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Abstract: This paper focuses on the use of ultra-high resolution Unmanned Aircraft Systems (UAS) 

imagery to classify tree species. Multispectral surveys were performed on a plant nursery to 

produce Digital Surface Models and orthophotos with ground sample distance equal to 0.01 m. 

Different combinations of multispectral images, multi-temporal data, and texture measures were 

employed to improve classification. The Grey Level Co-occurrence Matrix was used to generate 

texture images with different window sizes and procedures for optimal texture features and 

window size selection were investigated. The study evaluates how methods used in Remote Sensing 

could be applied on ultra-high resolution UAS images. Combinations of original and derived bands 

were classified with the Maximum Likelihood algorithm, and Principal Component Analysis was 

conducted in order to understand the correlation between bands. The study proves that the use of 

texture features produces a significant increase of the Overall Accuracy, whose values change from 

58% to 78% or 87%, depending on components reduction. The improvement given by the 

introduction of texture measures is highlighted even in terms of User’s and Producer’s Accuracy. 

For classification purposes, the inclusion of texture can compensate for difficulties of performing 

multi-temporal surveys. 
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1. Introduction 

Unmanned Aircraft Systems (UAS) are rapidly evolving technologies that are nowadays used 

in a wide range of geospatial surveys and natural resources management applications. The UAS now 

available differ in dimension, shape, payload, flight height, and duration. The attention of the most 

of operators is mainly focused on mini and micro UAS, because of their easiness of use and versatility. 

Over the last few years, small fixed-wing, helicopters, and multi-rotor Unmanned Aerial Vehicles 

(UAV), equipped with Global Navigation Satellite System and Inertial Navigation System 

(GNSS/INS), with a total weight of 5 kg or less (Micro-UAV [1]) are increasingly being used for 

different scientific environmental surveys [2–4], including Photogrammetry and Remote Sensing (RS) 

purposes [1]. 

The low operational altitude of UAS surveys results in the generation of ultra-high resolution 

data [5], while their reduced physical size allows their rapid deployment, improving their capability 

to exploit limited windows of opportunity [6]. Furthermore, the low cost of platforms and navigation 

systems together with the variety of available sensors make the UAS suitable to be employed in many 

situations where a traditional vehicle (i.e., airplane) would be too expensive to justify its use. 
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UAS mounting multispectral digital cameras offer particular advantages over other remote 

sensing platforms. Their capability to generate ultra-high resolution imagery [7] at flexible temporal 

scales makes the UAS suitable to fill the gap between finer scale field samples and coarser scale aerial 

or satellite imagery. In particular, UAS have already given evidence of being an appropriate platform 

for mapping agricultural crops and forests. Configurations composed of UAV and consumer digital 

cameras were successfully applied to map Mediterranean forests [5], arid rangelands [8,9], Antarctic 

moss beds [10,11] and aquatic weeds [12]. UAS have the potential for mapping and monitoring 

endangered ecosystems and invasive or dominant tree species [13–15]. 

Many tests have been made to extend the use of processing techniques commonly used in remote 

sensing, for instance color spaces transformations or use of band ratios, derived indices, and texture 

variables for image interpretation. In precision agriculture applications, Vegetation Indices (VI), and 

texture measures derived from multispectral UAS imagery are widely used for weed detection [16–

18]; Liu et al. [19] developed a method for the estimation of rice lodging, by combining indices 

derived from visible, and thermal infrared UAS data. 

Several studies proved that the addition of spatial variability information, with texture 

measures, can significantly improve the accuracy of classification [20]. While in satellite remote 

sensing texture features are mainly used in coarse land cover mapping [21], in ultra-high resolution 

UAS imagery, texture measures enable to differentiate surfaces at a finer level, increasing the number 

of distinguishable classes (e.g., different types of vegetation), enhancing class separatebility and 

classification accuracy. In particular, Laliberte and Rango [22] employed texture components derived 

from UAS imagery in an object-based image analysis; Kelcey and Lucieer [3] and Feng et al. [23] 

recently performed processing of UAS datasets incorporating texture features. 

