
 International Journal of

Geo-Information

Article

A Scalable Architecture for Real-Time Stream
Processing of Spatiotemporal IoT Stream
Data—Performance Analysis on the Example of
Map Matching

Marius Laska 1,*, Stefan Herle 1, Ralf Klamma2 ID and Jörg Blankenbach 1 ID

1 Geodetic Institute and Chair for Computing in Civil Engineering & Geo Information Systems,
RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany;
herle@gia.rwth-aachen.de (S.H.); blankenbach@gia.rwth-aachen.de (J.B.)

2 Advanced Community Information Systems Group (ACIS), RWTH Aachen University,
Lehrstuhl Informatik 5, Ahornstr. 55, 52074 Aachen, Germany; klamma@dbis.rwth-aachen.de

* Correspondence: marius.laska@rwth-aachen.de

Received: 12 March 2018; Accepted: 19 June 2018; Published: 21 June 2018
����������
�������

Abstract: Scalable real-time processing of large amounts of data has become a research topic of
particular importance due to the continuously rising amount of data that is generated by devices
equipped with sensing components. While existing approaches allow for fault-tolerant and scalable
stream processing, we present a pipeline architecture that consists of well-known open source tools to
specifically integrate spatiotemporal internet of things (IoT) data streams. In a case study, we utilize
the architecture to tackle the online map matching problem, a pre-processing step for trajectory
mining algorithms. Given the rising amount of vehicle location data that is generated on a daily basis,
existing map matching algorithms have to be implemented in a distributed manner to be executable
in a stream processing framework that provides scalability. We demonstrate how to implement
state-of-the-art map matching algorithms in our distributed stream processing pipeline and analyze
measured latencies.

Keywords: stream processing; IoT; spatiotemporal; data mining; map matching

1. Introduction

Scalable real-time processing of large amounts of data has become a research topic of particular
importance due to the continuously rising amount of data that is generated by devices equipped
with sensing components. In order to gain direct insights from this data, real-time analysis is
required. Typically, each smart-phone is equipped with several sensing components like an accelerator,
a camera and a Global Navigation Satellite System (GNSS) component. Due to the wide adoption of
GNSS components in sensing devices, the data that is generated from so-called spatiotemporal data
streams [1], where each event is tagged with a timestamp and a location.

In particular, generating these spatiotemporal data streams results in challenges regarding the
knowledge extraction, real-time processing, scalability and data integration. The range of applications
in the area of real-time processing of spatiotemporal data streams reaches from vehicle tracking
applications such as fleet tracking to the abnormal event detection in sensor networks that monitor
dike characteristics to prevent the bursting of a dike.

Spatiotemporal data stream mining comes with certain well known challenges regarding
stream processing, such as scalability, high availability, fault-tolerance etc. discussed by
Cherniack et al. and Stonebraker et al. [2,3], which have been tackled by existing frameworks like

ISPRS Int. J. Geo-Inf. 2018, 7, 238; doi:10.3390/ijgi7070238 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-2296-3401
https://orcid.org/0000-0002-5700-8818
http://www.mdpi.com/2220-9964/7/7/238?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi7070238
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2018, 7, 238 2 of 15

Apache Storm or Kafka streams. However, the spatiotemporal property of data and the origination
from IoT devices adds another challenge, which is data integration of those streams into one of the
existing stream processing frameworks. Algorithms like traffic prediction might only be executed on
range specific data, since there exists only a certain area of interest. Furthermore, sensing devices often
lack sufficient computation power, which is why resource efficient communication protocols have to
be adopted in order to support data integration from all sorts of IoT devices. Several communication
protocols have been developed to match the IoT requirements such as the Extensible Messaging and
Presence Protocol (XMPP), the Constrained Application Protocol (CoAP) or the Message Queuing
Telemetry Transport (MQTT), which have been compared by Karagiannis et al. [4]. MQTT is a resource
efficient publish/subscribe communication protocol, which offers several scalable implementations of
message brokers, which makes it suitable to handle IoT data streams. However, it lacks the capability
of specifically integrating spatiotemporal data streams, since the subscription mechanism is only
topic based. The Geospatial Message Queuing Telemetry Transport (GeoMQTT) protocol published
by Herle et al. [5,6], tackles this issue by adding the functionality of tagging published data with
a timestamp and a location and allowing subscriptions to certain areas and/or temporal intervals.
It preserves the resource efficiency of MQTT and thus presents a well-suited standard for integrating
spatiotemporal data streams from IoT devices.

In this applied paper, we demonstrate how to deal with spatiotemporal IoT stream data by
utilizing open source tools and frameworks to tackle data integration as well as scalable stream
processing. Utilizing GeoMQTT, we can specifically integrate spatiotemporal data streams, which is
especially important in IoT settings, since most of the originating sensor data is tagged with a timestamp
and a location. In our case study, we demonstrate how to utilize the proposed architecture to tackle one
typical stream processing task of spatiotemporal data, which is online map matching, a pre-processing
step for trajectory mining algorithms. Given the rising amount of vehicle location data that is generated
on a daily basis, existing map matching algorithms have to be implemented in a distributed manner
to be executable in a stream processing framework that provides scalability. We demonstrate how to
implement a state-of-the-art map matching algorithm [7] in our distributed stream processing pipeline
and analyze measured latencies, which are currently, to the best of our knowledge, missing in research.

The architecture consists of several tools that are chained to build a pipeline. Data integration
is provided by using a GeoMQTT broker as the entry point of published messages, which are
then forwarded to a Kafka broker in order to match spout characteristics of fault-tolerant stream
processing, such as message replay and parallel topic consumption. We utilize the stream processing
framework Apache Storm to implement distributed adaptions of well known online map matching
algorithms, which consume messages from the Kafka broker. Finally, the results of the online map
matching algorithms are published again via GeoMQTT to our broker and can be consumed by anyone
subscribing to the output topic. The architecture allows for offering any spatiotemporal streaming
application as a service. Consumers only have to publish their data via GeoMQTT to our message
broker and can subscribe to the post-processed output.

