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Abstract: Modeling qualitative distance words is important for natural language understanding,
scene reconstruction and many decision support systems (DSSs) based on a geographic information
system (GIS). However, it is difficult to establish the relationship between qualitative distance words
and quantitative distance for special applications since the meanings of these words are influenced
by both subjective and objective factors. Some existing methods are reviewed, and the Hao–Mendel
approach (HMA) is improved to model qualitative distance words for four travel modes by using
interval type-2 fuzzy sets (IT2 FSs), aiming at addressing the individual and interpersonal uncertainty
among qualitative distance words. The area of the footprint of uncertainty (FOU), fuzziness (entropy),
and variance are adopted to measure the uncertainties of qualitative distance words. The experimental
results show that the improved HMA algorithm is better than the original HMA algorithm and can
be used in spatial information retrieval and GIS-based DSSs.
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1. Introduction

Spatial relations are important for geographical information systems (GISs), artificial intelligence
(AI), decision support systems (DSSs) and image analysis [1–5]; and they are usually classified as
topological relations, directional relations, and distance relations which are further divided into
quantitative and qualitative distance relations. The qualitative distance relations describe the proximity
between spatial objects using natural language [6], such as “The Tianjin Binhai International Airport is
far away from the Tianjin Railway Station” and “Many hotels are near the Tianjin Railway Station”.
In these statements, “far” and “near” are vague words that describe qualitative distance relations.
From a linguistic point of view, a large number of linguistic distance concepts are available to
qualitatively describe distance [7,8]. In some knowledge-based geospatial analysis and mining systems,
the number of the required qualitative distance words depends on the level of granularity; e.g., using
“far” and “near” at a rough level and “very close”, “close”, “medium”, “far”, and “very far” at a
relatively fine level. In addition, another key issue is to determine the semantics of each qualitative
distance variable, which is important for natural language understanding, scene reconstruction and
many GIS-based DSSs [2,3]. Although natural language is gradually becoming an important data
source for GISs [9] and some studies interpreted fuzzy semantics of natural language spatial relation
(NLSR) terms using the fuzzy random forest (FRF) algorithm and fuzzy sets [5,10], most GISs currently
cannot handle natural language effectively, and most linguistic descriptions about spatial relations
cannot be used in current GISs. This issue has not yet been solved; therefore, how to integrate the
spatial relationships described in natural language into a GIS is a challenge in the field of GIS [11].
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The relationship between qualitative distance words in natural languages and quantitative distance
must be established [12].

In the past 20 years, many scholars have performed much work to study the connotation of qualitative
distance words, including “near”, “close to”, “adjacent”, and “surrounding” [13–15]. Different methods
are used to establish the relationships between qualitative distance words and quantitative distance,
and to build context-contingent translation mechanisms and computational models between linguistic
proximity descriptors and metric distance measures [16]. However, establishing such a relationship is a
very difficult task because it is influenced by many factors, such as the application scene (environment),
context, psychological and physiological characteristics of the subject, culture, travel destination and
travel mode [6,11,13,15–17]. From the psychometric testing of perceived proximity, Gahegan noted that
the definition of proximity is related to five aspects [13]. Clementini et al. emphasized that the concept of
proximity is context dependent [6]. Yao and Thill classified the context factors of proximity perception
into objective and subjective factors [11]. Overall, the factors that affect the connotation of qualitative
distance are very complex.

Due to the ambiguity of qualitative distance words, many people adopt fuzzy sets to establish
the relationships between qualitative distance words and quantitative distance, and these methods
generally fall into three types. The first type establishes the distance membership functions directly
for the decision system based on the experience of experts [18]. In actual operation, the parameters
of the distance membership functions should be adjusted according to the effect of the decision
systems; thus, this type of method is very subjective. The second type establishes the connotation
expression of the qualitative distances by mining Web text resources related to the qualitative
distance descriptions [14,19]. The advantage of this approach is that the resources of the sampling
are very rich, but it is difficult to define valid membership functions because different application
scenarios may require different definitions. Another issue is that guaranteeing the authenticity and
objectivity of Web text is difficult. For example, when real estate agents are advertising houses,
the location of the house relative to other locations of importance can be falsified to promote sales.
Therefore, even if a supermarket or school is four kilometers away from a house, the agents may say that
the supermarket or the school is near the house. The third type investigates a specific population using
questionnaires and obtains knowledge regarding their qualitative distances; a mapping relationship
between qualitative distance words and quantitative distance is then established by means of statistics
and regression [11,16,20–22]. Compared to the methods mentioned earlier, the methods of this type
allow for the dynamic construction of context-contingent proximity models based on sample data.
These methods are more suitable for GIS-based DSSs, as these systems are often oriented toward a
particular population and a specific task. One problem that exists in the method of Yao and Thill [11,16]
is that it is difficult to quantify these factors because many factors themselves are vague. At the same
time, how these factors affect the meaning of qualitative distance words, which may involve the
mechanism of cognition, is difficult to determine.

From the perspective of the semantic meaning of spatial vocabulary, the semantics of words
that describe the spatial locations and spatial relationships of crisp or fuzzy objects are typically
uncertain. Usually, a linguistic distance measure implies a different spatial range for different people.
Figure 1 shows three classical fuzzy sets (i.e., type-1 fuzzy sets, T1 FSs) for the distance word “near”
perceived by three people, indicating that the same words may have different meanings for different
people in the real world. Moreover, there is some semantic uncertainty between these T1 FS models,
i.e., interpersonal uncertainty of words [23,24]. Mendel [25] introduced six principles associated with
evaluation methods used to obtain FS models for a word in computing with words (CWW). The T1
FS models of words violate principle three: “Words contain linguistic uncertainties, i.e., words mean
different things to different people, and so the FS model that is used to represent a word must be able
to incorporate both of these uncertainties”. The T1 FS has no ability to handle this kind of semantic
uncertainty because the membership degree of a T1 FS is a single value.



ISPRS Int. J. Geo-Inf. 2018, 7, 291 3 of 23ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  3 of 22 

( )xμ
1

0
10

Distance(km)

 
Figure 1. Different fuzzy sets for the qualitative distance word “near” perceived by different people. 
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The Hao–Mendel approach (HMA) [25,26] is an effective means to estimate the fuzzy set after 
collecting data related to the words because it is the only method to-date that leads to normal interval 
type-2 fuzzy sets. However, HMA considers only the uncertainty of the upper membership function 
of an IT2 FS, not the entire uncertainty of the IT2 FS. To address this, the HMA algorithm is first 
improved by the entire uncertainty of IT2 FS, called the improved HMA, and then the IT2 FSs for 
distance words are established by the improved HMA in this study. The remainder of this article is 
organized as follows. In the second section, some basic concepts related to this article are introduced, 
such as IT2 FS and CWW. In the third section, the HMA algorithm is improved for distance words. 
In the fourth section, an experiment is conducted to verify the improved HMA algorithm and then 
the improved HMA algorithm is compared with the original HMA algorithm using three uncertainty 
indices. The results show that the improved HMA algorithm is better than the original algorithm. 
The characteristics of the qualitative distance models established using the improved HMA algorithm 
are then analyzed based on these three indices. Conclusions are presented in the fifth section. 
Appendix A is the questionnaire and all Abbreviations and their definitions used in this paper are 
listed in Appendix B. 
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as CWW and IT2 FS. In addition, several uncertain indices related to qualitative distance words are 
introduced. 