Following the aforementioned researches, this work develops a study case to assess the 

capabilities of UAS survey to discriminate tree species. As respect to previous works [14,24], which 

focus on the detection of specific invasive species, our intent was to evaluate strategies for mapping 

several tree species. To this purpose, a plant nursery was identified as a suitable study area: a great 

tree species variety was concentrated in a small area, and ground truth data were easily accessible. 

Some well-known and consolidate RS pixel-based procedures were exploited, such as Principal 

Component Analysis and Maximum Likelihood classifier, with the intent to evaluate RS routines 

applied on ultra-high resolution images. Aim of the work is to test processing methods to identify 

tree species using multispectral UAS imagery with pixel-based classification and to evaluate if the 

inclusion of derived band as well as texture features significantly improves classification accuracy. 

2. Materials and Methods 

The flowchart, describing the general processing steps discussed in the next sections, is proposed 

in Figure 1. 

2.1. Study Site and Instruments 

A small area of 215 × 115 m2 was selected inside a wide private plant nursery, close to Cirimido 

village, Como, Italy. This area was characterized by the presence of several tree species: maple (Acer 

spp.), red maple (Acer rubrum), hornbeam (Carpinus betulus), catalpa (Catalpa spp.), dogwood 

(Cornus spp.), beech (Fagus spp.), copper-beech (Fagus purpurea), ash (Fraxinus spp.), ginkgo biloba 

(Ginkgo biloba), honey locust (Gleditsia triacanthos), and chestnut-leaved oak (Quercus 

castaneifolia). The local technical staff provided information for their identification. The employed 

platform was the HexaKopter by the German company MikroKopter (Moormerland, Germany.), 

(Figure 2). 
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Figure 1. General workflow. 

 

Figure 2. PoliMi HexaKopter with the Ground Control Station. 

This powered vertical take-off and landing vehicle is equipped with six brushless motors; it 

weighs about 1.2 kg with batteries and its maximum transportable payload is equal to 0.5 kg. The 

HexaKopter can fly up to 200 m far from the take-off point and the flight duration is limited to 10 

min. 

Two different digital compact cameras were used for surveying. The Red Green Blue (RGB) 

digital compact camera was a mirrorless Nikon 1 J1 (Nikon Corporation, Tokyo, Japan). It weighs 310 

g and acquires images in the visible part of the electromagnetic spectrum by means of a CMOS sensor 

of maximum size 10 Mpx. The other digital compact camera was a Tetracam ADC Lite (Tetracam 
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Inc., Chatsworth, CA, USA): this lightweight (200 g) Agricultural Digital Camera (ADC) is specially 

designed for UAS applications and features a single CMOS sensor of 3.2 Mpx. The camera is 

optimized for capture of Green, Red and Near-Infrared (NIR) wavelengths approximately 

corresponding to Landsat TM2, TM3 and TM4 bands [25]. The resulting Color Infrared (CIR) imagery 

is suitable for derivation of several vegetation indices, canopy segmentation and band ratios. Further 

cameras details are reported in Table 1. 

Table 1. Technical specifications of the cameras. 

 Nikon 1 J1 Tetracam ADC Lite 

Focal length (mm) 10.50 8.00 

Sensor (mm) 13.20 × 8.80 6.55 × 4.92 

Sensor (px) 3872 × 2592 2048 × 1536 

Field of view (°) 64.3 44.5 

Pixel size (μm) 3.40 3.20 

2.2. UAS Survey Planning and Data Collection 

In summer, the multi-rotor HexaKopter was remotely piloted by an operator during landing 

and take-off, whilst a pre-set flight planning was used during the imagery acquisition. Owing to the 

UAV technical limitations, two separate flights were carried out, first with the Nikon 1 J1 and then 

with the Tetracam ADC Lite. To cover the entire area, it was necessary to plan the acquisition of four 

strips with forward and side overlaps equal to 85% and 50%, respectively. The flight plan was tuned 

according to the sensor with the lower geometric performance (i.e., the ADC Lite). Taking into 

account the various tree heights, the flight altitude was fixed at 40 m above ground level, thus 

producing different Ground Sample Distances (GSDs): 1.3 cm for the RGB images and 1.6 cm for the 

CIR ones. Thus, the Nikon 1 J1 acquired 125 images and the ADC Lite camera 159 CIR images. 