The main contributions of our work are the reusable pipeline architecture that is capable of
real-time processing of spatiotemporal data streams and the performance measurements of the
distributed implementations of state-of-the-art map matching algorithms in the proposed architecture.

The paper is organized as follows: Section 2 discusses related work in the field of scalable stream
processing architectures. Section 3 describes the proposed architecture, while briefly introducing
the required tools. In Section 4, we present a case study, where the stream processing pipeline is
implemented to perform map matching on raw trajectory streams using state-of-the-art online map
matching algorithms. The architecture is deployed on a cluster and evaluated regarding its latency.
In Section 5, we discuss further usage of the proposed architecture, while emphasizing the ability to
offer the pipeline as a service. Section 6 finally summarizes the results of the paper.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 3 of 15

2. Related Work

Efficient and scalable stream processing is a highly active research field due to the growing amount
of data, which requires real-time analysis. There are several recent publications in the area of stream
processing for data that mostly originates from IoT scenarios. However, most of the publications
lack the opportunity to integrate spatiotemporal data streams via resource efficient communication
protocols, which is required for our proposed stream processing architecture. Furthermore, latencies of
implementations of state-of-the-art map matching algorithms in a stream processing framework are
currently missing.

Villari et al. [8] propose an enhancement of the AllJoyn IoT framework that originally suffers
from scalability problems due to not supporting the communication among devices belonging to
different broadcast domains and the lack of any data management system. They utilize the Lambda
architecture, which was originally published by Marz and Warren [9]. Operations on data are split
into a speed layer and a batch layer. The speed layer works only on aggregations of the data to enable
stream processing, while not affecting the batch layer that recomputes batch views on the complete
data set. For implementing the speed layer, they use Apache Storm, a fault-tolerant distributed
stream processing framework, which allows them to integrate data from heterogeneous sources.
MongoDB, a highly scalable NoSQL database, serves as storage and processing tool for the batch
processing. However, the AllJoyn Lambda architecture is built for local area networks with its own
routing component (AllJoyn routing component), which handles discovery, connection management
and security. We think that a stream processing architecture should be able to integrate data not only
from local area networks, but enable data integration through standard IoT communication protocols.
Relying on existing publish/subscribe protocols and open source tools like an MQTT broker cluster
provides better interoperability and high scalability.

Thakur et al. [10] propose a real-time streaming and spatiotemporal analytics platform for
gathering geospatial intelligence from open source data. Oriented towards the Lambda architecture,
their approach supports seamless integration of archived as well as streaming data. The streaming
data input sources originate from social media and the IoT. Although mentioning that the architecture
is capable of spatiotemporal data analytics, they do not address how to integrate spatiotemporal data
streams sourced from IoT devices.

Kamburugamuve et al. [11] propose a scalable cloud-based real-time data processing architecture,
which focuses on integrating sensor data. They connect sensing devices to the cloud by using a
topic-based publish-subscribe message broker and enable scalable stream processing via a distributed
stream processing engine. They demonstrate the capabilities of their system in a robotics application.
As their message broker for data integration, they utilize Apache Kafka, which allows for good
scalability but does not by default support any lightweight IoT communication protocols. Furthermore,
since its subscription mechanism is only topic based, it is not ideal for spatiotemporal data stream
integration in contrast to the GeoMQTT protocol used in our architecture.

Zhou et al. [12] propose a system for efficient streaming access and cleaning of spatiotemporal
data, which is also based on Apache Storm. It uses Apache Kafka, a distributed, partitioned,
replicated commit log service in order to integrate the data into the Storm cluster. The produced
data, which can originate, for instance, from the Hadoop Distributed File System (HDFS), the Web or
other sources, is stored in the Kafka cluster, such that Storm can access it subsequently. In contrast to
our pipeline architecture, the streaming results of their system are written to a MongoDB database,
which allows users to query the results in real time.

Several other recent contributions exist in the area of stream processing of IoT data. Dey et al. [13]
propose a real-time streaming system called Namatad, which leverages machine learning to infer
insights from sensors within buildings. In the follow up work of Dey et al. [14], the authors also
study the impact of alternative IoT processing topologies for real-time processing pipelines, leading to
improved latency and accuracy. Furthermore, in the area of trajectory mining, Sun et al. [15] provide a

ISPRS Int. J. Geo-Inf. 2018, 7, 238 4 of 15

framework, which is capable of tackling several demands in this area (including map matching) in
contrast to several publications that only tackle a specific trajectory mining task.

Mattheis et al. [16] focus on the trajectory preprocessing task of online map matching applied
to raw trajectories. The objective is to determine the underlying position in a road network for a
given raw trajectory point. They propose a logical separation of map matching algorithms into several
components in order to distributively implement them in the stream processing framework Apache
Storm. They also use Apache Kafka as middleware tool to integrate the data into Storm and store the
state of their map matching algorithms in the scalable NoSQL database Apache Cassandra. They do
not explicitly cover IoT data integration and implement an online map matching algorithm which only
considers the last set of position candidates to determine ratings for position candidates. Furthermore,
they do not provide any performance measurements of their deployment.

Almeida et al. [17] also propose a distributed map matching algorithm, which they implement
in the analytics engine Apache Spark to tackle the map matching problem in the context of Big Data.
The published experimental results demonstrate the achieved accuracy while satisfying the required
scalability. However, the authors tackle the offline map matching problem, which assumes that the
trajectory points are not revealed one by one, but are available as a whole.

