
 International Journal of

Geo-Information

Article

3D WebGIS: From Visualization to Analysis.
An Efficient Browser-Based 3D Line-of-Sight Analysis

Michael Auer * and Alexander Zipf

GIScience Research Group, Institute of Geography, Heidelberg University, 69120 Heidelberg, Germany;
zipf@uni-heidelberg.de
* Correspondence: auer@uni-heidelberg.de; Tel.: +49-6221-54-19704

Received: 30 May 2018; Accepted: 19 July 2018; Published: 21 July 2018
����������
�������

Abstract: 3D WebGIS systems have been mentioned in the literature almost since the beginning of
the graphical web era in the late 1990s. The potential use of 3D WebGIS is linked to a wide range
of scientific and application domains, such as planning, controlling, tracking or simulation in crisis
management, military mission planning, urban information systems, energy facilities or cultural
heritage management, just to name a few. Nevertheless, many applications or research prototypes
entitled as 3D WebGIS or similar are mainly about 3D visualization of GIS data or the visualization
of analysis results, rather than about performing the 3D analysis itself online. This research paper
aims to step forward into the direction of web-based 3D geospatial analysis. It describes how to
overcome speed and memory restrictions in web-based data management by adapting optimization
strategies, developed earlier for web-based 3D visualization. These are applied in a holistic way in
the context of a fully 3D line-of-sight computation over several layers with split (tiled) and unsplit
(static) data sources. Different optimization approaches are combined and evaluated to enable an
efficient client side analysis and a real 3D WebGIS functionality using new web technologies such as
HTML5 and WebGL.

Keywords: 3D; WebGIS; performance; analysis; line-of-sight; visibility

1. Introduction

This paper aims to promote the usage of WebGIS beyond visualization as an analytical tool.
We describe the implementation and evaluation of a browser based 3D line-of-sight analysis. Besides
computing if the line between two points in 3D space is obstructed or not, the analysis returns the point
of obstruction, which is determined by finding the closest intersection of the sight line with any triangle
in the scene. To tackle performance and scalability issues, it uses strategies such as compression, tiling,
streaming and caching known to work for visualization and adapts them to carry out data intensive
analyses over the web. It takes a holistic view on the problem scope by presuming a realistic use case
where an analysis has a prior phase of visualization, and that the data to be analyzed are composed
of several layers with different characteristics and potentially integrated from distributed sources.
The described method for a 3D line-of-sight analysis takes advantage of that holistic view, which opens
more possibilities for process optimization than considering only the visibility computation.

The example of a 3D line-of-sight computation demonstrates well the challenges that have to be
solved in the context of the browser based spatial analyses. Its efficient computation is relevant for
the development of further 3D WebGIS functionalities, as the line-of-sight can be used as an atomic
process of more complex visibility analysis such as viewsheds.

To demonstrate the qualities of the proposed concept, it was evaluated in different scenarios
(Figure 1) to reveal the potential performance gains and its scalability as well as its limitations in
different usage constellations.

ISPRS Int. J. Geo-Inf. 2018, 7, 279; doi:10.3390/ijgi7070279 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-6303-596X
https://orcid.org/0000-0003-4916-9838
http://dx.doi.org/10.3390/ijgi7070279
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/7/7/279?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2018, 7, 279 2 of 14

Figure 1. Scenario and evaluation matrix.

Before discussing the related work of 3D WebGIS, 3D line-of-sight computation and WebGIS
performance research in Section 2, the following two subsections provide an overview of the context in
which this work makes its contribution, beginning with general remarks on the relevance of WebGIS
in the next subsection and closing the Introduction with a short summary of research challenges in the
realm of WebGIS.

1.1. Why Do We Need WebGIS?

At the end of 2017, there were about 4 billion (~51.8%) people using the Internet worldwide [1].
In developed countries, more than 80% of individuals use the Internet [2]. These numbers show the
simple fact that our societies have incorporated the Internet as one of the most important technologies for
information and communication. The Internet, and especially the World Wide Web, facilitate access to
spatial information and services that can provide fast and easy solutions to spatial questions from private
individuals, over public administration to business applications. However, why do we need WebGIS? We
are using the web extensively to solve our daily tasks and we have a big demand for spatial information
in a wide spectrum of use cases and application domains, e.g., public participation in planning (e.g., [3]),
natural resource management, market research or logistics, just to name a few. The widespread use of GIS
applications distributed over the web has changed the early role of desktop GIS as specialized analysis tools
to being a media type for communicating geographic information to a broad audience [4]. Many WebGIS
applications have a strong focus on communication by means of web mapping, nevertheless it is important
to enable WebGIS applications to cover other important aspects of GIS software, such as data capture,
data management and especially data analysis. The effort made in the approach of this paper is a step
in the direction of enabling WebGIS applications to perform analysis even on large datasets efficiently
over the web. Hereby, the approach follows the paradigm of client-side computation in favor of more



ISPRS Int. J. Geo-Inf. 2018, 7, 279 3 of 14

flexibility on how the user can combine private local data with provided published data from a spatial
data infrastructure (SDI) without the need to upload any of his data to a remote server.

Before giving the details of the proposed method for a browser-based client-side line-of-sight
analysis, some remarks on the general research scope of WebGIS are given below.