Fifteen black and white (b/w) square targets, with side of 30 cm and triangular pattern, were 

homogeneously distributed in the area. The center coordinates were measured by means of a GNSS 

receiver Trimble 5700 in NRTK (Network Real Time Kinematic) survey (Figure 3), with horizontal 

and vertical accuracies of 2–3 cm and 5 cm, respectively. 

 

Figure 3. Flight tracks (yellow lines) for the RGB summer survey and positions (red triangles) of the 

15 b/w targets for the GNSS survey. 
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The geometric calibration of the cameras was performed, by taking some images of a b/w planar 

calibration grid of known geometric properties; the parameters of a Brown distortion model [26] were 

estimated through PhotoModeler Scanner [27]. Moreover, the CIR dataset was radiometrically 

corrected as recommended by the ADC Lite technical documentation [18]. Some images were taken 

of a small white Teflon calibration plate, provided with the camera, whose spectral response is 

known. These images were used by the accompanying software PixelWrench2 [28] to process all 

other images in relation to the sunlight during the acquisition period. 

Aiming to make use of a multi-temporal dataset, after the first summer survey, a second one 

was planned in autumn, when some tree species are clearly recognizable thanks to their specific 

foliage color, as the red crowns of the copper-beech, or the yellow one of gingko. Unfortunately, due 

to a long period of bad weather conditions, the second survey took place at the end of November 

when some of tree species had already lost leaves. The same flight plan and a similar ground points 

survey were performed. Unique difference is that only the Nikon 1 J1 was employed, because the 

rainy weather forced to stop the survey prior to flying with the ADC Lite. 
From here on, the three final datasets are identified with the names “RGB_S”, “CIR_S” and 

“RGB_A”, where “S” stands for summer and “A” for autumn. 

2.3. Photogrammetric Processing 

The Agisoft PhotoScan Professional software [29] was utilized to process the three image blocks, 

georeferenced on the 15 surveyed points [30]. Following the standard workflow proposed by the 

software, images were processed maintaining their full resolution (correspondent to the high 

alignment quality of the software), while the dense points clouds were generated downgrading the 

images with a factor equal to 4 (i.e., using the high quality of Agisoft Photoscan Pro). According to 

consolidate photogrammetric procedures, a Digital Surface Model (DSM) was generated with a mesh 

of 0.01 m by using the oriented RGB_S block, which has the full leaf coverage. RGB_S, RGB_A and 

CIR_S orthomosaics, with resolution equal to 0.01 m, were then produced through orthoprojection 

on the same DSM (Figure 4). 

  

(a) (b) 
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Figure 4. Photogrammetric products: DSM (a) and orthomosaics: RGB_S (b), CIR_S (c) and RGB_A (d). 

The georeferencing accuracies of the orthophotos were evaluated by means of the 14 surveyed 

ground points (one GPS surveyed point was eliminated due to gross errors). The Root Mean Square 

Errors (RMSE) on single coordinate of GCPs, reported in Table 2, are all lower than 5 cm, thus 

maintaining the global accuracy of the orthophotos consistent with the GPS survey accuracy. 

Table 2. Statistics of the differences with respect to the surveyed ground points (m). 

 RMSE Total RMSE 
 East North Height  

RGB_S-GNSS 0.022 0.026 0.027 0.044 

CIR-GNSS 0.053 0.037 0.030 0.072 

RGB_A-GNSS 0.049 0.031 0.043 0.072 

2.4. Classification 

To detect tree species, supervised classifications were performed using the Maximum 

Likelihood (ML) classifier. Reference data for the supervised classification were defined on 

orthophotos, making use of photographic and handwritten documentation gathered with the plant 

nursery staff. In detail, reference samples were selected in ENVI Classic V.5.1 [31], by digitizing 

polygons on the central part of tree crowns, to account for residual co-registration errors between 

orthophotos (Figure 5). 