3. Methodology

For building our architecture, we assume that IoT devices are equipped with an GNSS receiver
and publish spatiotemporal data to a certain message broker. In order to allow spatiotemporal data
integration, we have to build a scalable broker cluster to which the IoT devices send their data.
Furthermore, we have to provide spout characteristics like message replay and parallel consumption
in order to inject the data into the stream processing framework. This section gives an overview
of how to use existing tools to match the stated requirements when designing our scalable stream
processing architecture.

3.1. Tools

The architecture has to integrate the dynamic data stream and perform a predefined mining task in
near real time. We choose Apache Storm as a stream processing engine, which provides high scalability
out of the box. However, the specific spatiotemporal stream data integration that allows for consuming
streams based on spatiotemporal subscriptions requires more tools. A scalable publish/subscribe
broker cluster for handling spatiotemporal events (geoevents) is required. Therefore, we utilize
GeoMQTT as messaging protocol, which is a specialized extension to the MQTT protocol. Furthermore,
Apache Storm needs an input source that allows for reprocessing of already accessed tuples. The tool
used to satisfy this demand is Apache Kafka, which works in-between the GeoMQTT broker cluster
and the Storm stream processing engine. The technologies are briefly introduced subsequently to
finally propose the complete pipeline with all components plugged together.

3.1.1. Geospatial Message Queuing Telemetry Transport Protocol (GeoMQTT)

GeoMQTT, originally published by Herle et al. [5,6], is a spatiotemporal extension to the widely
known and used IoT protocol MQTT. It adopts the publish/subscribe interaction scheme, where
publishers produce certain information and send them to a broker, such that consumers can subscribe
to them via specifying certain filters.

The protocol is event based, which means that, as soon as a message arrives at the broker, it is
forwarded to all of the consumers whose subscription filters are satisfied by the message. MQTT aims
to be suitable for constrained devices, typically present in the IoT domain by reducing communication
overhead. In GeoMQTT, a published message can be tagged with a timestamp/time interval and
a geometry additionally to the ordinary MQTT topic name. This way, it is possible for a consumer
to define a temporal- and/or a spatial filter in addition to the topic filter of the ordinary MQTT
subscription. Only if all filters are satisfied is the message forwarded to the subscribed consumer.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 5 of 15

The publish/subscribe scheme of GeoMQTT is illustrated by Figure 1. First, the consumers subscribe
their interests at the broker by specifying the introduced filters. If a message arrives at the GeoMQTT
broker, the stored subscriptions are matched against the message header and the broker notifies the
respective consumers.

GeoMQTT
Broker

SpatialFilter: (BBox)

TopicFilter: taxi/id/+
Consumer A

Subscriptions:

TopicFilter: taxi/id/366

Subscriptions:

TemporalFilter:

Consumer B

Subscriptions:
TopicFilter: taxi/id/350

Consumer C

(a)

GeoMQTT
Broker

Topic: taxi/id/366
Message A:

TimeStamp:

Point:

matches subscription
filters of consumers

Producer publishes
message Message A Consumer

A
is forwarded

Message A

is forwarded

Consumer
B

(b)

Figure 1. Publish/subscribe scheme of GeoMQTT. (a) subscription process; (b) notification process.

This subscription mechanism allows for easier integration of published data. Consider the
use case, where a specific trajectory mining algorithm is meant to only operate on data which is
located in a specific area, for example, to detect traffic congestions around a recently built intersection.
By subscribing to a buffer around the relevant area, we can specifically integrate the data of interest.
This use case is illustrated by Figure 2. The red lines depict an intersection, where, for example, new
traffic lights have been installed. By specifying the spatial filter of GeoMQTT as given in the figure,
we integrate all trajectory points of vehicles of the light blue area.

BUFFER(MULTILINESTRING(
(116.40065 39.86373, 116.40063 39.86294, 116.40100 39.86294, 116.40258 39.86302),
(116.40109 39.86064, 116.40100 39.86294)), 0.0005)

Figure 2. Example of an intersection of interest (red lines) and the corresponding buffer with size
0.0005 (light blue). The corresponding spatial filter applied in GeoMQTT is depicted in the legend.

3.1.2. Apache Storm

Apache Storm is a stream processing engine, which has proven to be highly scalable and fault
tolerant [9,18,19]. By defining the computation logic via so-called topologies, corresponding tasks are
assigned on predefined worker nodes. This way, the computation logic and the actual assignment of
tasks onto physical machines are separated, such that a machine failure will be automatically recovered
by assigning new tasks according to the computation logic among the remaining physical machines.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 6 of 15

The topologies mainly consist of two components. Spouts define the input of tuples into the
streaming graph, whereas Bolts represent intermediate computation steps. Each Bolt can consume and
output an arbitrary amount of input (respectively output) streams. Storm offers stream groupings for
Bolts, such as spreading incoming tuples among all tasks of a Bolt using shuffle grouping, or splitting
the stream over Bolt’s tasks by hashing a subset of the incoming tuples using field grouping.

3.1.3. Apache Kafka

Since basic implementations of MQTT broker typically just forward any incoming message to
clients that have subscribed to that topic, the consumer can only access each message once. Storm
Spouts require the ability to reprocess tuples if a failure occurs inside the computation graph. Therefore,
Apache Kafka [20] is introduced, a distributed, partitioned, replicated commit log service that provides
message queuing as well as publish/subscribe semantics. It maintains a partitioned log for every topic.
Messages inside the topic are stored for a certain period of time and are supplied with an offset that
indicates the message’s position inside the topic. Consumers are responsible for keeping their specific
offset so they can access the correct messages. That enables the capability for consumers to re-access
the message feed from a previous position for the sake of reprocessing messages. Storm provides
Spout implementations to consume messages from a Kafka cluster, which makes Apache Kafka a
suitable intermediate tool for the data integration into the stream processing engine Apache Storm.