1.2. The Research Challenges of WebGIS

The challenges that have to be addressed in research to make WebGIS a useful means of
understanding spatial phenomena and communicating geographic information are manifold. The main
topics in Figure 2 are related to the ISO/IEC 25010 standard for Systems and Software engineering [5],
which defines a software product quality model. This model is composed of eight characteristics.
Having these general characteristics of software quality in mind and relating them to the context of
WebGIS reveals a subjective selection of topics and issues for a research canon of WebGIS. However,
it might provide a useful starting point of discussion to sort and develop the field of WebGIS
research. Some of the issues are more general and also apply to other kinds of web applications,
e.g., adaptiveness, while others are more specific to WebGIS applications and need specific solutions,
such as map usability, compression techniques or data retrieval strategies and high-performance
analysis computations. In the overall concept of WebGIS, various different scientific fields are involved
in the research scope, e.g., cartography, psychology of perception, human–computer interaction,
communication science, ergonomics, art and design, computer science, geoinformatics, and domain
experts from the thematic field of usage where the WebGIS is applied. To solve all the challenges
in the realm of web-based GIS research, a broad interdisciplinary effort would be necessary. This
paper mainly focuses on two aspects of browser-based client-side GIS analyses, speed and capabilities
(compare in Figure 2). The strategies to reach these goals are exemplified by examining and evaluating
an implementation of a browser-based 3D line-of-sight analysis.

Figure 2. Challenges in WebGIS research.



ISPRS Int. J. Geo-Inf. 2018, 7, 279 4 of 14

2. Related Work

2.1. History and Current State of 3D WebGIS

The development of 3D WebGIS can be subdivided into a history of formats, hardware, bandwidth
and software. While the first format for 3D web content was developed already in the early days of the
World Wide Web in 1994—namely VRML [6]—the other components needed almost 30 years to be
usable in a broad market. Hardware in the sense of powerful graphics cards became continuously better
over time. The access to high bandwidth rates are still very dependent on the place where someone
lives. Until today, developing countries, as well as rural areas in industrial countries, often lack access to
fast Internet [2]. In the case of software, it took until December 2010 for the first web browser to natively
support 3D content, when Google Chrome version 8 started to partially support the new WebGL
Standard [7], which was officially released three months later in 2011. Today, WebGL is at least partially
supported by all major desktop and mobile web browsers [8]. Before, mostly plugins (e.g., Cortona3D
(http://www.cortona3d.com/de/cortona3dviewer), FreeWRL (http://freewrl.sourceforge.net/), etc.)
or Java applets (e.g., XNavigator (http://xnavigator.sourceforge.net/doku.php)) have been used
for direct browser integration or standalone desktop applications. Both were able to communicate
with web resources (e.g., WorldWind (https://worldwind.arc.nasa.gov/), Google Earth (https://
www.google.com/intl/de/earth/desktop/), etc.) but had to be downloaded and installed. Current
examples of WebGL based 3D WebGIS frameworks are: OpenWebGlobe (http://www.openwebglobe.
org/), Cesium (https://cesiumjs.org/), NASA Web World Wind (https://worldwind.arc.nasa.gov/),
TerraExplorer for Web (http://skylineglobe.com/sg/TerraExplorerWeb/TerraExplorer.html), ESRI 3D
Scene Viewer (http://www.esri.com/software/scene-viewer), or GIScene.js (http://giscience.github.
io/GIScene.js/).

Another important part of facilitating 3D WebGIS is the efforts of standardization. In 2010,
two standardization proposals were published as OGC Discussion Papers: (1) the Web View
Service (WVS) [9] using server side rendering; and (2) the Web 3D Service (W3DS) [10] delivering 3D
data for client side rendering. Both strategies have been included in the recently approved OGC 3D
Portrayal Service Standard 1.0 (3DPS) [11] which enables interoperable service based presentation of
3D content.

A good overview on 3D representation, geometric and topological datamodels, database models,
formats and applications is given in [12,13].

2.2. 3D Line-of-Sight Computation

Lines-of-sight play a role in different research areas. In computer graphics, visibility computations
are used to determine visible surfaces for rendering, improving this rendering through visibility
culling, computing shadows as a result of being not visible from a light source and more [14].
In GIS, lines-of-sight are used, e.g., in urban planning, telecommunication planning [15], military
simulations [16] or archaeological analyses [17].

In computer graphics, ray shooting is involved in many algorithms used to solve visibility
problems. A special case of ray shooting can be used to compute point-to-point visibility in 2D and
3D [14]. Many visibility analyses in GIS are available for 2.5D data based on raster [18–21] or TIN
structure [22–24]. In these cases, for the line-of-sight computation, several restrictions can be observed:
(1) observer and target must be on or above the surface; and (2) all participating data layers must be
preprocessed into a single digital surface model. In the case of 3D ray shooting, these limitations can
be overcome. A ray is a half-line, which is represented by a start point and a direction. Such a ray
can then be tested on intersection with the surface triangles of objects in the scene. Thus, it does not
matter if the objects in the scene originate from one or several sources or layers. All intersection points
of triangles that have been detected to intersect the ray can be sorted by their distance to the rays
starting point. The closest intersection identifies the object that causes the visual obstruction. Several
ray-triangle intersection algorithms are available [25–28].