2.1. CWW 

CWW is a methodology in which the objects of computation are words and prepositions drawn 
from a natural language. CWW was first introduced by Zadeh [27,28] and has been widely used in 
market investments, decision-making analyses, automatic control designs, fuzzy queries, data 
mining, and other fields. According to the existing literature, CWW techniques fall into three 
categories: membership-function-based models, symbolic linguistic computing models and 2-tuple 
linguistic models. Each category of models is unique in its advantages and limitations [29–31]. Li et 
al. proposed a new CWW framework based on the 2-tuple linguistic model [32]. Such a CWW 
framework allows people to address personalized individual semantics (PIS) to allow CWW to 
maintain the idea that words mean different things to different people. 
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The T1 FS theories have been applied to many domains because of their ability to model 
fuzziness. However, the membership degree of a T1 FS is a single value, so T1 FS cannot manage the 
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The main goal of this study is oriented towards CWW; that is, the direct use of natural language
words as objects of computation, based on interval type-2 fuzzy set (IT2 FS), is adopted to model
qualitative distance words, and then the semantic uncertainty of distance words can be addressed.
The Hao–Mendel approach (HMA) [25,26] is an effective means to estimate the fuzzy set after collecting
data related to the words because it is the only method to-date that leads to normal interval type-2
fuzzy sets. However, HMA considers only the uncertainty of the upper membership function of an IT2
FS, not the entire uncertainty of the IT2 FS. To address this, the HMA algorithm is first improved by
the entire uncertainty of IT2 FS, called the improved HMA, and then the IT2 FSs for distance words are
established by the improved HMA in this study. The remainder of this article is organized as follows.
In the second section, some basic concepts related to this article are introduced, such as IT2 FS and
CWW. In the third section, the HMA algorithm is improved for distance words. In the fourth section,
an experiment is conducted to verify the improved HMA algorithm and then the improved HMA
algorithm is compared with the original HMA algorithm using three uncertainty indices. The results
show that the improved HMA algorithm is better than the original algorithm. The characteristics of the
qualitative distance models established using the improved HMA algorithm are then analyzed based
on these three indices. Conclusions are presented in the fifth section. Appendix A is the questionnaire
and all Abbreviations and their definitions used in this paper are listed in Appendix B.

2. Background

In this study, IT2 FSs are used to model distance words. This section introduces concepts such
as CWW and IT2 FS. In addition, several uncertain indices related to qualitative distance words
are introduced.

2.1. CWW

CWW is a methodology in which the objects of computation are words and prepositions drawn
from a natural language. CWW was first introduced by Zadeh [27,28] and has been widely used in
market investments, decision-making analyses, automatic control designs, fuzzy queries, data mining,
and other fields. According to the existing literature, CWW techniques fall into three categories:
membership-function-based models, symbolic linguistic computing models and 2-tuple linguistic
models. Each category of models is unique in its advantages and limitations [29–31]. Li et al. proposed
a new CWW framework based on the 2-tuple linguistic model [32]. Such a CWW framework allows
people to address personalized individual semantics (PIS) to allow CWW to maintain the idea that
words mean different things to different people.

2.2. IT2 FS

The T1 FS theories have been applied to many domains because of their ability to model fuzziness.
However, the membership degree of a T1 FS is a single value, so T1 FS cannot manage the errors
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associated with the membership values of fuzzy objects, as shown in Figure 2a. Zadeh introduced the
type-2 fuzzy sets and type-N fuzzy sets to overcome this flaw of T1 FS [28]. The primary membership
function of a common type-2 fuzzy set (T2 FS) is a type-1 fuzzy set, which makes computation
extremely difficult. Thus, the application of the T2 FS to a real task is comparatively difficult.

The IT2 FS is a special case of T2 FS and it uses an interval to express the primary membership
value (Figure 2b). The IT2 FS is better than the T2 FS in complexity and computation, so it is adopted in
this study. Many authors refer to interval type-2 fuzzy sets as type-2 fuzzy sets and add the qualifying
term ‘generalized’ only when discussing non-interval type-2 fuzzy sets [33,34]. Fuzzifying the spatial
data that contain certain types of errors is necessary and can achieve error containment. For example,
geological, topographical and environmental parameters are required to assess regional debris flow
hazards, and some parameters have vague boundaries. Therefore, the IT2 FS is a more reasonable
choice to solve fuzzy geographical problems. The interval-valued fuzzy set (IVFS) is a special case of
the IT2 FSs [35]. In this paper, the definition of IT2 FS introduced by Mendel is adopted.
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Definition 1. (Interval type-2 fuzzy set) [26]: an IT2-FS Ã in the universe X 6= ∅ is given by:

Ã =
{
((x, u), µÃ(x, u) = 1)|x ∈ X, u ∈ U ≡ [0, 1]

}
(1)

where U is the universe of discourse for the secondary variable u. Note that U is a subset of [0, 1].

For the sake of convenience, the IT2 FS is represented as Ã(x) = [A−(x), A+(x)]
(0 ≤ A−(x) ≤ A+(x) ≤ 1), and A−(x) and A+(x) are the lower membership function (LMF) and
upper membership function (UMF), respectively. The footprint of uncertainty (FOU) of an IT2 FS Ã is the
uncertainty in the primary memberships Ã, and it has always had the connotation of a geometric object
bounded by a UMF and an LMF, as shown in Figure 2b.

The interval type-2 fuzzy set is adopted to model qualitative distance words as shown in Figure 2c.
It is a normal, trapezoid interval type-2 fuzzy number that can be expressed as:

Ã = [A−(x), A+(x)] = [(a−1 , a−2 , a−3 , a−4 ), (a+1 , a+2 , a+3 , a+4 )] (2)

where A−(x) and A+(x) are the LMF and UMF, respectively. They can be expressed as:

A−(x) =



x− a−1
a−2 − a−1

a−1 < x < a−2

1 a−2 ≤ x ≤ a−3
a−4 − x

a−4 − a−3
a−3 < x < a−4

0 otherwise;

(3)
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and

A+(x) =



x− a+1
a+2 − a+1

a+1 < x < a+2

1 a+2 ≤ x ≤ a+3
a+4 − x

a+4 − a+3
a+3 < x < a+4

0 otherwise;

(4)

2.3. IT2 FS Uncertainty Measures

Three uncertainty indices of IT2 FSs are used in this study to measure the uncertainties of
IT2 FS models corresponding to qualitative distance words: area of the FOU, fuzziness (entropy)
and variance [36]. The fuzziness (entropy) is an uncertainty measure of the membership domain,
and variance is an uncertainty measure of the Euclidean space domain.

2.3.1. Fuzziness (Entropy) of an IT2 FS

The fuzziness (entropy) of an FS can quantify the amount of ambiguity of a fuzzy set.
Many definitions of fuzziness for IT2 FSs have been proposed [36–38].

