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Abstract: Because the dynamics of phenology in response to climate change may be diverse
in different grasslands, quantifying how climate change influences plant growth in different
grasslands across northern China should be particularly informative. In this study, we explored the
spatiotemporal variation of the phenology (start of the growing season [SOS], peak of the growing
season [POS], end of the growing season [EOS], and length of the growing season [LOS]) across
China’s grasslands using a dataset of the GIMMS3g normalized difference vegetation index (NDVI,
1985–2010), and determined the effects of the annual mean temperature (AMT) and annual mean
precipitation (AMP) on the significantly changed phenology. We found that the SOS, POS, and EOS
advanced at the rates of 0.54 days/year, 0.64 days/year, and 0.65 days/year, respectively; the LOS
was shortened at a rate of 0.62 days/year across China’s grasslands. Additionally, the AMT combined
with the AMP explained the different rates (ER) for the significantly dynamic SOS in the meadow
steppe (R2 = 0.26, p = 0.007, ER = 12.65%) and typical steppe (R2 = 0.28, p = 0.005, ER = 32.52%);
the EOS in the alpine steppe (R2 = 0.16, p < 0.05, ER = 6.22%); and the LOS in the alpine (R2 = 0.20,
p < 0.05, ER = 6.06%), meadow (R2 = 0.18, p < 0.05, ER = 16.69%) and typical (R2 = 0.18, p < 0.05,
ER = 19.58%) steppes. Our findings demonstrated that the plant phenology in different grasslands
presented discrepant dynamic patterns, highlighting the fact that climate change has played an
important role in the variation of the plant phenology across China’s grasslands, and suggested that
the variation and relationships between the climatic factors and phenology in different grasslands
should be explored further in the future.
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1. Introduction

Plant phenology plays an important role in the biogeochemical cycles of ecosystems, referring
to periodic events (e.g., bud burst, flowering, and senescence) in the life cycles of living species [1],
and is regarded as a ‘fingerprint’ for climate change [2]. Recently, phenology change has been a
heated topic in ecology [3], as it is a critical factor contributing to carbon cycle dynamics [4], and the
changes in plant phenology have been associated with climate change in several studies (e.g., [5–7]).
Plant phenology is the study of the timing of seasonal events that are considered to be the result
of adaptive responses to climate variations on short- and long-time scales [8]; thus, phenology and
climate are intimately linked [2].
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The normalized difference plant index (NDVI) has been used to explore the phenological phases
of plants [9] (e.g., start of growing season [SOS], end of growing season [EOS], peak of growing season
[POS], and length of growing season [LOS]). Many authors study the plant phenology changes and the
relationships between the phenology changes and precipitation [7,10], temperature [11–14], altitude [15],
and topography [16,17] via remote productions. With satellite sensors, the study of phenology is
possible at an adequate temporal and spatial resolution, without a high cost for the users. For example,
the satellite sensors of MODIS [17,18], Landsat [19,20], AVHRR [21], VIIRS [22], and MERIS [23]
have been widely used in phenological studies, and various regional [24,25], national [26,27],
and global [28–30] phenological studies have been conducted. Concerning China’s grasslands, the plant
phenology in northwest China has been hotly discussed [27,31–33], because northwest China is well
known for its extremely harsh environment and high sensitivity to climate change [34,35].

For the plant phenology of northwest China, studies have primarily focused on two dimensions.
On one hand, the changes in the phenology and their relation to temperature or precipitation have
been studied repeatedly (e.g., [10,36,37]). On the other hand, the temporal–spatial patterns of the
phenological changes (the variations of dates of the SOS, EOS, POS, and LOS) have been examined
(e.g., [26,31,38]). In particular, the starting date of the plant growing season (SOS) has provoked fierce
debate (e.g., [34,39–44]). In fact, the changes in phenology across the Tibetan Plateau (TP) have been
analyzed in many reports, but these reports might be incomplete, because (1) the distribution patterns
of phenological indicators (SOS, POS, EOS, and LOS) might be different in the different grasslands of
China, particularly for the different environments on the TP and Inner Mongolia Plateau; and (2) further
information is required on the quantitative influence of climate on plant phenology. Therefore, the
dynamic mechanisms of phenological change in different grasslands require further exploration.
Specifically, the two objectives of this study were as follows: (1) to explore the temporal–spatial
patterns of plant phenology in China’s grasslands from 1985 to 2010; and (2) to disentangle the
response mechanisms of plant phenology in different grasslands to environmental factors.