In order to represent the within-class variability, different individuals were used for each tree 

species. A standard approach [32] for selecting the samples was tested, with the aim to understand if 

Remote Sensing established methods are also suitable for UAS imagery or have to be fine-tuned in 

their respect. For each of the 11 considered tree classes, 30 polygons, with size equal to 5 × 4 pixels, 

were selected, for a total of 600 pixels. Lastly, the so-collected samples were randomly subdivided: a 

half was used as training samples to train the classification algorithm, the other half as validation 

samples to validate classification results. The quality of classification outputs was assessed through 

the Error Matrix (EM), by calculating the Overall Accuracy (OA), the Producer’s Accuracy (PA), the 

User’s Accuracy (UA), and the Kappa coefficient [33]. 
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Figure 5. Centroids of the reference polygons used for classification purposes. 

2.5. Processing of Multispectral Orthophotos 

Some derived variables were computed from the 6 original layers acquired in summer (RGB_S 

and CIR_S). The first computed band was the Normalized Difference Vegetation Index (NDVI): this 

index is quite powerful in performing a qualitative classification thanks to the capability to 

distinguish alive vegetated areas from other surface types (water, soil, etc.). Successfully employed 

in hundreds of studies, it is expressed as the difference between the NIR and the Red bands (both 

from the CIR dataset) normalized by the sum of these [34]: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

As already explained in Section 2.2., CIR dataset was processed using a Teflon calibration target 

in order to perform spectral balance. Hence, the resulting NDVI is refined in relation to that day’s 

lighting conditions. 

Then, texture measures were generated from spatial relationship of pixels. According to 

Gonzalez and Woods [35], texture can be defined as the measures of smoothness, coarseness, and 

regularity of an image region, and can be discriminated by using structural or statistical techniques. 

The latter are most suitable for natural image scenes with rare re-occurring patterns [36]: therefore, 

the commonly used Grey Level Co-occurrence Matrix (GLCM) method, suggested by Haralick et al. 

[37], was employed in this case study. The GLCM describes the texture in a user-defined moving 

window, by looking at the spatial co-occurrence of the grey levels of the included pixels. The GLCM 

algorithm computes a matrix that accounts for the difference in grey values between two pixels at a 

time, called the reference pixel and the neighbor pixel. In this case study, the neighbor pixel was 

located, each time, one pixel above and to the right of the reference pixel: according to Murray et al. 

[38], this offset of (1,1) is the most commonly used. 

The GLCM was calculated for 24 different window sizes, ranging from the minimum value of 3 

pixels to a maximum value of 49 pixels (corresponding to roughly 49 cm, i.e., included in most of tree 

crowns). Lastly, the GLCM implementation of ENVI provides the so-called eight standard Haralick 

measures, which can be subdivided into three categories [39]: 
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• contrast based: contrast, dissimilarity, and homogeneity; 

• orderliness based: angular second moment and entropy; 

• statistically based: mean, variance, and correlation. 

The GLCM calculations were performed only on one channel, to reduce data redundancy. 

Following the approach of Dorigo et al. [40], the band with the highest value of entropy was chosen; 

i.e., the Red summer band (Red_S). To summarize, for each window size (24, from 3 to 49 size) the 8 

texture features were computed, on the Red_S band, with equal offset of (1,1). Then, a selection of the 

optimal window size was performed, as described below. 

The final result of a texture analysis relies heavily on the adopted window size which, in turn, 

depends on several factors [41]. If the window is too small, then it does not contain enough 

information about the area; on the contrary, if the window is too large, it can overlap with other types 

of ground cover, thus producing erroneous results (the so-called edge effect [20]). However, despite 

the issue being recognized, a general method for establishing the optimum size has not yet been 

proposed. In this study, hence, two methods, usually applied to Remote Sensing standard imagery, 

were compared and used to determine the optimal window size. 