3.2. Architecture of Stream Processing Pipeline

Starting from the assumption that there exist multiple dynamic streams of spatiotemporal data,
which are transmitted via the publish/subscribe protocol GeoMQTT, we have to realize a first layer
that processes this data and forwards it to subscribed consumers, namely a GeoMQTT broker cluster
with a flexible amount of nodes that support the GeoMQTT protocol. The published GeoMQTT
messages are subsequently forwarded to a Kafka cluster, such that a Storm Spout can consume them
later on. This Kafka cluster should only contain messages that are specifically processed by the stream
processing engine, which is realized by the early topic- and geospatial separation of data implemented
in the GeoMQTT-Kafka bridge. Furthermore, we need a load balancing service among the entry point
of the data streams. The final architecture is illustrated by Figure 3. We use the notations from [9] for
the Storm components. The arrows indicate the data flow and, on the bottom of the figure, the target
that is tackled by the specific architecture part is listed. The data is published to a GeoMQTT broker
cluster of variable size. Via a Kafka bridge (for each GeoMQTT broker), the data is transferred to a
Kafka cluster of variable size. Storm fetches the data from the Kafka cluster via the Kafka Spout. After
the data is processed, it is published again to the Kafka cluster for subsequent processing or to the
GeoMQTT broker such that it can be consumed.

Kafka cluster

Kafka
broker

Kafka
broker

GeoMQTT cluster

GeoMQTT
broker

GeoMQTT
broker

Kafka
bridge

IoT integration

Storm cluster

Kafka/
GeoMQTT
publisher

Kafka
spout

Stream processing

Figure 3. Complete architecture with focus on IoT data integration.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 7 of 15

4. Case Study: Map Matching

Trajectory mining is one typical field, where real-time analysis of spatiotemporal data is required
and thus is perfectly suitable as a case study to evaluate the proposed architecture. We will simulate
data streams of GNSS locations of a dynamic amount of vehicles, which are published via GeoMQTT.
Distributed state-of-the-art map matching algorithms are implemented for the usage in a Storm
topology and finally the complete architecture is deployed on a local cluster and evaluated regarding
its latency. We will first introduce the problem of map matching and present recent work regarding
algorithms. Afterwards, we will present our data set that we use for evaluation and finally analyze the
obtained results.

Typically, GNSS trajectories of vehicles are bound to errors, such that the determined locations
do not always match the underlying road network. However, trajectory mining algorithms need
to know on which road a vehicle is located at a certain point in time. According to Zheng [21] and
Newson and Krumm [22], the map matching problem can be formulated as follows. Given a trajectory
T̃ = (t̃p1, t̃p2, ..., t̃pn) of raw trajectory points. For each t̃pi ∈ T̃, determine a road segment e, such that
e intersects the ground truth trajectory point tpi ∈ T of the ground truth route T. The notations are
illustrated in Figure 4. Depending on whether the complete trajectory is available or trajectory points
are revealed over time, map matching algorithms are split into offline respectively online algorithms.
Based on the deployed architecture, we focus on the online map matching approach.

In general, map matching algorithms can be classified according to the additional knowledge
they apply [21]. Geometric algorithms specify the simplest category since they just snap the raw
trajectory point to the closest road segment. Topological algorithms utilize additional knowledge such
as connectivity of the road network. Another group of map matching algorithms can be classified as
probabilistic algorithms. They generate a set of possible points on the road network that could match
the corresponding raw trajectory point and rate them based on specified metrics. Finally, advanced map
matching algorithms are a combination of all groups. Several position candidates are generated and
rated based on geometric as well as connectivity based metrics. A probabilistic model serves as basis
for the position candidate evaluation. In the map matching domain, especially the Hidden Markov
Model (HMM) is widely adopted, since its model naturally fits the map matching problem [22].

1 Introduction

eT = (etp1, etp2, ..., etpn)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tpi 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etpn)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tpi 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

1 Introduction

eT = (etp1, etp2, ..., etp3, etp4, etp5)
a
etpi 2 eT
segment e, such that e
ground truth trajectory point tp1, tp2, tp3, tp4, tp5 2 T

1

Figure 4. Notations for map matching. The white points depict the raw trajectory points t̃pi received by
the algorithm. The green points depict the corresponding ground truth trajectory points tpi, where the
vehicle was actually located during a specific point in time.

4.1. Recent Work on Map Matching

Several map matching algorithms have been published in recent years, proposing online as well as
offline algorithms. Most of the publications implement advanced map matching algorithms using the
Hidden Markov Model (HMM) in order to provide a probabilistic model as a foundation [7,16,22,23].
Besides this, there exist other optimization approaches as suggested for example by Li et al. [24],

ISPRS Int. J. Geo-Inf. 2018, 7, 238 8 of 15

who improve existing map matching algorithms by applying trajectory simplification prior to map
matching them, which results in improved latency and accuracy.

Newson and Krumm [22] are some of the first researchers to invent an offline map matching
algorithm based on the HMM. They use the HMM to obtain ratings for possible position candidates
for a raw trajectory point. For any incoming trajectory point, a set of candidates (positions on possible
road segments) is generated and subsequently evaluated according to the probabilistic model.

For the ratings, they incorporate the great circle distance between raw trajectory points and their
associated position candidate. Furthermore, the shortest route between consecutive sets of position
candidates is analyzed with the assumption that the shortest route between consecutive position
candidates should be close to the great circle distance of their corresponding raw trajectory points.

Goh et al. [7] implement an HMM online map matching algorithm by extending existing solutions
for an optimal sliding window approach to apply an online Viterbi algorithm. Their aim is to find an
incremental solution that corresponds to a global solution in the end. The authors use the fact that
when the current surviving paths converge at some point (convergence point) in the Markov chain,
paths selected in the future will contain the same sub-path up to the convergence point. That implies
that the outputs of partial solutions have to match the global one.