http://www.cortona3d.com/de/cortona3dviewer
http://freewrl.sourceforge.net/
http://xnavigator.sourceforge.net/doku.php
https://worldwind.arc.nasa.gov/
https://www.google.com/intl/de/earth/desktop/
https://www.google.com/intl/de/earth/desktop/
http://www.openwebglobe.org/
http://www.openwebglobe.org/
https://cesiumjs.org/
https://worldwind.arc.nasa.gov/
http://skylineglobe.com/sg/TerraExplorerWeb/TerraExplorer.html
http://www.esri.com/software/scene-viewer
http://giscience.github.io/GIScene.js/
http://giscience.github.io/GIScene.js/


ISPRS Int. J. Geo-Inf. 2018, 7, 279 5 of 14

2.3. WebGIS Performance Research

There is a lot of literature about WebGIS in general and even more about applications,
but searching explicitly for scientific work on “WebGIS performance” reveals sparse results. Some early
work exists describing techniques to reduce the amount of data transmission through a tiling and
indexing approach (e.g., [29]). The general idea of this approach is also used in this paper, although
in a different shaping. Further WebGIS performance improving techniques have been described by
Yang et al. [30] and Yang et al. [31]. For the server-side, they proposed multi-threaded request
handling and distributed processing using computer clusters. For the reduction of data transmission,
they proposed a pyramid approach for raster images and evaluated the effect of compression
on vector data. Further, client side data caching is proposed to reduce server and network
loads. Zhang et al. [32] optimized the performance of a JavaApplet based WebGIS Application.
The largest gain of performance could be reached through a serve-side cache for map tiles to
avoid on-the-fly map rendering. Recent work on WebGIS performance focuses more on distributed
data storage and processing in cloud environments (e.g., [33,34]). Current implementations for
geospatial and even spatiotemporal storage and processing of Big Spatial Data are, e.g., Spatial
Hadoop (http://spatialhadoop.cs.umn.edu/), Geomesa (http://www.geomesa.org/), GeoWave
(http://locationtech.github.io/geowave/) or especially for large rasterdata repositories the rasdaman
database (http://www.rasdaman.com/).

3. Methods

3.1. Creating a LiDAR-Inspired Artificial Test Dataset

For the evaluation of the proposed optimizations for the data handling during the analysis phase,
it is very useful to have full control over the data structure, data size, and obstacle locations. Full control
can only be achieved by designing and creating an artificial dataset. To achieve a realistic behavior of
the WebGIS and the analysis process, the test data represent the characteristics of an airborne LiDAR
derived triangulated digital elevation model (DEM) with a horizontal resolution of 1 m (point spacing)
and a total area of ∼16 km2 (4096 m × 4096 m). As a single regular triangulated DEM, this would
result in a dataset with 16,785,409 vertices and 33,554,432 triangles. With current technologies, it is
not feasible to load such a dataset into a browser-based WebGIS at once for visualization or analysis
purposes. It has to be prepared making use of different strategies that enable the web-based usage
of such a dataset. Typically, for visualization purposes, the data would be further processed into a
series of datasets with each having a lower resolution to reduce the data size. The resulting set of
datasets, known as Levels-of-Detail (LoD) (e.g., [35,36]), can be cut afterwards into smaller units, e.g.,
tiles. To be able to display several parts of different LoDs simultaneously in one scene, e.g., depending
on the distance to the camera, the parts of one LoD have to be interchangeable with parts from the
adjacent LoDs. In the case of partition into tiles, each one can be represented in the next higher LoD by
four tiles, such that a quadtree-like data structure evolves (Figure 3). The tiled structure of the dataset
is not only useful for the visualization of large datasets, but enables also the reduction of the data size
necessary to be loaded for a specific line-of-sight analysis. We can use this data structure to reduce
the potential data to be downloaded for the analysis to just those tiles whose 2D bounding boxes are
intersected by the 2D line segment, projected on a horizontal plane, representing the line-of-sight.
By tiling a triangulated dataset, it becomes bigger so that finally the artificial test dataset with the
original resolution gets 17,989,632 vertices, an increase of ∼7%, while in our case the numbers of
triangles stays constant.

http://spatialhadoop.cs.umn.edu/
http://www.geomesa.org/
http://locationtech.github.io/geowave/
http://www.rasdaman.com/


ISPRS Int. J. Geo-Inf. 2018, 7, 279 6 of 14

Figure 3. The LoD Schema during the visualization phase (left) shows the tiles of different levels which
have to be loaded to display a certain field of view, based on the distance to the camera. After switching
to the analysis phase (right), some tiles can be reused from the cache (orange). For the analysis only
the highest available level of detail must be loaded that intersect the line-of-sight.

The dataset is designed such that its surface is completely flat except for systematically distributed
obstacles in some of the tiles (Figures 4 and 5). This way, we can run several test analyses with varying
oberserver–obstacle distances to measure the effect of the different optimizations.

The test data were created using a script that automatically creates tiles in different LoDs with
different resolutions and tile sizes and stores them in a database such that each LoD is represented in
one table. The geometry is stored as polyhedralsurface, a PostGIS data type that stores 3D surfaces
as a collection of polygons, but also as JSON representation in the THREE.js-JSON scene-format 3.2
(https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3), which is natively supported by
the THREE.js JavaScript visualization library. Additionally, a centroid is stored in a separate database
column for fast spatial indexing of the tiles. The LoD tables are all indexed using the gist-index
provided by PostGIS as the standard spatial index to speed up search times for spatial queries such as
bounding box queries. The simultaneous storing of two geometry representations has the advantage
that one type, the polyhedralsurface, can be used in spatial queries with PostGIS functions while the
other type, the JSON representation, can directly be given out to be delivered to the web client without
ad hoc conversion from one format to the other.