The first method performs the classification of all the computed texture features, for each 

window size, with the Maximum Likelihood classifier, as already done by Murray et al. [38], 

evaluating the behavior of classification accuracies. For each of the 24 different window sizes, the 

eight texture features were classified together with the Maximum Likelihood algorithm on training 

samples described in 2.4. By analyzing the Overall Accuracy provided by the Error Matrix [33], it was 

possible to observe how the accuracy varied with respect to the window size: as visible in Figure 6, 

classification accuracy grows with increasing window size. 

 

Figure 6. Overall Accuracies of the classifications of textures with different window sizes. 

Although it seems sensible to choose the largest window size, the optimal one is a compromise 

between having a good OA and minimizing the aforementioned edge effects. According to Murray 

et al. [38], the optimal window size corresponds to where the slope of accuracy curve varies. In this 

case, the slope value is 1.3 for window size from 0 to 19, 0.3 from 21 to 27 and 0.5 after 27. Hence, the 

main changes are in correspondence of values between 21 and 27, as shown in Figure 6. 

The second method, instead, is based on the empirical semivariance computation, which is a 

measure of data variations in the spatial domain [42]. The empirical semivariance γ(h) of a random 

function Z(x) is defined as 
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γ(h) =  
1

2N(h)
∑ [Z(xi) − Z(xi + h)]2

N(h)

i=1

 (2) 

where Z(xi) and Z(xi + h) are two values of the same function Z(x) at a distance h (lag); N is the total 

number of pairs at given lag h. For digital images; i.e., for digital functions in two dimensions—the 

optimal window size to describe a specific kind of coverage is the lag (range) that results in the 

maximum variability (sill) of a scene structure [43]. This method was applied on a sample set of pixels, 

selected on the Red_S channel, for each tree species. The related semivariograms are shown in Figure 

7. The empirical semivariograms were best-fitted with exponential model. The resulting ranges, 

evaluated at a lag of 4 times the exponential constant, varied for the different tree species from a 

minimum of 18 to a maximum of 35. Four species have ranges close to 21, other four around 28, the 

remaining three saturate at higher lag. To avoid the use of too many layers in classification 

processing, only two representative values of window sizes were selected, and the two values 

determined with the previous method were chosen. 

Therefore, both texture images produced with window sizes of 21 and 27 (called T21 and T27 

from now on) were selected to be further analyzed. 

 

Figure 7. Tree species semivariograms. 

2.6. Features Reduction 

At this point, the available texture variables were the 8 Haralick features for each selected 

window size (21 and 27), for a total of 16, some of them strongly correlated: a reduction was therefore 

attempted. To this aim, two alternative procedures have been tested to select the optimal subset of 

features to be classified: a pre-classification of texture features with Minimum Distance algorithm, 

and a Principal Component Analysis (PCA), on texture or on all available bands (see Figure 8). 
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Figure 8. Texture analysis workflow. 8_T21 and 8_T27 are the 8 texture variables available for each 

selected window size (21 and 27). 3_T21 and 3_T27 are 3 texture variables extracted from the 8 

available for each selected window size (21 and 27) with a minimum distance classification. 5_PCTx 

are the variables resulting from the Principal Component Analysis (PCA) on the 8_T21 and 8_T27 

together. The dotted line represents the PCA computed on all variables (RGB orthophotos, NDVI map 

and texture variables). 

2.6.1. Minimum Distance Classification 

According to Hall-Beyer [44], since texture features are highly correlated, only one from each 

texture category (contrast, order, statistical) should be used. In the first procedure each feature of T21 

and T27 was classified individually by means of the Minimum Distance algorithm (unlike Maximum 

Likelihood, this algorithm is able to classify individual bands). Then, the OA provided by the Error 

Matrix was used to determine the best feature from each category (Table 3). 

Table 3. Overall Accuracies of the single features classified by the Minimum Distance algorithm 

(texture images with window size of 21 and 27). 