4.2. Storm Topology Design for Map Matching

Subsequently, we present the design of our Storm topology, which performs online map matching
on raw trajectory data and thus serves as a proof of concept for the whole stream processing pipeline
as proposed in this paper. In order to achieve good scalability of a Storm topology, the implemented
map matching algorithms have to be split into several components allowing for scaling each
of them individually. The following architecture of splitting the map matching algorithms into
components is partially adopted from Mattheis et al. [16]. Map matching algorithms require mostly
geospatial information related to a raw trajectory point, such that they can evaluate, for instance,
distance measures regarding the underlying road network. The query process of this spatial data can
be separated from the algorithm, such that it can be implemented in a single Bolt, which we will call
Mapper Bolt subsequently. The map matching algorithm, which evaluates certain measures using the
queried spatial data from the Mapper Bolt, is encapsulated in the so-called Matcher Bolt. An overview
of the map matching topology is depicted by Figure 5.

Map Matching Topology

Kafka
Spout

Mapper
Bolt

„shuffle
grouping“

„shuffle
grouping

„field
grouping

on id“ Matcher
Bolt

Publisher
Bolt

Kafka
Cluster

Figure 5. Map matching topology.

Since the query process of a Mapper Bolt is independent of its related vehicle, it can consume the
messages of the Kafka Spout via the shuffle grouping paradigm. However, the Matcher Bolt computation
might rely on previous results of regarding the same vehicle, which is why each Matcher Bolt’s task
has to receive all tuples of a specific vehicle. This can be realized by using Storm’s field grouping
paradigm. Finally, in the proposed architecture, the map matched trajectory points are again published
using GeoMQTT together with the original timestamp and topic but now also with the map matched
position. Alternatively, they can be published to the Kafka broker cluster for using them as input for
subsequent analysis. This component is called the Publisher Bolt. Its task is independent of the related
vehicle, which allows it to consume the stream via shuffle grouping.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 9 of 15

4.3. Evaluation

We evaluated our architecture by deploying it on several virtual machines at a local server cluster.
We simulated a subset of taxi trajectories gathered by Yuan et al. [25,26] and measured the latency
inside the stream processing framework using the evaluation data provided by Storm, as well as the
complete period, which a trajectory point spends in the whole architecture (including all components
such as the GeoMQTT broker). In the following section, the deployment setup is described and the
test data set is introduced. Relevant implementation details of the storm components are introduced,
which are important for subsequent parameter tuning to achieve the best possible throughput.

4.3.1. Deployment Setup

In order to evaluate the architecture, we deployed it on a local cluster consisting of nine virtual
machines with 2 GB RAM each, which are launched on a server with 64 cores. Two virtual machines
are used for the databases that store the geometries such that the querying load can be split among
them. The Kafka cluster and the GeoMQTT cluster only consist of one virtual machine each, since they
did not turn out to be the limiting factor regarding overall throughput. Finally, the Storm topology
consists of a Nimbus, a Zookeeper and three supervisor virtual machines. The simulation of the
GeoMQTT trajectory data stream and the bridge to the Kafka cluster are operated on the same virtual
machine the GeoMQTT broker is running on.

4.3.2. Test Data Set

The dataset used to evaluate our architecture contains the GNSS trajectories of 10,357 taxis
captured during the period of 2 February to 8 February 2008 in Peking. The total number of points in
this dataset is about 15 million and the total distance of the trajectories reaches 9 million kilometers.
The average sampling interval between two consecutive points lies at about 177 s with a distance of
about 623 m [25,26]. Since the used map matching algorithms are optimized towards low to medium
frequencies of subsequent trajectory points, we picked a subset of vehicles for which the sampling rate
is below 10 s in between consecutive sampling points. During the simulation, we set the publishing
frequency to one trajectory point per taxi per second to obtain comparable results regarding latencies.

4.3.3. Total Latency Estimation

In the following, we describe the latency inside the Storm topology, which we capture via the
feedback that Storm provides (Storm UI). Furthermore, we are interested in the total time a trajectory
point needs to complete all stages of the pipeline. This includes the GeoMQTT broker, the forwarding
to the Kafka cluster, the subsequent processing inside the Storm topology, where the map matching
algorithms are implemented, plus the final publishing delay to the GeoMQTT broker. In order to
capture this total delay of one trajectory point, we compare the timestamp right before the trajectory
point is published via GeoMQTT with the timestamp recorded when the map matched result arrives at
the GeoMQTT broker. When we simulate multiple taxis, we plot the complete latency on the vertical
axis, whereas the index of the map matched output is present on the horizontal axis. Thus, we are
able to analyze the total latency during certain time periods (independent from the specific vehicle,
since we are only interested in the overall latency of our architecture over time).

4.3.4. Implementation and Parameter Tuning

For further understanding regarding the upcoming description of the parameter estimation,
we introduce relevant implementation details of the Mapper and the Matcher Bolt components.
For both of them, we realized two implementations.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 10 of 15

Mapper Bolt

The Mapper Bolt is responsible for providing the geometries so that the Matcher Bolt is able
to compute ratings for possible position candidates including topological information such as road
connectivity. The first realization uses a PostgreSQL database with spatial support via PostGIS. For each
raw trajectory point, the database is queried for relevant geometries. Thus, the load on the database
increases linearly with the amount of trajectory points. One possibility to overcome this bottleneck
is by replicating the PostGIS database and, therefore, load balancing the queries. In the deployment
setup, the database has been replicated once.

