.3685 Spruce-lichen row32 51.4333 −77.3326 Spruce-moss
row8 50.1640 −77.6107 Spruce-moss row33 57.1362 −66.8704 Spruce-lichen
row9 55.8104 −75.5142 Spruce-lichen row34 58.8476 −77.3046 Shrub tundra
row10 47.9788 −70.2513 Fir-white birch row35 51.7193 −62.2129 Spruce-moss
row11 49.1433 −78.3106 Fir-white birch row36 54.1290 −68.6697 Spruce-lichen
row12 54.6786 −70.7768 Forest tundra row37 48.3239 −72.4839 Fir-white birch
row13 57.3887 −71.8150 Forest tundra row38 52.9978 −77.6026 Spruce-lichen
row14 47.6650 −78.3112 Fir-Yellow birch row39 52.2419 −68.9173 Spruce-moss
row15 50.5063 −60.6872 Spruce-moss row40 53.3667 −73.6408 Spruce-lichen
row16 45.4110 −70.6361 Maple-yellow birch row41 49.8007 −69.2638 Spruce-moss
row17 50.7644 −75.8232 Spruce-moss row42 54.0512 −72.7190 Spruce-lichen
row18 52.0158 −76.7739 Spruce-moss row43 48.1273 −66.8305 Fir-white birch
row19 49.9230 −67.9408 Spruce-moss row44 61.7936 −75.4240 Herbaceous arctic tundra
row20 54.8004 −79.0797 Spruce-lichen row45 53.1172 −73.9403 Spruce-lichen
row21 58.4981 −71.2060 Arctic tundra row46 46.9410 −78.6283 Maple-yellow birch
row22 48.7750 −66.8054 Fir-white birch row47 57.5095 −69.6575 Forest tundra
row23 53.7060 −76.5934 Spruce-lichen row48 56.9296 −73.6560 Forest tundra
row24 52.4247 −74.0392 Spruce-lichen row49 47.6405 −72.4772 Fir-Yellow birch

A permutation test run on the explanatory variables allowed us to test for the significance of the
six selected variables (Table 4). Each of the variables integrated to the model have high significance
(p = 0.01), with the exception of pct_wet, that is less significant than the others (p = 0.07). Finally,
the same test, but run on the canonical axes, showed that the first three axes are highly significant
(p < 0.005) (Table 5) and that the fourth axis is to some degree significant (p = 0.071).

Table 4. Results of the statistical permutation test carried out on the predictor variable.

Variables Df Var F N.perm Pr (>F) VIF

elevation 1 49.512 23.8522 99 0.01 3.359
pct_wet 1 4.443 2.1403 99 0.07 1.232
BIO11 1 67.141 32.3447 99 0.01 9.217
BIO15 1 10.6 5.1063 99 0.01 7.199
BIO16 1 14.793 7.1266 99 0.01 5.181
BIO7 1 9.725 4.685 99 0.01 1.779

residuals 43 89.259
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Table 5. Calculations of the statistical permutation test performed on the canonical axes.

Variables Df Var F N.perm Pr (>F)

RDA1 1 117.189 56.455 199 0.005
RDA2 1 18.856 9.0835 199 0.005
RDA3 1 13.101 6.3114 199 0.005
RDA4 1 4.093 1.972 999 0.071
RDA5 1 2.017 0.9718 99 0.44
RDA6 1 0.958 0.4614 99 0.88

residuals 43 89.259

3.2. Variation Partitioning

For variation partitioning, the variables were initially separated into three groups. The four
bioclimatic variables form the group of climate variables and the variables pct_wet and elevation
form the group of resource variables, that is to say a group of variables that are indirectly linked to
the species foraging behaviors. Since linear disturbances are dropped from the model, the group of
anthropogenic variables was dropped as well. Bioclimatic variables are responsible for 53% of the total
variation, directly (40%) or with the interaction with resource variables (13%). The resource variables,
in turn, are only accountable for 18% of the total variation, directly (5%) or with the interaction of
bioclimatic variables (13%). Finally, the residuals represent 41% of the total variation.

3.3. Bioclimatic Modelling

Averaging presence/absence projections for the thirty-seven bird species model gives rise to the
maps presented in Figures 3 and 4a–d. For a better view and the possibility of zooming, these maps
are also made available online at the address given in Supplementary Materials. Figure 3 shows the
modeled current species richness maps (observations from 1980 until today) [20], where a value of
37 represents a pixel where all 37 bird species are present, while a pixel with a value of 0 means total
absence of all of these species.