Definition 2. The fuzziness of an IT2 FS Ã proposed by Burillo and Bustince, denoted by FBB(Ã), is defined
as [37]:

FBB(Ã) =
N

∑
i=1

[A+(xi)− A−(xi)] (5)

Definition 3. The fuzziness of an IT2 FS Ã proposed by Wu and Mendel [36], denoted by FWM(Ã), is the
union of all cardinalities of its embedded T1 FSs Ae, i.e.,:

FWM(Ã) ≡
⋃
∀Ae

f (Ae) = [ fl(Ã), fr(Ã)] (6)

where fl(Ã) = min
∀Ae

f (Ae), fr(Ã) = max
∀Ae

f (Ae), and f (Ae) = 1− 1
N ∑N

i=1 |2Ae(xi)− 1|. To compute fl(Ã)

and fr(Ã), let Ae1 be defined as:

Ae1(x) =

{
A+(x) A+(x) is f urther away f rom 0.5 than A−(x)

A−(x) otherwise
(7)

and let Ae2 be defined as:

Ae2(x) =


A+(x) both A+(x) and A−(x) are below 0.5

A−(x) both A+(x) and A−(x) are above 0.5

0.5 other

(8)

Then, fl(Ã) = f (Ae1), and fr(Ã) = f (Ae2).

2.3.2. Variance of an IT2 FS

The variance in a T1 FS A measures its compactness; i.e., a smaller (larger) variance means that A
is more (less) compact.
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Definition 4. The variance V(Ã) of an IT2 FS Ã is the union of relative variance of all its embedded T1 FSs
Ae; i.e.,:

V(Ã) ≡
⋃
∀Ae

VÃ(Ae) = [vl(Ã), vr(Ã)] (9)

where VÃ(Ae) = ∑N
i=1 [xi−c(Ã)]

2
Ae(xi)

∑N
i=1 Ae(xi)

is the relative variance of an embedded T1 FS Ae relative to the IT2 FS

Ã, and c(Ã) is the average centroid of Ã, which can be calculated using the KM algorithms [39,40]. vl(Ã) =

min
∀Ae

vÃ(Ae), vr(Ã) = max
∀Ae

vÃ(Ae) are the minimum and maximum relative variances of all Ae, respectively.

3. Modeling Qualitative Distance Words

The HMA algorithm is used to model adverbs as IT2 FSs in the interval [0, 10], such as “very little”
and “moderately”. It is composed of two parts: data processing and fuzzy sets. As discussed before,
the semantic connotation of distance words may be affected by the travel mode; that is, different
travel modes may have different spatial ranges. For example, generally, we estimate that the spatial
range of the walking distance of ordinary human subjects is [0, 3] km, and the spatial range of the
cycling distance is [0, 10] km. A spatial distance larger than 20 km may be very far for the two travel
modes. The upper limit of “very far” is uncertain and can even be infinitely large. Therefore, the HMA
algorithm is not suitable for modeling qualitative distance. In addition, the HMA algorithm calculates
the parameters of an IT2 FS by using only the standard deviation intervals and the standard deviation
of the UMF of the IT2 FS, but ignores the standard deviation of the LMF of the IT2 FS. In other words,
this algorithm does not consider the entire uncertainty of the IT2 FS. As a result, the HMA algorithm
must be improved to model qualitative distance. For the sake of discussion, the qualitative distance
linguistic variable consists of five words in this study, i.e., “very near (Vnear)”, “near”, “medium”,
“far”, and “very far (Vfar)”. The membership functions of each word can be determined using the
improved HMA algorithm.

3.1. Collecting Data

Four travel modes are considered in this study: walk, bicycle, public transportation and train.
The first three are interurban travel modes, whereas the fourth is a travel mode between cities.
Via questionnaires, the distance interval sets corresponding to the five qualitative distance words
for each travel mode are obtained. As mentioned in Section 1, the factors affecting the qualitative
distance relationships are very sophisticated, and the impact of each factor is impossible to quantify.
Therefore, the data uncertainty should be reduced by the following assumptions: (1) The scope of the
survey is limited to grade 3 and 4 university students, as most of them are aged 21 to 23 years old and
are familiar with the city environment; (2) the geographical environment is normal; i.e., mountains,
deserts or other special environments are not considered; (3) the physical condition of each respondent
is normal, and the weather is also normal. Some special physical conditions are not considered,
including illnesses and hunger or special weather conditions such as snow, low temperatures and
strong winds; (4) For the four travel modes, the lower limit is 0, and the upper limits are 5 km, 10 km,
30 km and 2000 km, respectively; (5) the intervals obtained from one person for the five words cannot
overlap, and there is no gap between them; (6) a normal goal is set for each travel mode, as urgent
tasks affect our perception of distance. The questionnaire used in this study is attached in Appendix A.

3.2. The Improved HMA Algorithm

As discussed previously, the original HMA algorithm does not consider the entire uncertainty of
the IT2 FS; in this section it is improved by the entire uncertainty of the IT2 FS, and called the improved
HMA. This improved HMA is still based on the questionnaire, and five interval sets corresponding to
the five distance words for each travel mode are obtained. For the j-th word, the i-th subject provides
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interval endpoints ai,j and bi,j, and the group of n subjects provides [a, b]i,j = [aij, bij]. In this study,
the variables are normalized by the upper limit value to l = 0 and r = 10.

3.2.1. Data Processing

During data processing, statistics and probability are used to handle these interval sets and to
reduce model uncertainty corresponding to distance words. This part involves five steps:

(1) Correcting and removing bad data. As not everyone takes a survey seriously, some bad data
may seriously pollute the interval sets and affect the statistics. To ensure the correctness of the
statistical results, the intervals of the i-th subject should be removed if one of the following four
conditions is true: (1) The data intervals of the i-th subject overlap with each other; (2) there is
some gap between these intervals; (3) the value a of the interval that corresponds to “very far”
is greater than the threshold; (4) all intervals of the i-th subject are much larger or smaller than
others. If the value b of the interval corresponding to “very far” is greater than the threshold
(different thresholds for four travel modes are set in Section 3.1), then b should be set as the
threshold. If the value a of the interval corresponding to “very near” is greater than 0, then a
should be set to 0. n′ subject intervals will remain.

(2) Normalizing the data. As mentioned previously, the thresholds for the four travel modes are
different. For the sake of convenience, these data should be normalized into a unified range.
All n′ subject intervals are normalized into the same range [0, 10] using the threshold value,
and l = 0 and r = 10 are set.

(3) Performing outlier processing. To remove some of the noise in the data set, outlier processing
is necessary. In this section, the box and whisker tests [41] are performed for the remaining n′

intervals, i.e., only the intervals satisfying Equation (10) are kept
ai ∈ [0.25Qa − 1.5IQRa, 0.75Qa + 1.5IQRa]

bi ∈ [0.25Qb − 1.5IQRb, 0.75Qb + 1.5IQRb]

Li ∈ [0.25QL − 1.5IQRL, 0.75QL + 1.5IQRL]

(10)

where Qa (Qb, QL) and IQRa (IQRb, IQRL) are the quartile and interquartile ranges for the left
(right) endpoints and the interval length, with Li = bi − ai.