Figure 4. Distribution of obstacles in the test dataset with example of a line-of-sight indicating the
visible and non visible part, which are divided by the point of obstruction.

https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3


ISPRS Int. J. Geo-Inf. 2018, 7, 279 7 of 14

Figure 5. Tile-grid setup: Each tile is composed of 2048 triangles (right). The whole artificial DEM is
made of 128 × 128 of such tiles (left). Some of those tiles (blue shaded tiles) contain a large vertical
triangle, spanned diagonally across the whole tile, which serves as obstacle.

3.2. Test Environment

To deliver the test data to the client, a test environment was created (Figure 6). This environment
contains a spatial database (PostgreSQL/PostGIS) and a web service that delivers the data based on
Node.js (https://nodejs.org—Node.js is a JavaScript runtime for server-side scripting and development
of web services). The service API implements the interface of the Web 3D Service (W3DS)
specification [10], which is currently an OGC Discussion Paper for standardization. The client in this case
is a browser application using the JavaScript library GIScene.js (http://giscience.github.io/GIScene.js/)
which itself depends on Three.js (https://threejs.org—THREE.js is a popular library for web-based
3D Visualizations using the browsers native API for WebGL) and WebGL [37]. While hlThree.js is
an abstraction library for WebGL, GIScene.js adds geographic concepts to the 3D library such as
spatial reference systems, data organization as layers, implementation of OpenGIS Web Service (OWS)
standards and geospatial analysis functionality.

Figure 6. Test environment.

https://nodejs.org
http://giscience.github.io/GIScene.js/
https://threejs.org


ISPRS Int. J. Geo-Inf. 2018, 7, 279 8 of 14

To measure the performance behavior in the different scenarios (Figure 1), two test functions were
implemented for the test client: one for the “single layer” scenario variant and one for the “multi layer”
scenario variant. Both test functions follow the same pattern (Figure 7).

Figure 7. Pattern of the test functions.

According to the tile layout (Figures 4 and 5) of the artificial dataset, the lines-of-sight to be tested
were constructed as follows. At the center position of each of the 128 grid rows, one line-of-sight
was constructed from the western border to the eastern border of the dataset. Each line represents a
test case of the analysis with equal distances between observer and target points but with varying
distances to the point of obstruction, which has to be found. This layout gives the possibility to test
each line-of-sight twice, one after another, to measure the influence of the caching strategy (empty
cache vs. full cache) and the influence of topographic variance in the 3D scene (varying distances to
obstruction points). The cache filling automatically takes place during the first run of each line-of-sight
analysis. All first runs with an empty cache deliver the worst case measurements (Figure 8a,c), while
all second runs deliver the best case values (Figure 8b,d). The comparison of both results shows the
potential performance gains by utilizing a tile cache for the analysis process and secondly it illustrates
the extremes between which a real case could perform. These variations indicate the advantage of the
method, that is, through using tiles in a split-up analysis, we can skip a part of the analysis, once we
have determined the closest obstacle from the observer. This means that those analyses, finding a close
obstacle, will finish much faster than analysis with far obstacles, independently of the total length of
the line-of-sight. These 128 double measured analysis are further repeated 30 times to create a median
value of the performance behviour to eliminate other influences on the measurements such as varying
network speed or other activities performed by the operating system during the measurement phase.
Finally, all measurements are given out as a comma separated value list for further usage.

To measure the duration with sufficient precision, especially for the best case scenarios, where
an analysis runs only a few milliseconds, it was necessary to use the “W3C High Res Time API” [38],
which in contrast to the common JavaScript Date-object, is independent of the system clock and
therefore can deliver monotonic time values. Its resolution is up to five microseconds (=0.000005 s).



ISPRS Int. J. Geo-Inf. 2018, 7, 279 9 of 14

To measure and evaluate the memory consumption during the analyses, the built-in MS-Windows
tool “Performance Monitor” was used to log the amount of Private Bytes of the browser process
together with a timestamp into a CSV file. Using the timestamp, this information can then be combined
with the log running inside the browser during the analysis which measures the durations of the
line-of-sight computations. For the memory measurement, the used browser was an instance of Google
Chrome Version 52.0.2743.82. To minimize external influences in the measurement, the browser was
started with a disabled disk-cache, which normally caches a certain amount of server responses on
the local hard drive to avoid network traffic and download times. Further, the in-memory-cache
implemented in GIScene.js for tiled data was also disabled, such that the measurements reflect only
what is used for holding the code, the input and results data, and what is needed for the computation.

0

200

400

600

800

1 64 128

a) Single layer (tiled) worst case

obstacle in static layer0

200

400

600

800

1 64 128

c) Multi layer (tiled + static) worst case

0

2

4

6

8

1 64 128

b) Single layer (tiled) best case

obstacle in static layer0

2

4

6

8

1 64 128

d) Multi layer (tiled + static) best case

distance in № of tiles to obstacle tile in tiled layer

m
e
d

ia
n

 o
f 

a
n

a
ly

s
is

 d
u

ra
ti

o
n

 (
m

s
),

 i
te

ra
ti

o
n

s
=

3
0

Figure 8. Performance of the line-of-sight computation in different scenarios.