2. Materials and Methods

2.1. Study Area

The study area (74.93–120.06◦ E, 29.25–49.51◦ N) is primarily located in the northwestern part of
China and covers approximately 3.10 × 106 m2 (Figure 1), which accounts for 79.7% of the grasslands
in China. The area covers the regions of Inner Mongolia, Gansu, Ningxia, Xinjiang, Qinghai, and Tibet.
The primary grassland types in the study area are alpine, temperate, and mountain grasslands.
In detail, the alpine steppes and alpine meadows are on the Tibetan Plateau (TP); desert, typical,
and meadow steppes are on the Inner Mongolian Plateau; and the mountain meadows are in the
Xinjiang area [45]. The climate is arid and semiarid with an annual mean temperature (AMT) and
annual mean precipitation (AMP), which range from −6.2 to 8.8 ◦C and from 92.3 to 694.0 mm,
respectively, in the study area [45].
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2.2. NDVI Database 

Figure 1. The study area is primarily located in the northwestern part of China.

2.2. NDVI Database

We analyzed the plant phenology trends on the Tibetan Plateau from 1985 to 2010 using GIMMS3g
NDVI remote sensing data sets with a spatial resolution of 0.083◦, which were compiled by merging
segments (data strips) during a half-month period, using the maximum value composites (MVC)
method [46]. These data were corrected for calibration, view geometry, and volcanic aerosols, and have
been verified using a stable desert control point.

2.3. Climate Database

Climatic data were collected from the Meteorology Information Center of the Chinese National
Bureau of Meteorology (CNBM) (http://data.cma.cn/). Figure 1 shows the locations of the national
standards of meteorology (Figure 1). The primary climatic factors (AMT and AMP) of the National
Standard of Meteorology Observatories (1985–2010) were included in the document. Moreover, the spatial
interpolation of AMT and AMP was generated in ArcGIS 10.2 (ESRI, Inc., Redlands, CA, USA) with the
kriging interpolation method, in order to create 0.05◦ resolution climatic factors.

2.4. SOS, EOS, POS, and LOS Were Obtained with the Retrieval Method

Four indicators, that is, the start of the growing season (SOS), peak of the growing season (POS),
end of the growing season (EOS), and length of the growing season (LOS), were employed in describing
the phenology (Figure 2). We derived the phenology indicators using the GIMMS 3g NDVI data set
covering the period 1985–2010, because the plants in China’s grassland ecosystems only have one
growing season in a year. To smooth the NDVI data set, the Fourier Series Model was applied
as Equation (1).

y = a0 +
n

∑
i=1

ai cos(nwx) + bi sin(nwx) (1)

In Equation (1), y indicates the fitted, smoothed NDVI value; a0 models a constant (intercept)
term in the data; w is the fundamental frequency of the data series; and n is the number of terms in
the series. For forest, shrub, and steppe, acceptable model results are obtained when n is equal to 1.
Then, the SOS, POS, and EOS were determined using the derivatives of the fitted Fourier equation.
As illustrated in Figure 2, SOS was defined as the Julian day when the derivative reached the highest
value; POS was the Julian day when the maximum NDVI estimated by the fitted Fourier function

http://data.cma.cn/
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appeared; EOS was the corresponding Julian day when the derivative of the fitted Fourier function
obtained its minimum value; and LOS equaled the difference between EOS and SOS.
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of the growing season (LOS).

2.5. Data Analyses

To analyze the temporal and spatial dynamics of the phenology, and to reveal the relationships
between the phenology and climatic factors, the least squares method was employed in this analysis.
The change tendency of phenology and the spatial correlation relationships between phenology and
climatic factors were analyzed by the least square method.