After outlier processing, m′ data intervals will remain for which the following data statistics
will then be computed: ma, σa, mb, σb, mL, σL (mean and standard deviation of the m′ left endpoints,
right endpoints and the lengths of these intervals).

(4) Performing tolerance limit processing on the remaining m
′
intervals simultaneously. The goal

of this stage is to guarantee that the data intervals fall within an acceptable two-sided tolerance
limit. Only intervals satisfying Equation (11) are kept.

ai ∈ [ma − kσa, ma + kσa]

bi ∈ [mb − kσb, mb + kσb]

Li ∈ [mL − kσL, mL + kσL]

(11)

where k is the tolerance factor (refer to Reference [32] for detailed information). After tolerance
limit processing, m′′ data intervals will remain, and the data statistics ma, σa, mb, σb, mL, σL will
then be recomputed.
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(5) Performing reasonable interval processing. The goal of this stage is to remove data intervals
that do not overlap or overlap only slightly with other data intervals. First, the point that best
separates the left and the right endpoints set must be found.

ξ∗ =

{
(mbσ2

a −maσ2
b )± σaσb[(ma −mb)

2 + 2(σ2
a − σ2

b )log(σa/σb)]
1/2
}

(σ2
a − σ2

b )
(12)

where ma ≤ ξ∗ ≤ mb. Then, only intervals satisfying Equation (13) are kept. This step
reduces the m′′ interval endpoints to m interval endpoints. The data statistics ma, σa, mb, σb
are then recomputed.

ai ≤ ξ∗ ≤ bi (13)

Therefore, the original n data intervals are reduced to a set of m data intervals via this
data pre-processing.

3.2.2. Establishing IT2 FSs for Distance Words

As mentioned previously, the original HMA uses the upper membership function to estimate
the IT2 FS parameters of words; that is, the standard deviation of a sample is equal to the standard
deviation of the UMF in the original HMA, but it does not consider the LMF uncertainty. Consequently,
this measurement is unilateral, and the uncertainties of these IT2 FSs may be exaggerated. As we
know, the FOU of an IT2 FS is constructed by the LMF and UMF, and it is a description of the
overall uncertainty of an IT2 FS. The uncertainties of an IT2 FSs may not be exaggerated if the FOU is
considered for estimating its parameters. Therefore, in this study, the entire uncertainty (the FOU area)
is adopted to estimate the parameters of IT2 FSs of words. First, the type of FOU of each word must be
determined. Next, the overlap interval in [a, b]i (0 < i ≤ m) must be found. Then, the parameters of
the IT2 FS should be determined. The improved HMA consists of the following four steps:

(1) Determining the type of FOU of each word. Three kinds of FOU exist: left-shoulder,
right-shoulder and interior FOU, as shown in Figure 3. For an interval set [a, b]i (0 < i ≤ m),
the one-sided tolerance intervals are computed first, namely, a = ma − k(m)σa and
b = mb + k(m)σb. ma, σa, mb and σb are calculated in the last step of the data processing
step, and k(m) is a one-sided tolerance. Detailed information can be found in Reference [42].
Next, the types of FOU that correspond to each word can be classified as follows:

FOU(w) =


Le f t− shoulder FOU a ≤ 0

Right− shoulder FOU b ≥ 10

Interior FOU otherwise

(14)

(2) Determining the overlap interval [ol , or] of the interval set {[a, b]i}, 0 < i ≤ m.

[ol , or] =



[
0, min

0≤i≤1
bi

]
Le f t− shoulder FOU[

max
0≤i≤1

ai, min
0≤i≤1

bi

]
Interior FOU[

max
0≤i≤1

ai, 10
]

Right− shoulder FOU

(15)

(3) Removing the overlap interval [ol , or] from each of the m intervals. For a left-shoulder FOU

(Figure 3a), the interval set becomes a smaller interval set
{[

or = min
0<i≤m

bi, b
]

i

}
(0 < i ≤ m);
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for a right-shoulder FOU (Figure 3b), the interval set becomes
{[

a, ol = max
0<i≤m

ai

]
i

}
(0 <

i ≤ m); for an interior FOU (Figure 3c), the set becomes two new sets of smaller intervals{[
a, ol = max

0<i≤m
ai

]
i

}
(0 < i ≤ m) and

{[
or = min

0<i≤m
bi, b

]
i

}
(0 < i ≤ m).
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(4) Determining the parameters of the IT2 FS. As shown in Figure 4, the unknown parameters for
the left-shoulder FOU (or right-shoulder FOU) are bl and br (al and ar). For the interior FOU,

four unknown parameters exist: al, ar, bl and br. The set
{[

a, ol = max
0<i≤m

ai

]
i

}
(0 < i ≤ m) is used

to determine al and ar and
{[

or = min
0<i≤m

bi, b
]

i

}
(0 < i ≤ m) is used to determine bl and br.
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Let L̃ be a right-shoulder FOU or the left-hand portion of an interior FOU. The corresponding

small interval set is
{[

a, ol = max
0<i≤m

ai

]
i

}
(0 < i ≤ m). The mean length of the interval set is

mL = (∑m
i=1 |ai − ol |)/m. The mean and the sample standard deviation of the set are mLH = ol −mL

and SLH =
√

1
m ∑m

i=1 (ai − ol −mL)
2, respectively.

The centroid of L̃, CL̃ and the average centroid, c(L̃), are induced by the mean of T1 embedded
set of L̃ (more information refers to the “Appendix A” of literature [14]) and expressed as:

CL̃ =
[
c(UMF(L̃)), c(LMF(L̃))

]
= [(2ol + al)/3, (2ol + ar)/3] (16)



ISPRS Int. J. Geo-Inf. 2018, 7, 291 10 of 23

c(L̃) =
1
2

[
c(UMF(L̃)) + c(LMF(L̃))

]
=

2
3

ol +
1
6
(al + ar) (17)

In Reference [14], the standard deviation of the UMF is used to calculate unknown parameters.
Obviously, this value cannot represent the uncertainty of the FOU, while the area of the FOU can reflect
the global uncertainty of the membership degree of this FOU. Thus, the area of the FOU is adopted
here and is computed as:

A(L̃) = (ar − al)/2 (18)

Then, al and ar can be calculated as: {
mLH ≡ c(L̃)
SLH ≡ A(L̃)

(19)

such that
al = max(0, 3mLH − 2ol − SLH) (20)

ar = max(0, 3mLH − 2ol + SLH) (21)

The max operation prevents al and ar from being negative. Similarly, bl and br can be calculated as:

bl = min(10, 3mRH − 2or − SRH) (22)

br = min(10, 3mRH − 2or + SRH) (23)

where mRH = or − mR and SRH =
√

1
m ∑m

i=1 (bi − or −mR)
2 are the mean and sample standard

deviation of a left-shoulder FOU or the right-hand portion of an interior FOU, respectively,
and mR = (∑m

i=1 |bi − or|)/m.
Thus, the IT2 FS that corresponds to the qualitative distance word can be expressed as:

Ã =


[(0, 0, or, bl , ), (0, 0, or, br, )] Le f t− shoulder FOU

[(ar, ol , or, bl , ), (al , ol , or, br, )] Interior FOU
[(ar, ol , r, r, ), (al , ol , r, r, )] Right− shoulder FOU

(24)

4. Experimental Results and Analysis

A questionnaire survey was conducted at the School of Geographic and Environmental Sciences,
Tianjin Normal University in October 2017. The subjects of this questionnaire survey are grade 3 and 4
university students, and the hometown of most of these subjects is Tianjin City, so they are familiar
with the city. The language of this questionnaire is Chinese, and the language used in the questionnaire
listed in the Appendix A is the second language of these subjects. During the survey, six assumptions
or conditions regarding the respondents were stressed and 86 valid questionnaires were collected and
analyzed using four Excel forms. Then, based on the improved HMA algorithm, the parameters of
IT2 FSs corresponding to the five qualitative distance words for the four travel modes were calculated
(Table 1). These IT2 FSs are presented in Figures 4–7.
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Table 1. Parameters of IT2 FSs corresponding to five qualitative distance words for four travel modes.

Travel Mode Distance Word
Parameters of UMF (km) Parameters of LMF (km)

LC (km) LS (km)
a+

1 a+
2 a+

3 a+
4 a+

1 a−2 a−3 a−4

Walk

Vnear 0.00 0.00 0.01 0.61 0.00 0.00 0.01 0.40 0.01 0.61
Near 0.00 0.40 0.50 0.63 0.00 0.40 0.50 0.54 0.10 0.63

Medium 0.15 0.70 0.80 1.26 0.27 0.70 0.80 1.06 0.10 1.11
Far 0.01 1.50 1.60 2.83 0.45 1.50 1.60 2.63 0.10 2.82
Vfar 0.71 3.00 5.00 5.00 1.90 3.00 5.00 5.00 2.00 4.29

Cycle

Vnear 0.00 0.00 0.10 2.09 0.00 0.00 0.10 1.51 0.10 2.06
Near 0.00 0.80 1.00 1.16 0.20 0.80 1.00 1.00 0.20 1.16

Medium 0.74 2.00 2.20 3.07 1.26 2.00 2.20 2.83 0.20 2.33
Far 0.20 3.50 4.00 6.74 1.22 3.50 4.00 5.91 0.50 6.53
Vfar 0.00 8.00 10.00 10.00 0.94 8.00 10.00 10.00 4.00 9.26

Public transportation

Vnear 0.00 0.00 1.00 6.02 0.00 0.00 1.00 4.39 1.00 6.08
Near 1.78 3.00 4.00 6.85 2.66 3.00 4.00 6.10 1.00 5.06

Medium 1.20 6.00 7.00 13.73 3.39 6.00 7.00 12.12 1.00 12.53
Far 6.59 10.0 12.00 20.12 7.41 10.0 12.00 16.34 2.00 12.22
Vfar 6.27 25.0 30.0 30.00 11.79 25.0 30.00 30.00 5.00 23.73

Train

Vnear 0 0 100 129 0 0 100 110 100.0 130.10
Near 68.6 120 150 476.1 87.4 120 150 354.9 30.00 415.20

Medium 44.1 500 600 1039 251.9 500 600 841 100.0 1009.4
Far 28.2 800 1000 1313 251.8 800 1000 1023 200.0 1438.8
Vfar 0 1800 2000 2000 536 1800 2000 2000 300.0 1913.6

4.1. General Description of the Qualitative Distance Model

The results were independently reviewed by an entirely separate group of 10 adults, and they all
agreed that the results were consistent with actual situations. Regarding the IT2 FSs for each travel
mode, the membership value is equal to 1 in the interval [a−2 , a−3 ] ([a+2 , a+3 ]), and the length of these
intervals is LC = a+3 − a+2 . The interval [a+1 , a+4 ] is the supporting interval, with the length being
LS = a+4 − a+1 . These two intervals have direct directives. Using walking distance as an example,
the membership function of the IT2 FS that corresponds to “medium” takes the value of 1 for the
distance interval [0.70, 0.80] km, indicating that when most people consider a distance within this
interval, they estimate that it is suitable for walking. The interval [1.50, 1.60] km can be estimated
to belong to the range of “far”, for which people are likely to choose other transportation modes.
When the distance is longer than 3 km, the corresponding range is “very far”; at these distances,
people generally forego walking and choose other travel modes. For cycling, the distance interval
[2.00, 2.20] km is certainly suitable, but when the distance is approximately [3.50, 4.00] km, people may
hesitate to ride a bicycle. In general, when the distance is greater than 6 km, people choose public
transportation, such as buses, subways and taxis.

For travel between cities, the distance interval [120, 150] km is estimated to correspond to “near”,
as more than 20 thousand km of high-speed railways have been built in China, covering almost all the
major cities in China. The speed of these railway trains is approximately 300 km/h; thus, people often
say that Beijing is close to Tianjin. When the distance is greater than 1000 km, people may hesitate to
travel along the high-speed railway, as the time spent and cost of traveling by train may be greater
than those when traveling by airplane.

Figures 4–7 and Table 1 show that the IT2 FSs are asymmetrical. For the four travel modes, LC and
LS gradually increase as the distance increases from very near to very far, with a more obvious increase
in LS than that in LC. This result intuitively illustrates that the words “far” and “very far” are more
ambiguous than “near” and “very near” for all four travel modes.
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4.2. Comparison with HMA

In Euclidean space, the domain of quantitative distance is a semi-closed set, i.e., [0, ∞). Thus, it is
difficult to determine the upper limit of “Vfar” in real applications, and different upper limits of “Vfar”
can yield different IT2 FSs, which may lead to different measures of uncertainty. Consider the train
travel mode as an example. If its upper limit is less than 1800 km, the FOU, cardinality, fuzziness and
variance of the IT2 FSs may be different for different upper limits. If its upper limit is larger than
1800 km, the FOUs of different IT2 FSs, which are modeled using different upper limits, are equal;
in contrast, their cardinality and variance are not equal. Notably, the values of the LMF and UMF of
the IT2 FSs corresponding to “Vfar” for the four travel models are equal to 1 when the quantitative
distance is larger than a−2 (a+2 ). Thus, the upper limits of “Vfar”, a−2 (a+2 ), should be set for convenience
of analysis. Then, the area of the FOU, cardinality, fuzziness, and variance of these IT2 FSs, modeled
using the improved HMA and the original HMA, are calculated, as shown in Table 2. The two rows,
Fuzziness 1 and Fuzziness 2, are computed based on the definitions in References [36,38] respectively,
and the value in the Total column is the sum of the columns Vnear, Near, Medium, Far and Vfar.
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Table 2. Uncertainty indices of IT2 FSs corresponding to five distance words for four travel models modeled by the HMA and improved HMA.