Category Feature 
OA (%) 

Texture_21 × 21 Texture_27 × 27 

Statistical 

Mean 21.76 21.70 

Variance 15.98 16.64 

Correlation 19.98 19.50 

Contrast 

Homogeneity 19.44 21.97 

Contrast 20.43 19.35 

Dissimilarity 20.46 20.31 

Orderliness 
Entropy 19.29 17.00 

Second Moment 18.48 18.00 

Concerning the texture image with the smaller window (21), the highest OA values correspond 

to Mean, Dissimilarity, and Entropy (3_T21). Instead, Mean, Homogeneity and Second Moment were 

chosen for the texture image with kernel size of 27 (3_T27). 
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2.6.2. Principal Component Analysis 

The second features reduction strategy adopted was the PCA [45], through which the original 

data set is transformed into a new set of uncorrelated variables. The choice of the most significant 

components is made analyzing their variances (i.e., the eigenvalues of the covariance or correlation 

matrix) of the PCs with different strategies, as the Kaiser’s rule [46] or the Scree graph criterion [47]. 

The first method suggests that only components with variance bigger than 1 contain significant 

information and should be selected. The second criterion instead involves looking at the plot of the 

eigenvalues against the components number (Scree graph). The minimum number of meaningful 

components corresponds to the point where the slope of the curve suddenly decreases. 

In this work the PCA was carried out on two different datasets with two different purposes: 

1. on the 16 texture features only, as a texture reduction method; 

2. on all the 20 available bands (RGB_S + NDVI + 16 texture features), as a general reduction method. 

Since the values of the bands forming the datasets were not homogenous, PCA was based on the 

correlation matrix instead of the covariance one. In addition, the number of components to be 

retained was chosen by following the Scree graph criterion. The results of the first analysis on the 16 

texture features, 8 deriving from window size T21 and 8 from window size T27, are shown in Table 

4: components, eigenvalues and percentage of the variance with respect to the total variance are 

reported. The Scree graph is presented in Figure 9. According to this graph, five principal 

components were selected (5_PCTx). 

Table 4. Eigenvalues and variance percentage of PCA on 16 texture features. 

Component Eigenvalue Variance (%) 

1 9.488 59.300 

2 2.609 16.308 

3 1.983 12.392 

4 1.157 7.234 

5 0.240 1.498 

6 0.195 1.220 

7 0.108 0.675 

8 0.091 0.569 

9 0.045 0.282 

10 0.034 0.211 

11 0.014 0.089 

12 0.013 0.079 

13 0.010 0.063 

14 0.009 0.055 

15 0.003 0.020 

16 0.001 0.004 

The second application of the PCA was performed on a dataset of 20 bands, including 3 channels 

from RGB_S, the NDVI and 16 texture features (8_T21 + 8_T27). In Table 5 all the outcomes of this 

analysis are reported, whereas Figure 10 shows the Scree graph. Checking the graph, the major slope 

variations are in correspondence of component number 7 and 10. Since a subjective decision is 

necessary in this case, ten principal components were chosen, in order to have the same number of 

bands obtained combining the multispectral dataset (RGB_S + NDVI) and the 6 texture features of 

Section 2.6.1. (3_T21 + 3_T27) and compare classification results. 
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Figure 9. Scree graph of PCA on 16 texture features. 

Table 5. Eigenvalues and variance percentage of PCA on the all 20 bands. 

Component Eigenvalue Variance (%) 

1 9.900 49.498 

2 3.605 18.024 

3 2.552 12.759 

4 1.405 7.024 

5 0.990 4.952 

6 0.641 3.204 

7 0.240 1.198 

8 0.195 0.975 

9 0.114 0.571 

10 0.107 0.535 

11 0.091 0.454 

12 0.045 0.224 

13 0.035 0.175 

14 0.033 0.167 

15 0.014 0.071 

16 0.012 0.062 

17 0.009 0.047 

18 0.008 0.039 

19 0.003 0.016 

20 0.001 0.003 

 

Figure 10. Scree graph of PCA on all the 20 bands. 
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2.7. Masking the Ground 

Before performing layer classifications, it was decided to mask out the ground (bare soil and 

grass coverage) by using information from DSM and NDVI, to avoid misclassifications between grass 

and tree species. 