A redundancy analysis (RDA) in the software of R (R Core Development Team, R Foundation for
Statistical Computing, Vienna, Austria) was used to determine the climatic factors for the variation
of the phenology indicators, with the determinants (p < 0.05). RDA is a linear canonical ordination
method and is widely used to identify the patterns of the dynamics in the response variables [47].
RDA is an effective way to evaluate the relationships among multiple interacting variables, which are
also closely associated with the potential explanatory variables [48,49]. Finally, linear regression
analysis was applied to develop the correlations between the phenology indicators and climatic factors
in the software SigmaPlot 10.0 (Systat Software, Inc., Chicago, IL, USA).

3. Results

3.1. Dynamics and Relationships of Plant Phenology, AMT, and AMP across China’s Grasslands

3.1.1. Spatial Distribution of Plant Phenology, AMT, and AMP in China’s Grasslands

The spatial distribution patterns and plant phenology in different grasslands are shown in Figure 3.
From northeast to southwest, the SOS and EOS were gradually delayed. Moreover, from northwest to
southeast, the POS was gradually delayed. From the margin to the center of the study area, the LOS
gradually shortened. The SOS was primarily observed from the 115th to 130th day from 1 January,
which was distributed in Inner Mongolia and the TP, with the lowest (121) and highest (129) values in
the desert steppe and alpine steppe, respectively (Figure 3A). The POS primarily occurred between



ISPRS Int. J. Geo-Inf. 2018, 7, 290 5 of 17

days 190 and 210 from 1 January, and was also mostly distributed along Inner Mongolia to the TP,
with the lowest (197) and highest (204) values from 1 January occurring in the temperate meadow
and alpine steppe, respectively (Figure 3B). The EOS was primarily found between days 240 and 290
from January 1, and was presented in most regions in the study area and the lowest (265) and highest
(273) values of EOS from 1 January were found in temperate meadow and alpine meadow, respectively
(Figure 3C). The longer LOS was centrally distributed on the edge of the study area, with values
between days 152 and 201, and the values from days 137 to 152 were primarily observed in the center
of the TP and the east and the southwest of Inner Mongolia (Figure 3D). Additionally, the highest (153)
and lowest (139) LOS values were found in desert steppe and temperate meadow, respectively.

Furthermore, the results indicated that the value of the AMT (1985–2010) ranged from −4.63 to
15.89 ◦C. A relatively low AMT was observed in the center of the TP and north of Inner Mongolia,
and a relatively high AMT was found in the corridor of Hexi–Xinjiang and south of the TP (Figure 3E).
Additionally, the AMP decreased toward the south–north on the TP, toward the north–south in Xinjiang,
and toward the east–west in the study area, with the AMP ranging from 4.02 to 1089.01 mm (Figure 3F).

3.1.2. Dynamics of Plant Phenology, AMT, and AMP in China’s Grasslands

The SOS showed an advanced trend in most regions across China’s grasslands, with primarily
advanced values of 0–2 days (Figure 4A). Similarly, the POS and EOS showed an advanced tendency
across China’s grasslands; advanced values of 1–2 days were primarily found in the center of the TP
and Inner Mongolia, and those of 0–1 day were primarily observed in the east and south of Inner
Mongolia, in the east and south of the TP, and in the north of Xinjiang (Figure 4B,C). Additionally,
the LOS presented a shortened trend over China’s grasslands; advanced values of 1–3 days were
centrally distributed in the TP and mid Inner Mongolia, and those of 0–1 day were primarily found in
the north and south of Inner Mongolia, in the east of the TP, and in most regions in Xinjiang (Figure 4D).
In general, the SOS, POS, and EOS came early, with the variation amplitude of 0.54 days/year,
0.64 days/year, and 0.65 days/year, respectively. The LOS shortened at a rate of 0.62 days/year.
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Figure 3. Average spatial distribution of the grassland SOS (A); POS (B); EOS (C); LOS (D); annual
mean temperature (AMT) (E); and annual mean precipitation (AMP) (F) between 1985 and 2010 in
northern China. AM, AS, DS, MS, TM, and TYS represent the alpine meadow, alpine steppe, desert
steppe, meadow steppe, temperate meadow, and typical steppe, respectively.