However, with increasing size of trajectory points that have to be processed in real time, this could
lead to very high demands regarding the size of the database cluster. This is why we implemented a
second Mapper Bolt that uses caching to tackle this issue. The caching Mapper Bolt builds an index on
already queried geometries such that it can check its cache for relevant geometries before querying the
database. We claim that this approach yields to a higher latency at the beginning, since the cache has
to build up first; nevertheless, once enough geometries have been collected, the latency of the Mapper
Bolt decreases. The caching Mapper Bolt can be configured with three parameters: the spatial extent
for which the database is queried in case of a cache fault, the minimum amount of geometries that the
cache has to return such that the result is not considered to be a cache failure and the area for which
the cache is queried. The difference between the extents of the queries for the cache and the database
queries results from the idea that, in case of a cache failure, it is beneficial to query more geometries
than required, to reduce the amount of upcoming cache failures.

When analyzing the total latency of trajectory points applying the non-caching mapper while
simulating a relatively high amount of 100 taxis, the results we obtain diverge (Figure 6a) using
100 taxis with a publishing frequency of 1/s. However, if we run the same test while utilizing the
caching Mapper Bolt, we obtain a total latency that converges to a value of approximately one second
over time. After the cache has sufficiently built up, we arrive at a stable low latency (see Figure 6b).

(a) (b)

Figure 6. Total latency comparison between non-caching and caching Mapper Bolt on throughput of
100 trajectory points per second. (a) non-caching mapper bolt; (b) caching mapper bolt.

The optimal parametrization for the caching mapper was obtained by multiple test runs, where we
analyzed the amount of database requests required to serve the matcher with a sufficient amount of

ISPRS Int. J. Geo-Inf. 2018, 7, 238 11 of 15

geometries. We discovered that the spatial extent for which we query the database in case of a cache
failure is optimally twice as large as the spatial extent that is delivered to the matcher, which is set
to 5× 10−4. This helps to reduce subsequent database requests due to caching more geometries than
needed for the current request. The minimum amount of geometries that we specify as sufficient when
searching the cache for stored geometries influences the average amount of geometries that the matcher
obtains in order to rate its position candidates. We obtained that setting this value to 50 exhibits best
results regarding the amount of database requests and the average amount of geometries.

Matcher Bolt

The Matcher Bolt implements the determination of ratings for possible position candidates.
We chose to implement the algorithms of Mattheis et al. [16] and Goh et al. [7], which have been
described above. The first one emits a mapped trajectory point immediately for every incoming raw
trajectory point, while generating ratings for possible position candidates and using connectivity to the
previous set of position candidates. The latter one uses a sliding window approach, which only emits
a mapped trajectory point if a convergence point in the computed Markov chain is found. Thus, the
major difference is that the maximizing path along the Markov chain for two or more sets of position
candidates is determined, while the other one just uses Markov chain path maximization for two sets
of position candidates. This means that the Window Matcher Bolt has a delay that depends on the
frequency of incoming trajectory points. If we set the frequency of incoming trajectory points to 1/3 s,
we expect latencies to be a multiple of 3 s plus a processing delay depending on the size of the current
Markov chain for which the path is maximized. This is illustrated by Figure 7a, where we set the
frequency of published trajectory points to 1/3 s for a test set of 10 taxis.

(a) (b)

Figure 7. Total latency comparison on low and medium throughput. (a) latency on low throughput of
10 trajectory points per second; (b) latency on throughput of 50 trajectory points per second.

4.3.5. Topology under Load

In this section, we will focus on the evaluation of the topology using the Matcher Bolt that
implements the algorithm of Goh et al. [7] and the caching Mapper Bolt, since the sliding window
approach achieves better accuracy results when comparing the two algorithms. We noticed that, when
increasing the load on the topology, the total latency of the tuples of the topology increases and exceeds

ISPRS Int. J. Geo-Inf. 2018, 7, 238 12 of 15

the sum of the latencies of the individual components, which is due to the time tuples spent in internal
buffers of the topology. This phenomenon can be controlled by introducing a back pressure in the
Storm Spout. Setting the MAX_SPOUT_PENDING value, we can force the Spout to stop emitting
tuples in the topology if the amount of unacknowledged tuples in the topology exceeds this value. As a
result, published messages that arrive in the Kafka cluster are not directly emitted into the topology,
such that, when looking at the complete processing latency of trajectory points (including all stages of
the pipeline), we notice a heavy increase whenever the Storm Spout is throttled. This is illustrated in
Figure 6b, where a publishing frequency of 1/s is used to simulate 100 taxis. As soon as the Kafka
Spout is throttled, the complete processing delay of trajectory points increases additionally to the delay,
if no overload of the topology occurs. After we arrive at the peak delay, we have multiple trajectory
points stored that can be processed without waiting for upcoming ones, since they are already present,
which is the reason why the delay decreases again. After a certain time, the total latency has stabilized,
due to more efficient geometry provision of the Mapper Bolt. Its cache has built up, such that the
time consuming database queries are reduced. The higher we set the MAX_SPOUT_PENDING value,
the higher are the delays of the peaks, however the faster the system stabilizes.

If we increase the throughput to a certain level (above 150 taxis which publish at a frequency
of 1/s), the total latency of map matched trajectory points does not stabilize after the initial peaks
but shows peaks of roughly the same size again, which can be seen in Figure 8b. Thus, going above
this level of throughput is not reasonable for our test deployment. Since our deployment setting
consists only of a single server, further investigations into the performance of the architecture in a real
distributed setup have to be undergone in future work. However, the architecture is designed to be
easily scalable by choosing open source components that can each be replicated separately.

(a) (b)

Figure 8. Total latency comparison on medium and high throughput.(a) latency on throughput of
100 trajectory points per second; (b) latency on throughput of 150 trajectory points per second.