A masking layer was therefore computed through the concurrent use of DSM and NDVI: since 

the ground was almost flat, the zero value of the mask was assigned to DSM pixels with value lower 

or equal to the ground mean height (319 m) and to NDVI pixels with value lower or equal to 0.5. This 

mask was then applied to all layer stacks before being classified (Figure 11). 

 

Figure 11. The mask (left) and the masked RGB_S orthophoto (right). 

3. Results and Discussion 

In the end, the following bands were available: 

• 9 original channels, from the RGB_S, CIR_S and RGB_A orthophotos; 

• 1 vegetation index, the NDVI; 

• 16 texture features, obtained with two different window sizes (8_T21 + 8_T27); 

• 6 texture features, from texture features reduction with Minimum Distance algorithm (3_T21 + 

3_T27); 

• 5 PCs, deriving from texture features reduction with PCA (5_PCTx); 

• 10 PCs, from the PCA performed on the whole 20 variables. 

Starting from these bands, different layer stacks were generated and classified: 

1. The first layer stack is the simplest, being composed of the RGB_S orthophoto and the NDVI (4 

bands); 

2. The second layer stack is a multi-temporal dataset, with the RGB_A orthophoto added to the 

previous layer stack (7 bands); 

3. In the third layer stack, all the 16 texture features were aggregated to the first layer stack, without 

considering any reduction (20 bands); 

4. The fourth layer stack was obtained by adding the six best texture features identified through 

Minimum Distance classifier (see Section 2.6.1.) to the first layer stack (10 bands); 

5. The fifth layer stack was created by adding to the first layer stack the 5 PCs selected from the 16 

original texture variables (see Section 2.6.2.) (9 bands); 
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6. The last layer stack is composed by the 10 PCs extracted from the whole 20 variables (see Section 

2.6.2.) (10 bands). 

The Overall accuracy and the Kappa coefficient of the classification computed on all layer stacks are 

summarized in Table 6, whereas Table 7 shows the Producer’s and User’s Accuracies (PA and UA, 

respectively) of the most significant layer stacks: the first one is the simplest, without texture variables, the 

third and the sixth stack yield the highest values of OA and K, with texture and PCA feature reduction. 

Figure 12 reports the results for the classification computed on the aforementioned layer stacks. 

  
(a) (b) 

 
(c) 

Figure 12. Classification results for the first layer stack (a), the third layer stack (b) and the sixth layer 

stack (c). 
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Table 6. OA of different layer stacks, classified by the Maximum Likelihood algorithm. 

ID Layer Stack # Bands OA (%) Kappa 

1 RGB_S + NDVI 4 58.56 0.5442 

2 RGB_S + RGB_A + NDVI 7 71.86 0.6905 

3 RGB_S + NDVI + 8_T21 + 8_T27 20 87.18 0.8590 

4 RGB_S + NDVI + 3_T21 + 3_T27 10 77.07 0.7478 

5 RGB_S + NDVI + 5_PCTx 9 77.64 0.7540 

6 PCA(RGB_S + NDVI + 8_T21 + 8_T27) 10 78.54 0.7640 

Table 7. Producer’s and User’s Accuracies of layer stacks number 1, 3 and 6. 

 Layer Stack #1 (4 Bands) Layer Stack #3 (20 Bands) Layer Stack #6 (10 Bands) 

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

Acer 76.31 91.12 96.74 97.70 89.39 97.04 

Acer rubrum 84.62 75.99 98.94 92.43 94.22 85.86 

Carpinus 57.95 66.67 78.00 89.22 69.89 82.68 

Catalpa 59.52 41.53 85.08 70.10 75.38 48.84 

Cornus 53.64 59.00 74.04 90.33 68.79 79.33 

Fagus 39.54 51.50 86.88 81.40 70.07 70.76 

Fagus purpurea 78.08 86.09 93.27 96.36 87.54 93.05 

Fraxinus 28.24 31.89 72.93 85.05 60.30 66.11 

Ginkgo biloba 66.67 70.00 91.32 87.67 83.44 85.67 

Gleditsia 52.89 58.00 93.10 81.00 78.09 73.67 

Quercus cast 43.02 12.17 97.08 87.50 91.76 80.59 

It is possible to note in Table 6 that the first layer stack (RGB_S + NDVI) is characterized by a 

moderately low value of OA, as expected. It is used as benchmark for evaluating the other 

classification results. The OA increase (+13%) of the second layer stack (RGB_S + RGB_A + NDVI) 

proves the effectiveness of using a multi-temporal analysis: this obviously means that two or more 