Moreover, the changed values of AMT showed variation from −0.14 to 0.41 ◦C, and the AMT
presented a tendency of increase across China’s grasslands, except for the regions in the north of
Inner Mongolia, the south of the TP, and the center of Xinjiang (Figure 4E). The dynamics of AMP
were observed between −15.09 and 7.20 mm during the study period, and the decreases in AMP
were primarily distributed in the northeast of Inner Mongolia and the south of the TP (Figure 4F).
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Simultaneously, the increases in AMP were primarily in the center of the TP and the north of Xinjiang
(Figure 4F).
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LOS (D); AMT (E); and AMP (F) from 1985 to 2010 in northern China.

3.1.3. Responses of Plant Phenology to AMT and AMP across China’s Grasslands

A significant negative correlation between the SOS and AMT was found in the east–north
of Inner Mongolia, the north of Xinjiang, and a part of the area in the TP (Figure 5A). Moreover,
a significant positive relationship between the SOS and AMT was revealed in the east–center of
Inner Mongolia and the south and center of the TP (Figure 5A). Additionally, a significant negative
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correlation between the POS and AMT was found in the north of Xinjiang, the east–north of Inner
Mongolia, and the center–west of the TP (Figure 5B). Similarly, between EOS/LOS and AMT, significant
positive and negative relationships were revealed in the north of Xinjiang and the north of the TP
(Figure 5C,D), respectively.
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An obvious significant correlation between SOS and AMP was observed in most regions including
the west–center of Inner Mongolia, the north of Xinjiang, and part of the regions on the TP (Figure 6A).
Furthermore, a significant relationship between POS and AMP was primarily distributed in the center
of Inner Mongolia, the north and east of the TP, and the north of Xinjiang (Figure 6B). A significant
negative correlation between POS/EOS and AMP was found in the center of the TP and the east–north
of Inner Mongolia (Figure 6B,C), with a significant relationship between EOS and AMP distributed in
the center of the TP and the east–north of Inner Mongolia (Figure 6C). A significant negative correlation
between LOS and AMP was primarily found in the center of the TP and the north of Inner Mongolia
(Figure 6D). Simultaneously, a significant relationship between LOS and AMP was revealed in the east
of the TP and part of the region in Inner Mongolia (Figure 6D).
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3.2. Dynamics and Relationships in Plant Phenology, AMT, and AMP in Different Grassland Types

3.2.1. Dynamics of Plant Phenology in Different Grassland Types

To further reveal the dynamics of plant phenology, we analyzed the change rate of the phenology
indicators in different grasslands across northern China. As shown in Table 1, the SOS in the meadow
steppe (R2 = 0.26, p = 0.007) and typical steppe (R2 = 0.28, p = 0.005); the EOS in alpine steppe (R2 = 0.16,
p < 0.05); and the LOS in alpine (R2 = 0.20, p < 0.05), meadow (R2 = 0.18, p < 0.05), and typical (R2 = 0.18,
p < 0.05) steppes changed significantly.
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Table 1. The variation of vegetation phenology in different grasslands across northern China (1985–2010).
y is the phenology indicator (start of the growing season [SOS], peak of the growing season [POS], end of
the growing season [EOS], and length of the growing season [LOS]) ; x is the years 1985–2010; R2 is the
fitting optimization index; p is the probability to reject the null hypothesis; y0 is the intercept; and a is
the slope.

Indicator Grasslands y = ax + y0 R2 p Mean (day)

SOS (day)

Alpine meadow y = 0.0066x + 115.5370 0.0009 0.8856 128.6547
Alpine steppe y = 0.0805x − 32.0302 0.0488 0.2784 128.7045
Desert steppe y = −0.0453x + 211.6438 0.0145 0.5586 121.2055

Meadow steppe y = −0.1264x + 375.7233 0.2648 0.0072 ** 123.1431
Temperate meadow y = −0.0061x + 138.4402 0.0006 0.9081 126.3115

Typical steppe y = −0.1559x + 433.6264 0.281 0.0053 ** 122.1544

POS (day)