Figure 4a–d show future species richness and change in species richness for the years 2050 and
2070 under two different climate change scenarios (RCP4.5 and RCP8.5). In all cases, as Figure 4a–d
show, species richness will likely increase in the centre of the province. The projected species richness
maps shown on the left panels of Figure 4a–d were computed by adding the individual layers of each
of the bird models. These bird models are binary maps, with values of either 0 (absence) or 1 (presence).
The binary maps are produced by the classification of committee averaging maps, which have values
from 0 to 1000, where 1000 is a presence forecast by all models. The threshold value of 500 was used to
split between 0 and 1. The classification interval can be expressed as follows: [0:500] = 0, [500:1000] = 1.
By adding the values of the 37 different maps, the result is a map where values are stretched from 0,
or complete absence of the 37 species, to 37, where every species modelled is forecasted to be present.
These results highlight an overall expansion of bird habitats towards north. In addition, there seem to
be some discontinuities: some new habitats emerge in locations that are not connected to the larger
habitable zone in the south. Two particular examples noticeable in Figure 4a are the James Bay area,
located at the extreme west and Ungava Bay, located in the North-East of the province. Emergence
of habitat in those two key areas could be explained by their proximity to the ocean, justified by
the continentality principle [41]. According to Hirschi et al., the change in continentality can almost
be explained by one factor, which is an increase of 3.5 ◦C in the temperatures of the coldest month.
This variable goes in accordance with our identification of BIO11, or the temperature of the coldest
quarter, as a key factor for bird species distribution. While most of the bird species are presently
distributed along the Saint-Lawrence River Valley, in the south of the province, there is a chance that
the species will move towards higher latitudes or longitudes, in any of the selected climate scenarios
and time periods. Maps displayed on the right panel of Figure 4a–d represent the change in species
richness, calculated as the difference between future (2050 and 2070) and current species richness
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distribution maps. Accordingly, a pixel with a value of 37 represents a “new presence” for the whole
37 species, while a pixel with a value of −37 would represent a loss in all 37 species. Negative change
is shown in red, and positive change is displayed in different shades of green.
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Figure 4. Modeled future bird species richness and change in bird species richness for 2050 and 2070
under two different climate change scenarios: (a) year 2050 under the RCP4.5 scenario; (b) year 2050
under the RCP8.5 scenario; (c) year 2070 under the RCP4.5 scenario; (d) year 2070 under the RCP8.5
scenario. Please see Supplementary Materials for the online version of the maps.
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4. Discussion

The redundancy canonical analysis (RDA) shows that spatial distribution of the 37 bird species is
linked to bioclimatic factors, such as maximum and minimum temperatures and precipitation in the
wettest quarter. Even though the initial analysis includes numerous predictors, such as anthropogenic
disturbances, forest cover and wet areas, only four bioclimatic variables, elevation and wet areas
explain boreal bird abundances. Bioclimatic variables explain 53% of boreal bird spatial distribution,
and resource variables, 5%. Thus, it is possible to state that, for our data, anthropogenic disturbances
do not seem to be linked to spatial distribution of boreal birds.

The core of the model calculates suitability of every pixel for the species of the study, and positive
and negative effects of explanatory variables are defined in the same frame. The analysis revealed
that the factor with the strongest effect on suitability of locations—and hence on presence of species
therein—is the mean temperature of the coldest quarter. The higher the temperature of the coldest
quarter at a given location, the more likely it is to have resident birds there. This is of course particular
to the area and species of the present study. Examples of studies in other areas are given in the next
paragraph. In our study, the second most important factor in the abundance of birds is the precipitation
of the wettest season. Higher values of this variable are associated with higher probabilities of the
presence of birds. On the other hand, it was identified that seasonal variations in precipitation and
annual temperature range are two variables that negatively influence the presence of resident species.