UAS surveys are necessary at different times, chosen according to specific phenological 

characteristics of the tree species under study. 

On the other hand, the concurrent employment of texture features and multispectral images 

leads to improvements in OA in the range of +19% and +30%, even without the use of multi-temporal 

data. Maximum values of OA and Kappa coefficient are reached by using all the eight texture 

measures for the two selected window sizes (third layer stack), but this implies the use of correlated 

bands. Significant improvements in classification accuracies, with respect to the first simple stack, 

but with a reduced number of layers (9 or 10) are obtained also applying different strategies of 

variables reduction: the methods used for bands selection (see Section 2.6.) yield very similar results 

in terms of accuracy, with OA ranging from 77.07% to 78.54%. Specifically, the fourth layer stack 

entails a more rigorous but time-consuming procedure, whilst the use of PCA is a well-known 

standard technique, implemented in image analysis software packages. PCA was applied only on 

texture features (fifth layer stack) or on all the available bands (sixth layer stack), reaching comparable 

classification results. As a matter of fact, the employment of PCA on all the 20 variables is preferable, 

as ensures to reduce possible correlation even among multispectral data. 

By analyzing in detail the UA and PA of different tree species of the three most significant cases, 

the improvement introduced by the use of texture features is evident (Table 7), though depending on 

the species. The lowest increases (+6% or +10%) are observed for species that were well detected even 

with the simplest layer stack, only composed by radiometric information. Because of their peculiar 

radiometry, some tree species, such as Acer rubrum or Fagus purpurea, can be well distinguished 

from the other species, even without adding texture measures. Instead, the highest improvements 

are reached for species with low values of PA and UA in the first stack, which were confused with 

other tree species. In this case, the accuracies increase from a minimum of +32% (PA of Fraxinus spp.) 

to higher values of +68% and +75% (PA of Quercus castaneifolia.). For tree species similar in terms of 

radiometry, texture features become a determinant for their discrimination. 
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4. Conclusions 

This study investigated whether the use of texture features, derived from ultra-high resolution 

UAS imagery, can improve the accuracy of vegetation classification. In this paper a workflow based 

on Remote Sensing standard methods was experimented. 

Three UAS surveys were performed to acquire RGB and CIR imagery in summer and autumn 

and produce DSM and multispectral orthophotos. Synthetic bands were derived from the original 

layers and the Grey Level Co-occurrence Matrix was used to generate texture images. The methods 

usually applied to Remote Sensing standard imagery to select optimal features and optimal window 

size turned out to be suitable, despite the big differences in spatial resolution between satellite and 

UAS imagery. 

Several and similar tree species can be well-detected by the described procedures. The 

classification tests proved that the addition of texture features improved the Overall Accuracy values, 

as well as the User’s and Producer’s Accuracies. Some tree species that were confused with others in 

the classification based on pure radiometric bands were better identified by introducing texture 

measures. Finally, in those case when multi-temporal surveys are not possible, tree species 

classification can be performed efficiently with single season survey, by means of texture features. 

Nevertheless, the use of texture variables in ultra-high resolution imagery classification still 

needs to be assessed. The lack of a well-established methodology can be attributed to a number of 

factors, including the strong dependence of texture measures upon image characteristics (e.g., image 

scale, the number of spectral bands, image context and class definition) as well as the absence of an a 

priori approach for texture selection, as outlined also by Kelcey and Lucieer [2]. In order to robustly 

address these issues, further tests should be therefore carried out. 
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