3.3. A Browser-Based 3D Line-of-Sight Analysis

3.3.1. Definition

In the context of this paper, the aim was to optimize the computation of a browser-based 3D
line-of-sight Analysis. The computation took place on the client-side in a web-browser. The 3D
line-of-sight Analysis uses a 3D line-of-sight, which is a line from an observer point to distant target
point in three-dimensional euclidean space, to compute whether an obstacle is intersecting that line
and additionally determine the closest point of intersection with an obstacle (point of obstruction) seen
from the observer point .

3.3.2. Aims and Strategies

The intention of the proposed method is to fulfill the following aims: performance, scalability,
practicability and robustness. To develop a practicable and robust analysis method, it is important
to account for the fact that real world 3D datasets often contain topological errors, and may not be
manifold, especially when surfaces are automatically reconstructed from point clouds. Scenes may be
composed of many different and disconnected objects which have been created from different data



ISPRS Int. J. Geo-Inf. 2018, 7, 279 10 of 14

sources and by different processing methods. To avoid time consuming data preparation, the proposed
method uses a visibility algorithm [28] that does not rely on a specific data structure, except that
the objects are composed of triangles. No manifoldness or special topology is needed. This allows
spontaneously including multiple and different types of layered data possibly stemming from different
remote or local sources, which is an important feature for the practical usage of a WebGIS. To reach
scalability, in this context, means to design the analysis process in such a way, that the consumption of
memory becomes independent of the size of the underlying data to be analyzed and also independent
of the length of the line-of-sight which has to be tested. The strategy followed here is to process
data chunks such as tiles if available (e.g., for terrain data) or object groups retrieved by bounding
boxes (e.g., buildings). For web applications, the timely performance is a crucial factor to gain user
acceptance. Generally, the time (T) of a browser based analysis can be formulated as:

T = Tsend + Tserver side processing + Treceive + Tclient side processing (1)

While Tsend and Treceive are dependent of the data size and available bandwidth, the processing
parts depend on hardware, software and the size of input data. As the available bandwidth and
hardware cannot be influenced by the application, the performance optimizations should concentrate
on reducing the data size to be transmitted and processed and the algorithms for processing that
data. In this case, the dominating time component is Treceive so that the applied strategy is to reduce
downloads and processing by analyzing already loaded layers or cached tiles first to determine a
possibly smaller amount of necessary data that has to be analyzed and thus downloaded. This aim can
be targeted at two different points in the processing pipeline, before starting new data downloads.

3.3.3. Two Levels of Optimization

In this paper, a two-level approach is applied to improve the WebGIS performance in a holistic
way rather than just to focus on a single algorithm optimization. The approach introduced here is
based on the assumption that, before the actual analysis phase begins, a prior visualization phase
has already taken place. This leads to the advantage that some of the required analysis data may
already have been loaded in the web clients memory and can be accessed very quickly and thus
can be used for performance optimization. For the computation of the line-of-sight, optimizations
can be performed on two different levels—the layer-level (inter-layer-optimization) and the tile-level
(intra-layer-optimization). Both optimization levels can be combined into a 2 × 2 scenario matrix
(Figure 1). This matrix is used to evaluate and demonstrate the contribution to the performance gain
under different usage conditions.

1. The layer-level

The inter-layer-optimization makes use of two principles. First, the algorithm examines static
layers before tiled layers. Static layers are not tiled or requested by grid-based bounding boxes
but instead consist of objects that are loaded at once and afterwards are constantly kept in the
client memory for visualization. Static layers are useful to add specific objects to a scene that are
not too big in data size but are required for individual visualizations or analyses, e.g., a model of
a planned building in a cityscape. Second, the search space that has to be examined in subsequent
tiled layers will be reduced by the results of the previously examined static and other tiled layers.
Between the examination of two layers, the target point parameter of the next layers analysis is
adjusted to the closest obstacle intersection found in the previous layer. This reduces the search
distance and thus the number of tiles that have to be downloaded and analyzed during the next
layer check.

2. The tile-level

On the tile-level (intra-layer-optimization), three strategies can be applied to optimize performance.
First, the chunked (i.e., tiled) nature of the data allows loading just a necessary subset of the whole



ISPRS Int. J. Geo-Inf. 2018, 7, 279 11 of 14

dataset, and thus enables data streaming. Data partitioning is a crucial strategy to be able to handle
very large datasets and to process it piecewise. Second, some tiles that have to be analyzed may
already be found in the client cache (because they were loaded earlier either for visualization or for
another earlier analysis) and can be accessed and analyzed fast. Such cached tiles can be accessed
and analyzed very fast and should be prioritized when determining the sequence of tiles to be
analyzed. A sorting of the tiles by being cached or uncached and starting the analysis with the
cached ones, which can reveal a new closest intersection, that can, similar to in the layer level, be
used to reduce to search space and reduce the number of uncached tiles that have to be loaded,
separates the analysis in a faster and a slower part. If during the fast part an intersection with the
line-of-sight can be found, all slow parts (uncached tiles) that lie behind that intersection can be
skipped and thus improve the overall performance. Third, the remaining uncached tiles can now
be requested asynchronously, which means that, depending on current browser implementations,
6–13 parallel connections can be established from the browser to resources of the same Internet
domain [39] (host server addresses of the data services) to download the pending data. Thus, some
of the server and network load can be handled in parallel to speed up the process.