5. Outlook

In this paper, we realized the implementation of our proposed real-time stream processing
architecture for one application field of spatiotemporal stream mining, namely online map matching.
However, the architecture is perfectly suited for implementing any other spatial or non-spatial stream
mining algorithm in the Apache Storm framework and reusing the data integration layer of the

ISPRS Int. J. Geo-Inf. 2018, 7, 238 13 of 15

architecture. The architecture can be offered as a service, since it is implemented as a pipeline with
GeoMQTT as input and output. Herle and Blankenbach proposed the concept of GeoPipes [5],
which matches the interfaces of our pipeline architecture. They demonstrate the integration of the
GeoPipes idea in the Web Processing Framework (WPS) interface to expose standardized real-time
geo-processing services [27]. As a proof of concept, we implemented a WPS map matching service that
utilizes our architecture to offer the algorithms as a standardized real-time geo-processing service and
offered the map matching algorithm via a web application.

For understanding how our pipeline architecture can be used in practice, consider the following
use case: A company wants to offer a fleet tracking platform, where they provide real-time services
to their customers such as map matching. Customers provide the gathered location data of their
vehicle fleet, which is equipped with GNSS sensors. In order to simplify the data provision process,
the company wants to rely on open standard communication protocols. By utilizing our proposed
architecture, the company only needs to implement the streaming algorithms in the Apache Storm
framework while reusing the other components of the architecture. While customers publish all the
location data to the GeoMQTT broker, the GeoMQTT protocol allows the company to specifically
integrate data, which is relevant for a specific stream processing algorithm. Customers like bus
companies might be interested in analyzing traffic congestions regarding a recent route optimization.
By only subscribing to the target area using spatial filters, relevant data can be specifically fed into the
stream processing algorithm.

6. Conclusions

In this paper, we proposed a real-time stream processing pipeline that allows for spatiotemporal
data stream integration from IoT devices. The data integration layer enables geospatial subscriptions,
utilizing the GeoMQTT protocol. This allows for target specific data integration while preserving
capabilities of gathering data from IoT devices due to the resource efficiency of GeoMQTT. We utilize
the state-of-the-art stream processing framework Apache Storm as the core tool for our architecture
and Apache Kafka as tool for message processing between GeoMQTT broker and Apache Storm.
We demonstrated the capabilities of the proposed architecture by implementing efficient map matching
algorithms and evaluated them on a distributed deployment on a local cluster. In contrast to existing
approaches that implement map matching algorithms in a stream processing framework, we provide
detailed latency evaluations of a distributed implementation of the online map matching algorithm
proposed by Goh et al. [7]. This algorithm achieves more accurate results than comparable algorithms
based on the HMM by using a sliding window approach.

Simulating a sample set of taxi trajectories from Peking, we obtained stable latencies in the area
of milliseconds, when not exceeding a simulated publishing ratio of 100 trajectory points per second.
In our current setting, we only evaluated our pipeline architecture on a single server. However,
the architecture is deployed using several virtual machines and relies on open source tools that can
be replicated easily. In further investigations of the architecture, we will incorporate more rigorous
checks regarding the latency in a more powerful cloud setting and also check the robustness of the
system, respectively, of the algorithms under distributed failover.

The proposed architecture can be used to implement applications for several use cases of
deploying and evaluating distributed stream processing algorithms that operate on spatiotemporal
data streams originating from IoT devices.

Author Contributions: M.L., S.H., R.K. and J.B. designed the methodology; M.L. and S.H. conceived and
conducted the experiments; R.K. and J.B. administrated and supervised the research project; and M.L. wrote
the paper.

Funding: This research has been conducted as part of the EarlyDike project (http://www.earlydike.de/), which
is funded by the German Federal Ministry of Education and Research (BMBF) within the GEOTECHNOLOGIEN
programme (03G0847A).

Conflicts of Interest: The authors declare no conflict of interest.

ISPRS Int. J. Geo-Inf. 2018, 7, 238 14 of 15

References

1. Galić, Z. Spatio-Temporal Data Streams; Springer: Berlin, Germany, 2016.
2. Cherniack, M.; Balakrishnan, H.; Balazinska, M.; Carney, D.; Cetintemel, U.; Xing, Y.; Zdonik, S.B. Scalable

distributed stream processing. In Proceedings of the First Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, 5–8 January 2003; Volume 3, pp. 257–268.

3. Stonebraker, M.; Çetintemel, U.; Zdonik, S. The 8 requirements of real-time stream processing. SIGMOD Rec.
2005, 34, 42–47. [CrossRef]

4. Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer
protocols for the internet of things. Trans. IoT Cloud Comput. 2015, 3, 11–17.

5. Herle, S.; Blankenbach, J. GeoPipes using GeoMQTT. In Geospatial Data in a Changing World; Springer:
Berlin, Germany, 2016; pp. 383–398.

6. Herle, S.; Becker, R.; Blankenbach, J. Bridging GeoMQTT and REST. In Proceedings of the Geospatial Sensor
Webs Conferenc, Münster, Germany, 29–31 August 2016; pp. 1–5.

7. Goh, C.Y.; Dauwels, J.; Mitrovic, N.; Asif, M.T.; Oran, A.; Jaillet, P. Online map-matching based on hidden
markov model for real-time traffic sensing applications. In Proceedings of the 2012 15th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA, 16–19 September 2012;
pp. 776–781.

8. Villari, M.; Celesti, A.; Fazio, M.; Puliafito, A. AllJoyn Lambda: An architecture for the management of smart
environments in IoT. In Proceedings of the 2014 International Conference on Smart Computing Workshops
(SMARTCOMP Workshops), Hong Kong, China, 5 November 2014; pp. 9–14.

9. Marz, N.; Warren, J. Big Data, Principles and Best Practices of Scalable Real-Time Data Systems; Manning
Publications: Shelter Island, NY, USA, 2015; Volume 37, pp. 1–23.