Alpine meadow y = −0.0353x + 274.3249 0.0125 0.5866 203.8044
Alpine steppe y = −0.1289x + 461.3085 0.0604 0.2263 203.8654
Desert steppe y = −0.0910x + 380.6512 0.0606 0.2255 198.9293

Meadow steppe y = −0.0520x + 302.7789 0.0561 0.2442 198.9030
Temperate meadow y = −0.0029x + 202.8453 0.0002 0.9437 197.0213

Typical steppe y = −0.0564x + 311.6396 0.0524 0.2605 198.9553

EOS (day)

Alpine meadow y = −0.0981x + 472.2792 0.0411 0.3207 276.2977
Alpine steppe y = −0.3772x + 1026.7458 0.1614 0.0419 ** 273.2050
Desert steppe y = −0.0896x + 453.2871 0.0372 0.3450 274.3001

Meadow steppe y = 0.0737x + 124.8830 0.043 0.3095 272.0691
Temperate meadow y = 0.0490x + 167.7751 0.0216 0.4741 265.6026

Typical steppe y = 0.0648x + 144.5951 0.029 0.4053 273.9888

LOS (day)

Alpine meadow y = −0.1047x + 356.7421 0.0546 0.2505 147.6430
Alpine steppe y = −0.4577x + 1058.7759 0.202 0.0213 ** 144.5005
Desert steppe y = −0.0443x + 241.6433 0.0061 0.7051 153.0946

Meadow steppe y = 0.1866x − 223.9604 0.1807 0.0304 ** 148.7567
Temperate meadow y = 0.0550x + 29.3350 0.0128 0.5816 139.2911

Typical steppe y = 0.2207x − 289.0314 0.1761 0.0329 ** 151.8344

** Represents significance at the level of 0.05.

3.2.2. Dynamics of AMT and AMP in Different Grassland Types

Based on the results in Table 1, we further revealed the dynamics of the climatic factors (Table 2)
in grasslands with significantly changed phenology. The results indicated that the AMT in the alpine,
meadow, and typical steppes showed a trend of increase, in which the average change rates of AMT
were 0.05 ◦C/year, 0.06 ◦C/year, and 0.06 ◦C/year (Table 2), respectively. Conversely, a trend of
decrease in AMP was observed in the grasslands of alpine, meadow, and typical steppes, with the
average decrease in values of AMP of 1.75 mm/year, 0.60 mm/year, and 0.72 mm/year, respectively
(Table 2).

Table 2. The variation of climatic factors (annual mean temperature [AMT] and annual mean precipitation
[AMP]) in three grasslands (1985–2010). The Mean, Min, Max. and Std are the average, minimum,
maximum, and standard deviation values, respectively, of the AMT or AMP in corresponding grasslands
from 1985 to 2010.

Factor Grasslands Mean Min Max Range Std

AMT (◦C/year)
Alpine steppe 0.05 0.00 0.23 0.23 0.02

Meadow steppe 0.06 −0.02 0.17 0.19 0.02
Typical steppe 0.06 −0.01 0.18 0.19 0.02

AMP (mm/year)
Alpine steppe −1.75 −7.76 4.29 12.05 2.39

Meadow steppe −0.60 −7.93 3.98 11.91 1.83
Typical steppe −0.72 −7.50 3.98 11.48 2.53
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3.2.3. Responses of Plant Phenology to AMT and AMP in Different Grassland Types

We further explored the response mechanisms between the phenology (significantly changed
phenology in Table 1) and climatic factors by RDA. The results from the RDA showed that AMT and
AMP together explained 12.65% (Figure 7A) and 32.52% (Figure 7B) of the variation of the SOS in the
meadow steppe and typical steppe, respectively. Moreover, AMT and AMP together explained 6.22%
of the dynamic of the EOS in the alpine steppe (Figure 7C). Additionally, AMT and AMP together
explained 6.06% (Figure 7D), 16.69% (Figure 7E), and 19.58% (Figure 7F) of the variation of the LOS in
the alpine, meadow, and typical steppes, respectively. Notably, AMP had a relatively larger influence
on the variation of the SOS in the meadow steppe and typical steppe than that of AMT, whereas by
contrast, AMT had a greater influence on the dynamics of the EOS in the alpine steppe. Similarly,
AMT also had a relatively larger influence than that of AMP on the variation of the LOS in the alpine,
meadow, and typical steppes.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 15 
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4. Discussion