Travel Mode Uncertainty Index
HMA Improved HMA

Vnear Near Medium Far Vfar Total Vnear Near Medium Far Vfar Total

Walk

Area of FOU 0.05 0.10 0.28 1.00 0.83 2.26 0.10 0.05 0.16 0.32 0.60 1.22
Fuzziness 1 0.34 0.31 0.32 0.35 0.36 1.70 0.35 0.22 0.33 0.35 0.36 1.61
Fuzziness 2 1.78 3.27 9.43 33.44 27.86 75.77 3.59 1.56 5.19 10.56 19.99 40.88

Variance 0.01 0.02 0.05 0.35 0.36 0.79 0.02 0.02 0.04 0.27 0.25 0.59

Cycle

Area of FOU 0.47 0.34 0.33 1.21 0.15 2.50 0.29 0.18 0.38 0.92 0.47 2.24
Fuzziness 1 0.34 0.30 0.33 0.34 0.37 1.68 0.34 0.36 0.32 0.34 0.37 1.73
Fuzziness 2 5.98 4.50 4.14 15.27 1.86 31.76 3.75 3.61 4.89 11.54 5.87 29.65

Variance 0.22 0.05 0.17 1.42 3.39 5.26 0.19 0.05 0.17 1.38 3.17 4.96

Public transportation

Area of FOU 0.74 1.80 3.48 3.06 4.26 13.35 0.82 0.81 1.90 2.30 2.76 8.58
Fuzziness 1 0.30 0.29 0.34 0.31 0.36 1.61 0.30 0.29 0.34 0.31 0.37 1.61
Fuzziness 2 3.00 7.30 14.04 12.41 17.05 53.82 3.38 3.29 7.72 9.33 11.05 34.78

Variance 1.52 1.07 5.96 6.16 18.37 33.09 1.55 0.88 5.04 6.18 15.73 29.38

Train

Area of FOU 20.13 10.35 168.96 469.50 280.13 949.08 9.49 70.04 202.93 256.37 267.98 806.81
Fuzziness 1 0.10 0.31 0.33 0.32 0.37 1.43 0.06 0.33 0.33 0.31 0.37 1.39
Fuzziness 2 1.31 0.56 9.50 26.47 15.56 53.40 0.56 3.94 11.42 14.39 14.89 45.20

Variance 884 5557 28156 74643 145232 254472 867 6240 28931 53368 145663 235068

Note: Fuzziness 1 and Fuzziness 2 are computed based on the definitions of Wu and Mendel [24] and Burillo and Bustince [2], respectively.
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As mentioned previously, the FOU is the uncertainty measure of the primary memberships of
a T2 FS. Thus, a small FOU area indicates low uncertainty regarding the IT2 FS; in geometric terms,
an IT2 FS with a smaller FOU area is thinner than that with a larger FOU area. Table 2 shows that the
total area of the FOU of these IT2 FSs modeled by the improved HMA is smaller than that obtained by
the original HMA. Moreover, the fuzziness (entropy) and variance of these IT2 FSs modeled by the
improved HMA are smaller than those by the original HMA, having a strong correlation with the area
of the FOU. Therefore, in terms of uncertainty, the improved HMA is better than the original HMA.

4.3. Compactness and Fuzziness Analysis

As introduced earlier, the quantity variance is an uncertainty measure in the spatial domain.
For the four travel modes, from “Vnear” to “Vfar”, the variance increases; for example, the variance of
the IT2 FS of “Vnear” is 867, whereas that of “Vfar” is 145,663. The variances of IT2 FSs for traveling
by train and walking experience the most significant increases, followed by bicycle travel. Particularly,
for bicycle and public transportation, the variance value of the IT2 FS of “Vnear” is larger than that of
“near”. This shows that for these four travel modes, people’s cognitive ambiguity regarding “very far”
or “far” is larger than that of “near”, whereas for bicycle and train modes, the cognitive ambiguity of
“Vnear” is larger than that of “near”. The variation tendency of fuzziness is similar to that of variance,
especially for Fuzziness 2. The values of the IT2 FS of “Vfar” in the row of Fuzziness 2 are significantly
larger than those of “Vnear”.

In summary, no matter what the travel mode is, the semantic uncertainty of “Vfar” is the greatest,
whereas the uncertainty of “near” (“Vnear”) is the smallest. In other words, the spatial scope of “near”
is easy for people to agree on, but there is a large difference in the spatial ranges of “far” and “Vfar”.

4.4. Comparison with Other Methods

In Sections 4.3 and 4.4, we present a full comparison of the improved and original HMAs and
show that the improved HMA is better than the original. As discussed in the Introduction, there are
three types of methods typically used to establish the relationships between qualitative distance words
and quantitative distances. In this section we present a comparison with these methods.

The parameters of the distance membership functions in the first type directly depend on the
experience of the experts and are extremely subjective. In addition, a complex decision support
application often involves multiple experts, and these experts have different understandings of
qualitative distance words. As Yao and Thill [11] noted, a linguistic distance measure, e.g., near,
implies different trip distances for different people. Therefore, the fuzzy membership functions of
distance words based on their personal cognitive habits are likely to be inconsistent, as shown in
Figure 8. In other words, membership functions established by this method do not reflect the semantic
uncertainty among experts. The data used in the proposed method are from multiple subjects, and the
semantic uncertainty of subjects can be expressed through the upper and lower membership functions,
thereby yielding a more objective method. The second type method discussed in section one involves
establishing membership functions by collecting data from Web text. The context of a distance word in
Web text may be different, and the semantics of qualitative distance words depend on context [11,16,21].
Therefore, it is difficult to establish membership functions of distance words for a specific context or
specific task based on this method. Additionally, the membership functions established in this manner
are type 1; therefore, they cannot express the semantic uncertainty of words among different people.
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The third type methods discussed in section one are used to establish fuzzy sets corresponding
to qualitative distance words through questionnaires. In the spatial relation acquisition station
(SRAS) [9,28], subjects answer questions as YES or NO based on a map, such as “Is the city of
Blackshear close to Douglas?”, then the fuzzy distance relation between geographical features can be
derived by fuzzy logic method. While Robinson’s effort is worthwhile in many respects, it does
not incorporate the influence of the context of the query on the mapping of proximity spatial
relations [11]. But beyond that, it has no ability to establish fuzzy sets for distance words. Yao and
Thill [16] highlighted the importance of context and noted that considering the relationship between
the context and the metric properties of data is necessary. Additionally, the Adaptive Neurofuzzy
Inference System (ANFIS), a Takagi-Sugeno fuzzy inference system, was adopted, and the linguistic
proximity measure was predicted based on the metric distance and contextual factors and expressed
as Linguistic_Distance = f(Metric_Distance, Context_Factors) based on fuzzy rules. The prediction
is affected by the number of factors, types of factors, fuzzification method, and the rules and reasoning
of the model. For example, as previously noted, it is difficult to fuzzify these factors, and unsuitable
fuzzification methods may introduce new uncertainty. However, the translation from metric distance
to linguistic distance in Reference [16] is inexplicit. Grütter et al. [43] claimed that this process does not
support the translation of local prepositions, such as “near” or “far”, into distance measures processed
in metric systems and that the information required to link the numerous contextual variables may not
be available in practical applications. Hence, it is often difficult to implement these processes on large
scales. In Yao and Thill’s other method [11], namely the Ordered Logit Regression approach, probability
functions of distance words are induced by Ordered Logit Regression; however, the maximum value
of the first four functions is less than 1, which is contrary to human cognition, because in general, we
can always determine a spatial range and the distance between this range to the reference object is
near or far away.