4. Discussion of the Results

4.1. Performance

For the evaluation of the performance, four different scenarios were measured (Figure 8). The two
scenarios with a single tiled layer (Figure 8a,b) demonstrate that the process duration is linearly
dependent on the number of tiles to be analyzed between observer point and nearest obstacle. In other
words this means that using this method the analysis performance is independent of the total size of
the underlying tiled layer dataset and it is only dependent of the total distance between observer and
target point if no obstacle can be found in the line-of-sight. The earlier an obstacle in the line-of-sight
is found, the better is the performance.

Further, comparing the worst case (Figure 8a,c) and best (Figure 8b,d) case scenarios, one can
see a very big difference in the analysis duration—in the test case, approximately by factor 90. This
can vary if applied under different network conditions, but underlines the importance of applying
strategies to avoid downloading unnecessary data to reach a good performance. This can be achieved
by applying a local memory cache to avoid multiple downloads of data that have already been used
for visualization or prior analyses.

Figure 8c,d represents the equivalent to Figure 8a,b but with a second layer included in the
analysis. In our test setup, this second layer obstructs the line-of-sight exactly at the midpoint between
observer and target point. The diagram shows the advantage of the approach by including multiple
layers to reduce the amount of data that have to be fetched from the remote server. In practice,
this means that the inclusion of data from all static layers into to computation can help avoid time
consuming downloads of dynamic tiled layer data and thus improve the overall performance.

4.2. Scalability

Figure 9 shows the memory consumption of the browser during a test run of 128 different
line-of-sight analyses with increasing distances to their nearest obstacle. It shows a constant
consumption of RAM, independently of the amount of data that have to be processed for the different
analyses. This demonstrates the scalability of the approach. In practical use, this means that there is no
limitation of the length of a line-of-sight or resolution of the underlying obstacle layers as long as they
can be retrieved in a partitioned way, e.g., tiled or by bounding box, to support streaming. To control
the amount of necessary memory, the only parameter to adjust would be the tile size or bounding box
size depending on the resolution of the underlying data.



ISPRS Int. J. Geo-Inf. 2018, 7, 279 12 of 14

0

128

256

R
A

M
 c

on
su

m
pt

io
n

(p
riv

at
e 

by
te

s)
M

B

0

64

128

0 50 100 150 200
duration in seconds

N
o.

 o
f t

ile
s

to
 b

e 
an

al
yz

ed
 p

er
Li

ne
−o

f−
S

ig
ht

 a
na

ly
si

s

Figure 9. Memory consumption (top) during 128 different line-of-sight analyses (blue line segments)
(bottom) with increasing distances to their nearest obstacle.

5. Conclusions

This paper discusses the potential of browser based WebGIS applications beyond its typical usage
as geodata viewer. It exemplifies its extended usage as real web-based analysis interface by evaluating
an implementation of a browser-based 3D line-of-sight computation under different scenarios to prove
acceptable performance and scalability by applying the suggested methods from above. To ensure
comparable test conditions, an artificial dataset has been created, simulating a LiDAR derived Digital
Terrain Model. Further, an evaluation framework was set up to measure performance and memory
consumption during four different test scenarios. The results show that the applied approach with
its holistic view on WebGIS usage and its two levels of optimization (layer-level and tile-level) lead
to greatly improved performance, while the streaming and partitioned way of processing of the data
leads to an independence between memory consumption and the length of the line-of-sight as well as
the resolution of input data, thus showing that the approach is scalable, which is important, especially
in web-based environments.

Author Contributions: Conceptualization, M.A. and A.Z.; Data curation, M.A.; Formal analysis, M.A.; Funding
acquisition, A.Z.; Investigation, M.A.; Methodology, M.A.; Project administration, A.Z.; Resources, A.Z.; Software,
M.A.; Supervision, A.Z.; Validation, A.Z.; Visualization, M.A.; Writing—original draft, M.A.; and Writing—review
and editing, M.A. and A.Z.

Funding: Part of the research was funded by the German Ministry of Research and Education (BMBF) eHumanities
program, grant #01UG1244B and was done during the MayaArch3D-Project (www.mayaarch3d.org). Further
work on this research could be finished through funding of the Klaus-Tschira-Foundation (KTS).

Acknowledgments: Many thanks are given to our colleagues from the GIScience Reasearch Group Heidelberg for
their valuable input and discussions, especially to Lukas Loos and Bernhard Höfle.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

www.mayaarch3d.org


ISPRS Int. J. Geo-Inf. 2018, 7, 279 13 of 14

References

1. De Argaez, E. Internet World Stats—Usage and Population Statistics. Available online: http://www.
internetworldstats.com/stats.htm (accessed on 15 February 2018).

2. International Telecommunication Union (ITU). ICT Facts & Figures—The World in 2015; Technical Report; ICT
Data and Statistics Division—Telecommunication Bureau, International Telecommunication Union: Geneva,
Switzerland, 2015.