4.1. Spatial Distribution and Changes in Plant Phenology across China’s Grasslands

Our results indicated that the SOS, POS, and EOS advanced at the rates of 0.54 days/year,
0.64 days/year, and 0.65 days/year over China’s grasslands, respectively (Figure 4A–C). Moreover,
the LOS shortened with the value of 0.62 days/year (Figure 4D). Consistent with our results,
the observed data and remote sensing data demonstrate that plant phenology advanced in the past
decades [50–53]. Specifically, the advanced SOS values for China (1982–1999) [54], the Eurasian
continent (1981–1999) [55], the Northern Hemisphere (1982–2008) [56], and the world (1981–2003) [57]
are 0.79 days/year, 0.33 days/year, 0.31 days/year, and 0.30 days/year, respectively.

Similarly, advanced EOS results are also found in many studies, in which the advanced rates of
EOS are 0.37 days/year, 0.61 days/year, 0.23 days/year, and 0.50 days/year for China [58], the Eurasian
continent [55], the Northern Hemisphere [56], and the world [57], respectively. Additionally, the
inter-annual LOS presented a shortened trend in our results. Consistent with our results, the LOS
shortened with the values of 1.16 days/year, 1.33 days/year, 0.56 days/year, and 0.38 days/year for
China [54], the Eurasian continent [55], the Northern Hemisphere [27], and the world [55], respectively.
In several studies, both observational and experimental, the POS shows an advanced trend in other
regions [50–53,59,60].

In general, plant phenology showed significant changes in alpine, meadow, and typical steppes,
which were primarily distributed in the center of the TP and Inner Mongolian Plateau. The maximum
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increased rates of AMT and AMP in the center of the TP (Figure 4E) and the maximum decrease in
the AMP in the center of the Inner Mongolian Plateau (Figure 4F) might explain the corresponding
significant changes in the phenology indicators (Table 1). Additionally, the alpine steppe in the north
of the TP with a relatively low AMT and AMP was more sensitive to the dynamics of climatic factors
than the alpine meadow in the southeast of the TP with a relatively high AMT and AMP, which might
be another reason [35,36,46]. The non-significant changes to the phenology indicators in temperate
meadows were primarily found in the north of Xinjiang Province, which might be explained because
plant phenology at high altitudes is more sensitive and complicated than that at low altitude [31].

4.2. Control Mechanisms of Plant Phenology and Climate in Different Grasslands

Our results demonstrated that significant changes in plant phenology were revealed in the
meadow steppe (R2 = 0.26, p = 0.007) and typical steppe (R2 = 0.28, p = 0.005) for the SOS, primarily
distributed in Inner Mongolia (Table 1). Accompanying the differences in temperature and precipitation
conditions, the SOS in the meadow steppe and typical steppe advanced gradually (Table 1). For the
significantly changed SOS, an increased temperature in the meadow steppe (0.06 ◦C/year, Table 2) and
typical steppe (0.06 ◦C/year, Table 2), which was primarily found in the center of the Inner Mongolian
Plateau, accelerated the accumulation of heat and advanced the resumption of growth activity of plants,
which affected the timing of the phenological phases [31]. Green-up onset tended to be advanced by
the increasing temperature, and precipitation also exerted a stronger effect (Figure 7) on the SOS in the
drier regions than that in others [32]. Thus, the SOS in the north of Xinjiang Province was significantly
correlated with AMT and AMP (Figures 5A and 6A). Similarly, advances in spring phenology are
also reported in other studies [50,60–62]. Moreover, warming in springs and winters on the TP also
continuously advanced the SOS at a rate of 1.04 days/year (1982–2011) [33], and an obvious positive
correlation between the SOS and spring temperature was revealed in North America [63]. In summary,
the starting growth of plant phenology was particularly sensitive to the change of temperature and
precipitation [39–44].