Although many methods abovementioned could be used to establish FS models for distance
words, to the best of our knowledge, they are related to T1 FS models and violate principle three
introduced in Section 1. Because the membership function of a type-1 FS does not provide flexibility for
simultaneously incorporating both types of linguistic uncertainty, it is therefore scientifically incorrect
to model a word using a T1 FS [23]. Our method uses an IT2 FS to model distance words, can handle
both types of linguistic uncertainty, and is context dependent. Overall, the proposed method is better
than the other methods discussed.

4.5. Practical Application

In this section, a case study on natural language spatial queries was used to illustrate the
usefulness and effectiveness of our presented methods. The Haihe River is the main river in Tianjin City,
and the surrounding area of the upstream part of the Haihe River is the city center. The infrastructure
in this region is very mature. There are many famous and desirable primary schools in this region. If a
school is too close to the river, children will sneak off to the riverside to play. This is very dangerous
for children, so parents tend not to favor such schools. As a result, it is useful to determine which
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primary school is a medium distance from (not too near) the upstream section of the Haihe River,
and the results can provide advice for parents’ guidance to choose primary schools. In Reference [33],
we divided the river into upstream, midstream and downstream sections by using the fuzzy partition
method as shown in Figure 9.
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(b) upstream section; (c) midstream section; and (d) downstream section.

In Section 4.1, the IT2 FS corresponding to “medium” distance by cycle is Ã =

[(0.74, 2.0, 2.2, 3.07), (1.26, 2.0, 2.2, 2.83)]. The region with medium distance to the Haihe River by bicycle
can be determined by the fuzzy logic method [33], shown in Figure 10a,b. Schools located in the medium
distance, which is modeled as IT2 FS to the upstream of the Haihe River, are listed in Table 3, we can see
that the membership degree of each school belonging to the “medium” distance to the upstream of Haihe
River is an interval value, i.e., the membership grade of “KUN MING LU XIAO XUE” is [0.9568, 0.9767],
and error of membership grade is 0.0199. When the upper membership grade decrease from 1 to 0.5,
the error of membership grade increases from 0 to 0.4219. It means that when the upper membership
grade is near to 0.5, the semantic uncertainty is great. On the contrary, when the distance words are
modeled as T1 FS, the membership grade is a singleton and the error of membership grade cannot be
measured. So, modeling distance words as IT2 FS is more reasonable and flexible than modeling as T1 FS.

On the other hand, we obtain 71 primary schools in this region by optimistic query when the upper
membership grade is greater than 0.5, shown in Figure 10c. and we can obtain 50 primary schools
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by pessimistic query when the lower membership grade is greater than 0.5, shown in Figure 10d.
So, there are 21 difference between the optimistic and pessimistic query. However, when the distance
word is modeled as T1 fs, due to it not being able to express the semantic uncertainty, users can only
query in one way, and the result of the query is more arbitrary and monotonous than the method
proposed in this paper.
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Figure 10. The region with “medium” distance to the Haihe River by bicycle and the primary schools
located in this region. (a) Lower membership grade of “medium” region; (b) upper membership grade
of “medium” region; (c) the primary schools located in the “medium” region with upper membership
grade greater than 0.5; (d) the primary schools located in the “medium” region with lower membership
grade greater than 0.5.

Table 3. The primary schools located in the “medium” distance to the upstream of the Haihe River
which is modeled as IT2 FS.

ID Name Lower Membership Grade Upper Membership Grade Error of Membership

8511245 YONG JI XIAO XUE 1.0000 1.0000 0.0000
8515596 YUE YANG DAO XIAO XUE 1.0000 1.0000 0.0000
8530346 YI YANG XIAO XUE 1.0000 1.0000 0.0000
8406934 TAO HUA YUAN XIAO XUE 1.0000 1.0000 0.0000
8540833 KUN MING LU XIAO XUE 0.9849 0.9899 0.0050
8510894 YUAN CHENG XIAO XUE 0.9803 0.9816 0.0013
8512237 HUA XIA WEI LAI YI SHU XIAO XUE 0.9270 0.9791 0.0521
8542812 SHANG HAI DAO XIAO XUE 0.9661 0.9774 0.0113
8514663 KUN MING LU XIAO XUE 0.9568 0.9767 0.0199
8520570 YUE YANG DAO XIAO XUE 0.9166 0.9551 0.0385
8514586 XIN XING XIAO XUE 0.9213 0.9475 0.0262
8538733 EN DE LI XIAO XUE 0.8736 0.9326 0.0590
8513199 YI YANG XIAO XUE 0.8721 0.9312 0.0590
8514613 DONG FANG XIAO XUE 0.8954 0.9303 0.0349
8519552 SI HAO LU XIAO XUE 0.8939 0.9288 0.0349
8537185 SHANG HAI DAO XIAO XUE FEN XIAO 0.8939 0.9288 0.0349
8426650 HU ZHU DAO XIAO XUE 0.8643 0.9259 0.0616
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Table 3. Cont.