Each location has its own biogeographical characteristics and influential factors that have to be
identified in independent analyses, though similarities exist between studied cases as well. A study of
indicators of breeding bird richness in the Canadian province of British Columbia [42] identified annual
evaporative demand, climate moisture deficit, and mean elevation as important explanatory variables.
In another study on the range shifts of birds in Finland and northern Norway [10] mean temperature
of April–June, precipitation in April–June, mean temperature of the coldest month, and precipitation
in December-February were the important climate variables, while elevation range and mean altitude
above sea level were influential topographic variables. Another study on bird species abundance in
the U.K. [43] used mean temperature and total rainfall in two periods from April to July and from
December to February, in addition to land cover as pertinent variables. A study on breeding wetland
birds in the Czech Republic [44] explained birds’ distribution by temperature and precipitation in
March–April as important climate variables, and by habitat and topography variables. Another study
focusing on a single subspecies (Lagopus muta helvetica) in the Swiss Alps [45] found mean July
temperature as the most important bioclimatic variable that explained suitability of areas in multiple
scales. The same study noted that in smaller geographical scales, annual precipitation, July water
budget, and July cloud cover were also important explanatory variables. In comparison, our analysis
of factors affecting resident bird species richness in Quebec identified geographic conditions as well as
two temperature variables (mean temperature of the coldest quarter and annual temperature range)
and two precipitation variables (precipitation in the wettest quarter and precipitation seasonality).
Indicating cold/wet limits and respective measures of dispersion, our selected bioclimatic variables
refer to intervals of variation of temperature and precipitation. It is noteworthy that temperatures
of coldest months were also used in the cases of Finland-Norway [10] and the U.K. [43], but not in
the cases of British Columbia [42] and the Czech Republic [44]. In the case of British Columbia there
is an indirect reference to the higher temperatures in the variable ‘annual evaporation demand’ [42].
In contrast, our study found the temperature of the colder quarter to be the most influential factor in
habitat suitability. Such difference is reasonable considering that the climate conditions of Quebec are
more similar to those of Finland than British Columbia.

One must remain cautious with the results, since bird sightings are usually made on the sides
of roads or in disturbed areas, such as cities or countryside. That means, in areas that are far from
reach, it is unlikely that anyone passes and reports a sighting. In particular, we have very scarce data
for the North of Quebec, and none for remote areas. It must be considered that such lack of records
does not mean complete absence of species in these areas. Furthermore, although data provided by
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eBird are very large and comprehensive, these datasets are highly biased by a lack of standardization
in the process of data collection. We must keep in mind the sensitivity of the analysis to the spatial
resolution of data. Thus, random sampling gives rise to sites with different properties varying with
the scale or spatial resolution of datasets. Nevertheless, these results allow us to consider bioclimatic
variables as important drivers of boreal bird spatial distribution, allowing the use of bioclimatic
modelling techniques.

Thus, for the second stage of this project, the species distribution modelling applied to bird
species, only the bioclimatic variables and elevation were used. The models agree with the hypothesis
that climate change would induce a shift in the spatial distribution of boreal bird species. This idea is in
agreement with the northern biodiversity paradox, which states that even though climate change will
be a major cause of extinction of species, boreal areas, however, will see an increase in species richness
and in biodiversity [46]. The results of a similar study show that, for 80% of the climate scenarios used,
North America should see an 11% net loss of animal species under B1 scenario (similar to RCP4.5) and
a 17% net loss of animal species under A2 scenarios (high emission, compared to the middle point
between RCP6.0 and RCP8.5) [2].

Results of the present study show that, with climate change, bird species richness in southern
Quebec is likely to increase remarkably. As the climate continues to change in the scenarios considered,
the suitability of northern areas will increase gradually, such that zones of high avian species richness
will expand towards higher latitudes. The results of multivariate analysis showed that boreal bird
species are strongly linked to climate. Thus, as bioclimatic models exhibit, climate change could induce
changes in the spatial distribution of these species. Taking into account that BIO11 is strongly related to
bird species distribution, the changes in continentality could explain the forecasted increase in species
presence around the James and Ungava Bays, both located in the Arctic Ocean, which experiences
a slight change in continentality, explained by the temperatures of the coldest month.

The prediction maps also indicate that, for the same duration, the more intense climate change
scenario (RCP8.5) leads to further expansion of the zone of high avian species richness. This is
particularly noticeable in the prediction map of 2070, in which larger areas north of the province
become zones of higher avian biodiversity.

The expected increase of biodiversity in Quebec, especially in the southern part in the near
future, has an important implication for environmental decision making and policy. In a zone of
high biodiversity, disturbed or destroyed habitat will influence a larger number of species and cause
a strong environmental impact. In this context, preservation of intact land and protection of suitable
habitats for these species will be of higher importance than before.