Significantly advanced EOS was observed in the alpine steppe in the center of the TP (R2 = 0.16,
p < 0.05; Table 1), and the AMT relatively explained most of the variation of the EOS (Figure 7).
The warming temperature in the alpine steppe (0.05 ◦C/year, Table 2) therefore rapidly accelerated
plant growth, resulting in an earlier completion of the growth in the steppe species [31]. Similarly,
most regions in the center of the TP present a significant increase in temperature and a clear advance
in the EOS by several weeks [64]. Thus, warming tended to be advanced for the EOS on the TP [64].
Because the growth of the alpine steppe on the TP is the most temperature-limited [65], plant growth
is primarily sensitive to the dynamics in temperature [66–69]. Additionally, the dynamics of AMP in
the alpine steppe might lead to the termination of plant growth to some extent, because water is the
most important factor that affects plant growth [70–72].

The significantly advanced SOS in the meadow steppe and typical steppe, together with no
significant change in the EOS, led to the gradual extension of the LOS in the meadow steppe (R2 = 0.18,
p < 0.05) and typical steppe (R2 = 0.18, p < 0.05; Table 1). By contrast, the significantly advanced EOS,
together with no significant change in the alpine steppe, accounted for the shortening of the LOS
in the alpine steppe (R2 = 0.20, p < 0.05; Table 1). The variation of the LOS in the north of Xinjiang
Province was positively correlated with AMT (Figure 5A), because of the significant relationship
between AMT and SOS (Figure 5D), and warming temperature is beneficial to the extension of plant
growth [34,54,61,64]. For example, an increase in AMT by 1 ◦C resulted in an extension of five days in
Europe [61]; and across north China, a warming during March to early May by 1 ◦C led to an extension
of the SOS by 7.5 days [54], whereas an increase of AMT by 1 ◦C from mid-August to early October
generated a delay of 3.8 days in the EOS [54].
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4.3. Limitations of the Current Study

Although a part of the variation in the phenology indicators was explained by climatic factors,
in our study, other determinant factors might have had an effect on the dynamics of plant phenology,
such as evapotranspiration, solar radiation, and soil properties (soil water content, soil total carbon,
soil total nitrogen, soil total phosphorus, soil available nitrogen, soil available phosphorus, and soil
microorganisms, among others). Because the effects of climatic factors on soil nutrients and the activity
of soil microbes are closely related to the growth of plants, future research should devote more attention
to the linkages between plant phenology and soil factors. For example, experiments on warming and
simulating extreme rainfall are important to reveal how the phenology indicators (SOS, POS, EOS,
and LOS) respond to changes in global climate and soil properties.

5. Conclusions

This study systematically revealed the spatiotemporal variation of plant phenology indicators
(SOS, POS, EOS, and LOS) across China’s grasslands during 1985 to 2010. For the average phenology
indicators over northern China, from the northeast to southwest, the SOS and EOS were gradually
delayed. From the northwest to southeast, the POS was gradually delayed. From the margin to the
center of the study area, the LOS gradually shortened. For the dynamics of the phenology indicators,
the SOS, POS, and EOS presented an advanced tendency across China’s grasslands. Additionally,
a shortening trend of the LOS over China’s grasslands was observed.

The SOS in the meadow steppe and typical steppe, and the EOS in the alpine steppe exhibited
significantly advanced trends from 1985 to 2010. Moreover, the LOS showed significantly shortened
trends in the meadow steppe and typical steppe, primarily distributed in Inner Mongolia, and the LOS
underwent a lengthening trend in the alpine steppe as primarily revealed on the TP. The inter-annual
climate changes of AMT and AMP in China’s grasslands accounted for the significantly dynamic SOS
in the meadow steppe (12.65%) and typical steppe (32.52%); the EOS in the alpine steppe (6.22%);
and the LOS in the alpine (6.06%), meadow (16.69%), and typical (19.58%) steppes. Thus, the changes
in the plant phenology under climate change are critical requirements for the carbon cycle dynamics in
these grassland ecosystems.
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