3. Dragićević, S.; Balram, S. A Web GIS collaborative framework to structure and manage distributed planning
processes. J. Geogr. Syst. 2004, 6, 133–153. [CrossRef]

4. Sui, D.Z.; Goodchild, M.F. GIS as media? Int. J. Geogr. Inf. Sci. 2001, 15, 387–390. [CrossRef]
5. ISO/IEC 25010:2011. Systems and Software Engineering—Systems and Software Quality Requirements and

Evaluation (SQuaRE)—System and Software Quality Models; Technical Report; International Organization for
Standardization: Geneva, Switzerland, 2011.

6. Ragget, D. Extending WWW to Support Platform Independent Virtual Reality. 1994. Available online:
https://www.w3.org/People/Raggett/vrml/vrml.html (accessed on 19 September 2016).

7. Khronos Group. WebGL Specification, version 1.0.0; Khronos Group: Beaverton, OR, USA, 2011. Available
online: https://www.khronos.org/registry/webgl/specs/1.0.0/

8. Deveria, A. WebGL—3D Canvas Graphics. Available online: http://caniuse.com/#feat=webgl (accessed on
20 September 2016).

9. Hagedorn, B. Web View Service Discussion Paper. OGC Discussion Paper, Ref. No. OGC 09-166r2; Open
Geospatial Consortium, 2010. Available online: http://portal.opengeospatial.org/files/?artifact_id=37257

10. Schilling, A.; Kolbe, T.H. Draft for Candidate OpenGIS(R) Web 3D Service Interface Standard. OGC
Discussion Paper, Ref. No. OGC 09-104r1; Open Geospatial Consortium, 2010. Available online: http:
//portal.opengeospatial.org/files/?artifact_id=36390

11. Hagedorn, B.; Thum, S.; Reitz, T.; Coors, V.; Gutbell, R. OGC® 3D Portrayal Service 1.0. OGC Implementation
Standard, Ref. No. OGC 15-001r4; Open Geospatial Consortium, 2017. Available online: http://docs.
opengeospatial.org/is/15-001r4/15-001r4.html

12. Coors, V.; Zipf, A. (Eds.) 3D-Geoinformationssysteme. Grundlagen und Anwendungen; Wichmann: Heidelberg,
Germany, 2005; pp. XXII, 522.

13. Abdul-Rahman, A.; Pilouk, M. Spatial Data Modelling for 3D GIS; Springer: Berlin/Heidelberg, Germany,
2008; pp. 1–289. [CrossRef]

14. Bittner, J.; Wonka, P. Visibility in computer graphics. Environ. Plan. B Plan. Des. 2003, 30, 729–755. [CrossRef]
15. De Floriani, L.; Marzano, P.; Puppo, E. Line-of-sight communication on terrain models. Int. J. Geogr. Inf. Syst.

1994, 8, 329–342. [CrossRef]
16. Liu, B.; Yao, Y.; Tang, W.; Lu, Y. Research on gpu-based computation method for line-of-sight queries.

In Proceedings of the 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed
Simulation, PADS 2012, Zhangjiajie, China, 15–19 July 2012; pp. 84–86. [CrossRef]

17. Paliou, E.; Wheatley, D.; Earl, G. Three-dimensional visibility analysis of architectural spaces: Iconography
and visibility of the wall paintings of Xeste 3 (Late Bronze Age Akrotiri). J. Archaeol. Sci. 2011, 38, 375–386.
[CrossRef]

18. Osterman, A.; Benedičič, L.; Ritoša, P. An IO-efficient parallel implementation of an R2 viewshed algorithm
for large terrain maps on a CUDA GPU. Int. J. Geogr. Inf. Sci. 2014. [CrossRef]

19. Tabik, S.; Cervilla, A.R.; Zapata, E.; Romero, L.F. Efficient data structure and highly scalable algorithm for
total-viewshed computation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015. [CrossRef]

20. Ferreira, C.R.; Andrade, M.V.; Magalhes, S.V.; Franklin, W.R.; Pena, G.C. A parallel sweep line algorithm for
visibility computation. In Proceedings of the Brazilian Symposium on GeoInformatics, Campos do Jordão,
Brazil, 24–27 November 2013.

21. Bartie, P.; Mackaness, W. Improving the sampling strategy for point-to-point line-of-sight modelling in
urban environments. Int. J. Geogr. Inf. Sci. 2017, 31, 805–824. [CrossRef]

22. De Floriani, L.; Magillo, P. Algorithms for visibility computation on terrains: A survey. Environ. Plan. B
Plan. Des. 2003, 30, 709–728. [CrossRef]

23. Hillen, F.; Höfle, B. Webbasierte Sichtbarkeitsanalyse mit Laserscanningdaten. gis.SCIENCE 2013, 1, 1–7.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://dx.doi.org/10.1007/s10109-004-0130-7
http://dx.doi.org/10.1080/13658810110038924
https://www.w3.org/People/Raggett/vrml/vrml.html
https://www.khronos.org/registry/webgl/specs/1.0.0/
http://caniuse.com/#feat=webgl
http://portal.opengeospatial.org/files/?artifact_id=37257
http://portal.opengeospatial.org/files/?artifact_id=36390
http://portal.opengeospatial.org/files/?artifact_id=36390
http://docs.opengeospatial.org/is/15-001r4/15-001r4.html
http://docs.opengeospatial.org/is/15-001r4/15-001r4.html
https://doi.org/10.1007/978-3-540-74167-1
http://dx.doi.org/10.1068/b2957
http://dx.doi.org/10.1080/02693799408902004
http://dx.doi.org/10.1109/PADS.2012.37
http://dx.doi.org/10.1016/j.jas.2010.09.016
http://dx.doi.org/10.1080/13658816.2014.918319
http://dx.doi.org/10.1109/JSTARS.2014.2326252
http://dx.doi.org/10.1080/13658816.2016.1243243
http://dx.doi.org/10.1068/b12979