The species distribution models produced in this research are static and lie on a pseudo-
equilibrium postulate, defined by Guisan and Zimmermann (2000). Indeed, every static model
lies on the premise that species distribution patterns are in equilibrium or pseudo-equilibrium with
the environment, since static models cannot manage disequilibrium or dynamic equilibrium exhibited
by ecosystems. Dynamic and stochastic modelling approaches, such as individual-based modelling or
cellular automata, allow us to deal with such conditions, since they rely on an ascending (bottom-up)
approach, modelling at the individual scale, allowing feedbacks and non-linearity, while the present
methods rely on a descending (top-down) approach, where species distribution areas are identified using
statistics and environmental variables, in contrast with behavioral traits and everyday preferences
of species.

The method developed here consists of a combination of multivariate statistics and species
distribution modelling. It could easily be adapted to other species and/or study areas. The first step,
including redundancy canonical analysis, removal of collinearity, bidirectional selection and variation
partitioning, allowed us to select relevant explanatory variables to be used in the second step, in order
to generate parsimonious models, instead of including many irrelevant variables.
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5. Conclusions

This research presents a multivariate analysis that allows us to identify independent variables
explaining the spatial distribution of 37 bird species found in the boreal forest of Quebec. Subsequently,
Random Forests, Multivariate Adaptive Regression Splines and Maximum Entropy models were used
to explain spatial variations in species abundance, in order to calculate future species distributions
under different climate change pathways. The key variables identified include annual range of
temperature, mean temperature of coldest quarter, precipitation seasonality, precipitation in the
wettest quarter, and elevation. The variable the most closely linked to modelled species is BIO11,
or mean temperature of the coldest quarter. This is easily explained by the fact that the modelled species
are boreal species. The results of multivariate analysis showed that boreal bird species are strongly
linked to climate. Thus, as bioclimatic models exhibit, climate change could induce changes in the
spatial distribution of these species. Results indicated that within the boreal forest of Quebec, the mean
temperature of coldest quarter (BIO11) is strongly related to bird species distribution and explains
the forecasted increase in species presence around James Bay and Ungava Bay, which are located in
the Arctic Ocean. Mechanistic and stochastic models taking into account forest fragmentation and
natural and anthropic disturbances could better represent the complexity inherent to forest ecosystems
and, thus, take into consideration interactions and possible feedbacks with other species or with the
environment. The analyses and results presented in this study could support environmental decision
making, concerning the design of future protected areas to maintain biodiversity.

Supplementary Materials: The maps in Figures 3 and 4a–d are also available online at https://arcg.is/0uWCqX.
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Appendix A

List of all bird species found in the boreal forest of Quebec

Latin Name English Name

Setophaga ruticilla American Redstard
Setophaga castanea Bay-breasted Warbler
Poecile atricapillus Black-capped Chickadee
Poecile hudsonicus Boreal Chickadee

Melanitta americana Black Scoter
Mniotilta varia Black-and-white Warbler
Corvus corax Common Raven

Acanthis flammea Common Redpoll
Junco hyemalis Dark-eyed Junco

Hesperiphona vespertina Evening Grosbeak
Passerella iliaca Fox Sparrow
Regulus satrapa Golden-crowned Kinglet

Perisoreus canadensis Gray Jay
Melospiza lincolnii Lincoln’s Sparrow

https://arcg.is/0uWCqX
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Lanius excubitor Northern Shrike
Contopus cooperi Olive-sided Flycatcher

Haemorhous purpureus Purple Finch
Pinicola enucleator Pine Grosbeak

Setophaga pinus Pine Warbler
Euphagus carolinus Rusty Blackbird

Sitta canadensis Red-breasted Nuthatch
Regulus calendula Ruby-crowned Kinglet
Loxia curvirostra Red Crossbill
Vireo olivaceus Red-eyed Vireo

Bonasa umbellus Ruffed Grouse
Falcipennis canadensis Spruce Grouse

Tringa solitaria Solitary Sandpiper
Actitis macularius Spotted Sandpiper

Melanitta perspicillata Surf Scoter
Melospiza georgiana Swamp Sparrow
Catharus ustulatus Swainson’s Thrush
Catharus fuscescens Veery

Zonotrichia leucophrys White-crowned Sparrow
Numenius phaeopus Whimbrel

Loxia leucoptera White-winged Crossbill
Melanitta deglandi White-winged Scoter

Empidonax flaviventris Yellow-bellied Flycatcher
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