ID Name Lower Membership Grade Upper Membership Grade Error of Membership

8538022 TIAN JIN SHI SHI YAN XIAO XUE 0.8609 0.9251 0.0642
8426553 HU ZHU DAO XIAO XUE 0.9239 0.9239 0.0000
8509788 HE DONG SHI YAN XIAO XUE 0.8534 0.9211 0.0677
8513580 KUN WEI LU YI XIAO 0.8534 0.9211 0.0677
8508222 HAI YANG YI XIAO JIAO XUE QU 0.8661 0.9107 0.0446
8539007 WU MA LU XIAO XUE 0.8661 0.9107 0.0446
8533082 QIU ZHEN XIAO XUE 0.8661 0.9107 0.0446
8418068 ZHONG XIN DONG DAO XIAO XUE 0.8986 0.8986 0.0000
8469819 HE MU DAO XIAO XUE 0.8986 0.8986 0.0000
8512972 LI SHUI DAO XIAO XUE 0.8811 0.8811 0.0000
8408161 YOU AI DAO XIAO XUE 0.8691 0.8691 0.0000
8509640 KUN WEI LU YI XIAO 0.7183 0.8483 0.1300
8536258 NAN KAI ZHONG XIN XIAO XUE 0.6984 0.8376 0.1392
8515544 JIAN SHAN XIAO XUE 0.6167 0.8285 0.2118
8510652 HE BEI QU DI ER SHI YAN XIAO XUE 0.6703 0.8224 0.1522
8538777 XIN CUN XIAO XUE 0.6703 0.8224 0.1522
8522712 TIAN JIN SHI DA DI ER FU XIAO 0.5965 0.8114 0.2148
8512402 HONG HU LI XIAO XUE 0.5714 0.7692 0.1978
8512553 SHAO GONG ZHUANG XIAO XUE 0.6390 0.7593 0.1203
8515227 WU MA LU XIAO XUE 0.6355 0.7570 0.1215
8424178 YU YING LI XIAO XUE 0.6355 0.7570 0.1215
8531501 YA XI YA XIAO XUE 0.5376 0.7510 0.2134
8538975 WU MA LU XIAO XUE 0.6081 0.7387 0.1306
8411260 LING SHUI DAO XIAO XUE 0.6865 0.7369 0.0504
8514552 NAN KAI ZHONG XIN XIAO XUE 0.5076 0.7348 0.2273
8411750 ZHU JIANG DAO XIAO XUE 0.7249 0.7249 0.0000
8513795 WEN CHANG GONG MIN ZU XIAO XUE 0.4684 0.7138 0.2454
8511466 NAN KAI ZHONG XIN XIAO XUE 0.5402 0.6935 0.1533
8514988 WAI YU XUE YUAN FU ER XIAO 0.5402 0.6935 0.1533
8538703 MA CHANG DAO XIAO XUE 0.5402 0.6935 0.1533
8411270 DONG HAI LI XIAO XUE 0.3633 0.6930 0.3297
8514270 WEN SHAN LI XIAO XUE 0.4016 0.6778 0.2762
8511329 XI KANG LU XIAO XUE 0.5000 0.6667 0.1667
8517795 QIAN CHENG XIAO XUE 0.3789 0.6656 0.2866
8510697 HU ZHU DAO XIAO XUE 0.2631 0.6493 0.3862
8510891 DA QIAO DAO XIAO XUE 0.2631 0.6493 0.3862
8408068 ER HAO QIAO XIAO XUE 0.5244 0.6473 0.1230
8538694 KUN MING LU XIAO XUE 0.4602 0.6401 0.1799
8511172 TIAN TAI XIAO XUE 0.3282 0.6382 0.3101
8509898 HE PING QU XIN ZHONG XIAO XUE 0.2857 0.6154 0.3297
8510408 KUN MING LU XIAO XUE 0.4175 0.6117 0.1942
8511274 NING YUAN XIAO XUE 0.3979 0.5986 0.2007
8509892 HE PING QU ZHONG XIN XIAO XUE 0.2032 0.5709 0.3678
8540181 ZHONG YING XIAO XUE 0.2032 0.5709 0.3678
8408448 WU SHI XIAO XUE 0.5642 0.5655 0.0013
8511404 DA QIAO DAO XIAO XUE 0.1169 0.5485 0.4316
8531345 HONG XING XIAO XUE 0.3205 0.5470 0.2265
8408042 HE DONG WU SHI XIAO XUE 0.5440 0.5440 0.0000
8514559 HONG YUAN LI XIAO XUE 0.1326 0.5330 0.4003
8426222 JIN MEN XIAO XUE 0.0824 0.5170 0.4345
8519570 TONG WANG XIAO XUE 0.2665 0.5110 0.2445
8522698 XIN SHI JI XIAO XUE 0.1178 0.5088 0.3910
8522746 TIAN JIN SHI DA DI ER FU XIAO 0.1178 0.5088 0.3910
8510681 QI ZHI XUE XIAO 0.0859 0.5078 0.4219

5. Conclusions

People use qualitative distance words to describe the approximate positions of objects relative to
one another in natural languages. The meanings of qualitative distance words depend on objective
factors. If these words are used by people in different contexts, their connotations will be different.
Therefore, a unified fuzzy set representation of qualitative distance words is impossible to establish for
all GIS-based decision support systems. In other words, the fuzzy set representation of distance words
can be obtained for specific tasks. First, aiming at the shortcomings of the original HMA algorithm,
the HMA method is improved by introducing the area of the FOU. Then, the improved HMA algorithm
is used to establish the IT2 FS representation of qualitative distance words. Three uncertainty indices,
i.e., the area of the FOU, fuzziness (entropy), and variance, are used to measure the uncertainties of
these IT2 FSs. Experimental results show that the values of these indices for the IT2 FSs obtained
by the improved HMA algorithm are smaller than those obtained by the original HMA algorithm.
This indicates that the improved HMA algorithm is better than the original algorithm. In addition,
it shows that the semantic uncertainty of “Vfar” is the greatest, while that of “very near” (“Vnear”) is
the smallest, no matter which travel mode is considered. Hence, the cognitive fuzziness of “far” is
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larger than that of “near”. In other words, the spatial scope of “near” is easy for people to agree on,
but there is a large difference in the spatial range of “far”.

The qualitative distance, topological relationship and direction relationship are often used together
to describe a spatial position in natural languages. Therefore, in a follow-up study, the IT2 FS
representation of the qualitative distance established in this study will be used to study the semantic
spatial relationship by being combined with topological and direction relationships.
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Appendix A.

Questionnaire

(1) If you are at home or at school and you have to walk to eat or go shopping, what distance do you
regard as far (within 5 km)? Please fill in the following blanks: From m to m is Very near;
from m to m is Near; From m to m is Medium; from m to m is Far; From m
to m is Very far;

(2) If you are at home or at school and you have to ride a bike to eat or go shopping, what distance
do you regard as far (within 10 km)? Please fill in the following blanks: From m to m is
Very near; from m to m is Near; From m to m is Medium; from m to m is Far;
From m to m is Very far;

(3) If you are at home or at school and you have to take a bus or a subway to eat or play, what distance
do you regard as far (usually in the inner city; using Tianjin as an example, from Tianjin Normal
University to the Huayuan village is 3 km, to Binjiang Road is 9 km, to Binhai New Area is 30 km,
etc.)? Please fill in the following blanks: From km to km is Very near; from km to km
is Near; From km to km is Medium; from km to km is Far; From km to km is
Very far;

(4) If you are going to travel by train or bus on National Day, what distance do you regard as far
(usually between cities; for example, from Tianjin to Jizhou District is approximately 100 km,
to Beijing is approximately 120 km, to Shanghai is approximately 1000 km, to Guangdong is
approximately 2000 km, to Xi’an is approximately 1600 km, to Harbin is approximately 1000 km,
etc.)? Please fill in the following blanks: From km to km is Very near; from km to km
is Near; From km to km is Medium; from km to km is Far; From km to km is
Very far.
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Appendix B.

Table A1. Abbreviations and their definitions.

Abbreviation Full Name

GISs geographical information systems
AI artificial intelligence

DSSs decision support systems
NLSR natural language spatial relation
FRF the fuzzy random forest

T1 FS type-1 fuzzy set
T2 FS type-2 fuzzy set
IT2 FS interval type-2 fuzzy set
IVFS interval-valued fuzzy set

CWW computing with words
HMA The Hao–Mendel approach

PIS personalized individual semantics
Per-C model perceptual computer model
GPC model geographic perceptual computing model

KM algorithm the Karnik-Mendel (KM) algorithm
UMF upper membership function
LMF lower membership function
FOU footprint of uncertainty
SRAS spatial relation acquisition station

ANFIS the Adaptive Neurofuzzy Inference System
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