ISPRS Int. J. Geo-Inf. 2018, 7, 279 14 of 14

24. Alderson, T.; Samavati, F. Optimizing line-of-sight using simplified regular terrains. Vis. Comput. 2015,
31, 407–421. [CrossRef]

25. Badouel, D. An efficient ray-polygon intersection. In Graphics Gems; Glassner, A.S., Ed.; Academic Press
Professional, Inc.: San Diego, CA, USA, 1990; pp. 390–393.

26. Bogart, R.; Arenberg, J. Ray/Triangle Intersection with Barycentric Coordinates. Ray Tracing News 1988,
1, 17–19.

27. Moller, T.; Trumbore, B. Fast, Minimum Storage Ray/Triangle Intersection. J. Gr. Tools 1997, 2, 21–28.
[CrossRef]

28. Eberly, D. Geometric Tools Engine. Ray-Trianlge-Intersection Algorithm. Available online: http://www.
geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h (accessed on 14 June 2016).

29. Wei, Z.K.; Oh, Y.H.; Lee, J.D.; Kim, J.H.; Park, D.S.; Lee, Y.G.; Bae, H.Y. Efficient spatial data transmission
in Web-based GIS. In Proceedings of the Second International Workshop on Web Information and Data
Management—WIDM ’99, Kansas City, MO, USA, 2–6 November 1999; ACM Press: New York, NY, USA,
1999; pp. 38–42. [CrossRef]

30. Yang, C.P.; Wong, D.W.; Yang, R.; Kafatos, M.; Li, Q. Performance-improving techniques in web-based GIS.
Int. J. Geogr. Inf. Sci. 2005, 19, 319–342. [CrossRef]

31. Yang, C.; Wu, H.; Huang, Q.; Li, Z.; Li, J.; Li, W.; Miao, L.; Sun, M. WebGIS performance issues and solutions.
In Advances in Web-Based GIS, Mapping Services and Applications; Li, S., Dragićević, S., Veenendaal, B., Eds.;
CRC Press: Boca Raton, FL, USA, 2011; Volume 9, pp. 121–138.

32. Zhang, X.; Li, G.; Lan, X. Research on WebGIS Performance Optimization. In Proceedings of the 2011 7th
International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China,
23–25 September 2011; pp. 1–4. [CrossRef]

33. Liu, X.; Han, J.; Zhong, Y.; Han, C.; He, X. Implementing WebGIS on Hadoop: A case study of improving
small file I/O performance on HDFS. In Proceedings of the 2009 IEEE International Conference on Cluster
Computing and Workshops, New Orleans, LA, USA, 31 August–4 September 2009; pp. 1–8. [CrossRef]

34. Zhong, Y.; Han, J.; Zhang, T.; Fang, J. A distributed geospatial data storage and processing framework for
large-scale WebGIS. In Proceedings of the 2012 20th International Conference on Geoinformatics, Hong Kong,
China, 15–17 June 2012; pp. 1–7. [CrossRef]

35. Heckbert, P.S.; Garland, M. Multiresolution Modelling for Fast Rendering. In Proceedings of the Graphics
Interface’ 94, Banff, AB, Canada, 18–20 May 1994; pp. 43–50.

36. Clark, J.H. Hierarchical geometric models for visible surface algorithms. Commun. ACM 1976, 19, 547–554.
[CrossRef]

37. Khronos Group. WebGL Specification, version 1.0.3; Khronos Group: Beaverton, OR, USA, 2014.
38. Mann, J. High Resolution Time, W3C Recommendation 17 December 2012; World Wide Web Consortium, 2012.

Available online: https://www.w3.org/TR/hr-time-1/
39. Souders, S. Browserscope. Available online: http://www.browserscope.org/?category=network&v=top.

(accessed on 15 March 2016).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00371-014-0936-3
http://dx.doi.org/10.1080/10867651.1997.10487468
http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
http://dx.doi.org/10.1145/319759.319777
http://dx.doi.org/10.1080/13658810412331280202
http://dx.doi.org/10.1109/wicom.2011.6038689
http://dx.doi.org/10.1109/CLUSTR.2009.5289196
http://dx.doi.org/10.1109/Geoinformatics.2012.6270347
http://dx.doi.org/10.1145/360349.360354
https://www.w3.org/TR/hr-time-1/
http://www.browserscope.org/?category=network&v=top
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Why Do We Need WebGIS?
	The Research Challenges of WebGIS

	Related Work
	History and Current State of 3D WebGIS
	3D Line-of-Sight Computation
	WebGIS Performance Research

	Methods
	Creating a LiDAR-Inspired Artificial Test Dataset
	Test Environment
	A Browser-Based 3D Line-of-Sight Analysis
	Definition
	Aims and Strategies
	Two Levels of Optimization


	Discussion of the Results
	Performance
	Scalability

	Conclusions
	References