10. Thakur, G.S.; Bhaduri, B.L.; Piburn, J.O.; Sims, K.M.; Stewart, R.N.; Urban, M.L. PlanetSense: A real-time
streaming and spatio-temporal analytics platform for gathering geo-spatial intelligence from open source
data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Seattle, WA, USA, 3–6 November 2015; ACM: New York, NY, USA, 2015; pp. 11:1–11:4.
[CrossRef]

11. Kamburugamuve, S.; Christiansen, L.; Fox, G. A framework for real time processing of sensor data in the
cloud. J. Sens. 2015, 2015, 468047. [CrossRef]

12. Zhou, L.; Chen, N.; Chen, Z. Efficient streaming mass spatio-temporal vehicle data access in urban sensor
networks based on Apache Storm. Sensors 2017, 17, 815. [CrossRef] [PubMed]

13. Dey, A.; Ling, X.; Syed, A.; Zheng, Y.; Landowski, B.; Anderson, D.; Stuart, K.; Tolentino, M.E. Namatad:
Inferring occupancy from building sensors using machine learning. In Proceedings of the 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 478–483.
[CrossRef]

14. Dey, A.; Stuart, K.; Tolentino, M.E. Characterizing the impact of topology on IoT stream processing.
In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore,
5–8 February 2018; pp. 505–510.

15. Sun, W.; Zhu, J.; Duan, N.; Gao, P.; Hu, G.Q.; Dong, W.S.; Wang, Z.H.; Zhang, X.; Ji, P.; Ma, C.Y.; Huang, J.C.
Moving object map analytics: A framework enabling contextual spatial-temporal analytics of internet of
things applications. In Proceedings of the 2016 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI), Beijing, China, 10–12 July 2016; pp. 101–106. [CrossRef]

16. Mattheis, S.; Al-Zahid, K.K.; Engelmann, B.; Hildisch, A.; Holder, S.; Lazarevych, O.; Mohr, D.; Sedlmeier,
F.; Zinck, R. Putting the car on the map: A scalable map matching system for the open source community.
In Proceedings of the Informatik 2014, Stuttgart, Deutschland, 22–26 September 2014; pp. 2109–2119.

17. Almeida, A.M.R.; Lima, M.I.V.; Macedo, J.A.F.; Machado, J.C. DMM: A distributed map-matching algorithm
using the MapReduce paradigm. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1706–1711. [CrossRef]

18. Apache Software Foundation. Apache Storm; Apache Software Foundation: Forest Hill, MA, USA, 2015.
19. Ranjan, R. Streaming big data processing in datacenter clouds. IEEE Cloud Comput. 2014, 1, 78–83. [CrossRef]
20. Apache Software Foundation. Apache Kafka; Apache Software Foundation: Forest Hill, MA, USA, 2016.
21. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 29. [CrossRef]

http://dx.doi.org/10.1145/1107499.1107504
http://dx.doi.org/10.1145/2820783.2820882
http://dx.doi.org/10.1155/2015/468047
http://dx.doi.org/10.3390/s17040815
http://www.ncbi.nlm.nih.gov/pubmed/28394287
http://dx.doi.org/10.1109/WF-IoT.2016.7845462
http://dx.doi.org/10.1109/SOLI.2016.7551669
http://dx.doi.org/10.1109/ITSC.2016.7795788
http://dx.doi.org/10.1109/MCC.2014.22
http://dx.doi.org/10.1145/2743025

ISPRS Int. J. Geo-Inf. 2018, 7, 238 15 of 15

22. Newson, P.; Krumm, J. Hidden markov map matching through noise and sparseness. In Proceedings of the
17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle,
WA, USA, 4–6 November 2009; ACM: New York, NY, USA, 2009; pp. 336–343. [CrossRef]

23. Lou, Y.; Zhang, C.; Zheng, Y.; Xie, X.; Wang, W.; Huang, Y. Map-matching for low-sampling-rate GPS
trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; ACM: New York, NY, USA, 2009;
pp. 352–361. [CrossRef]

24. Li, H.; Kulik, L.; Ramamohanarao, K. Spatio-temporal trajectory simplification for inferring travel paths.
In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Dallas, TX, USA, 4–7 November 2014; ACM: New York, NY, USA, 2014; pp. 63–72.
[CrossRef]

25. Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.; Huang, Y. T-drive: Driving directions based on taxi
trajectories. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, San Jose, CA, USA, 2–5 November 2010; ACM: New York, NY, USA, 2010; pp. 99–108.
[CrossRef]

26. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with knowledge from the physical world. In Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,
CA, USA, 21–24 August 2011; ACM: New York, NY, USA, 2011; pp. 316–324. [CrossRef]

27. Herle, S.; Blankenbach, J. Enhancing the OGC WPS interface with GeoPipes support for real-time
geoprocessing. Int. J. Digit. Earth 2017, 11, 48–63. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1653771.1653818
http://dx.doi.org/10.1145/1653771.1653820
http://dx.doi.org/10.1145/2666310.2666409
http://dx.doi.org/10.1145/1869790.1869807
http://dx.doi.org/10.1145/2020408.2020462
http://dx.doi.org/10.1080/17538947.2017.1319976
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	Tools
	Geospatial Message Queuing Telemetry Transport Protocol (GeoMQTT)
	Apache Storm
	Apache Kafka

	Architecture of Stream Processing Pipeline

	Case Study: Map Matching
	Recent Work on Map Matching
	Storm Topology Design for Map Matching
	Evaluation
	Deployment Setup
	Test Data Set
	Total Latency Estimation
	Implementation and Parameter Tuning
	Topology under Load

	Outlook
	Conclusions
	References

