
 International Journal of

Geo-Information

Article

The Implications of Field Worker Characteristics and
Landscape Heterogeneity for Classification
Correctness and the Completeness of
Topographical Mapping

Kiira Mõisja *, Evelyn Uuemaa ID and Tõnu Oja

Department of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; evelyn.uuemaa@ut.ee (E.U.);
toja@ut.ee (T.O.)
* Correspondence: kiira.moisja@ut.ee; Tel.: +372-7375-827

Received: 6 April 2018; Accepted: 27 May 2018; Published: 29 May 2018
����������
�������

Abstract: The quality of spatial data may vary spatially. If mapping (interpretation of orthophotos) is
done during fieldwork, this variation in quality may occur as a result of differences in the complexity
of the landscape, differences in the characteristics of individual field workers, and differences in their
perception of the landscape. In this study, we explored the interaction between the characteristics of
these workers, including their gender and years of experience (as a proxy for their mapping skills),
and landscape heterogeneity. There was no significant difference between male and female workers.
Although field workers with more years of experience generally had higher mapping quality, the
relationship was not statistically significant. We found differences in the rates of misclassification,
omission, and commission errors between workers in different landscape types. We conclude that
the error rates due to misclassification, omission, and commission were the lowest in more diverse
landscapes (high number of different land use types) with a relatively high amount of buildings,
whereas the error rates were the highest in mainly forested landscapes with larger and more complex
shaped patches.

Keywords: classification correctness; commission; landscape metrics; omission; spatial data quality;
thematic accuracy; topographical mapping; volunteered geographic information

1. Introduction

Spatial data quality has been the subject of discussions for more than 30 years [1–6]. During this
period, researchers have conducted several academic studies on error or uncertainty modelling [7–9]
and on how to communicate data quality information [10–12]. In addition, several international
standards related to data quality have been established [13]. Standardisation work has been completed
under the ISO 1957 standard [14], which clarifies the scope of data quality, defines the elements and
the measures of quality, describes quality assessment procedures, provides guidelines for reporting the
results of a quality evaluation, and introduces the concept of metaquality. Thus, metaquality provides
information on the evaluation of quality and the results in order to describe the suitability of the
evaluation method, the measure or measures that were applied, and the results. [14]. Nevertheless,
confusion in using quality terms may still occur. For example, completeness and thematic accuracy
have been defined as quality measures by Senaratne et al. [15], whereas ISO 19157 [14] defines them as
quality elements.

In order to describe spatial data quality, ISO 19157 provides 21 quality elements (Figure 1),
which have been organized into six categories: completeness, thematic accuracy, logical consistency,
temporal quality, positional accuracy, and usability. However, the standard allows for expansion of the
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list, so that one can always add more quality elements. Talhofer et al. [16] suggested using five essential
criteria for the evaluation of spatial data quality based on value-analysis theory: database content,
database technical quality, database timeliness, area importance, and user friendliness; the latter is
intended to consider data quality from the user’s point of view. Fonte et al. [17] proposed additional
quality indicators for volunteered geographic information (VGI).

Figure 1. Overview of the ISO 19157:2013 data quality elements modified [14]. The focus of the present
study is highlighted.

In the present study, we focused on three data quality elements: classification correctness,
commission, and omission. Hereafter, we will refer to these as misclassification, commission,
and omission (MCO) errors. To make our discussion less abstract, we will refer to the topographical
data produced by the Estonian Land Board (Estonia’s national mapping agency) [18]. The Estonian
topographic dataset includes not only information about relief, but also information about
infrastructure (e.g., roads and electric power lines), settlements, hydrography, and land use [19].
In the current study, we did not consider relief and focused only on the other map elements. To assess
MCO errors, we used direct evaluation methods [14]. In this approach, data are compared with
ground-based data obtained by means of field-mapping, or with reference data such as highly accurate
maps or imagery [20,21]. Using reference data for assessment of spatial data quality is common practice
in remote sensing [22] and in VGI [23–26]. However, large-scale topographical maps (typically at
a scale of ≥1:50,000 [27]) focus on small areas, and in habitat mapping, more accurate maps are rarely
available. Moreover, the large-scale topographical datasets produced by national mapping agencies
are very often used as reference data themselves [28]. Therefore, ground-based data is often used for
an assessment of MCO errors in topographical or habitat data [29,30].

The quality of spatial data may vary spatially [31]. If mapping is done by fieldwork, the quality
may be variable as a result of differences in the complexity of the landscape and in the mapping skills of
individual workers, as well as in their perception of the landscape. Smith et al. [32], van Oort et al. [22],
and Tran et al. [33] found that the probability of correct classification of satellite images depended
on landscape complexity. The probability of correct classification was higher in more homogeneous
landscapes and lower in heterogeneous landscapes. The effect of the mapping skills of the individual
mappers on habitat mapping quality was tested by Cherrill and McClean [34]. In their study, six field
workers independently surveyed the same area. Only 7.9% of the total study area was classified as
the same land cover type by all six surveyors. This indicates that potentially large inconsistencies in
mapping may result from differences in mapping skills among field surveyors. Hearn et al. [35] found
that increasing years of experience and experience with mapping certain landscape types improved
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mapping quality, although mapping time, cost, and length of route did not correlate with the mean
level of agreement among surveyors. Moreover, several studies [36–39] highlighted the possibility of
gender differences in spatial ability (i.e., men and women interpret spaces differently). Reilly et al. [40]
noted that gender gaps in spatial ability were the largest of all gender differences in cognitive abilities.

However, to our knowledge, the interaction between the impact of gender, years of experience,
and landscape heterogeneity has not yet been investigated.

The main aims of the present study were to determine whether and how MCO errors differed
among field workers and whether any differences were influenced by landscape heterogeneity.
We hypothesised that mapping quality would decrease in heterogeneous landscapes and landscapes
with relatively closed viewsheds, and that it would be affected by the worker’s characteristics.

2. Materials and Methods

2.1. Study Area and Data

We used quality control results (MCO errors) to validate the Estonian Basic Map, which is
a national topographic vector database (1:10,000) that was produced by the Estonian Land Board
after Estonia regained its independence in 1991 [41]. Because of the poor quality of Soviet maps [42],
the Estonian Basic Map was created from scratch by means of stereo-photogrammetry [43] supported
by extensive fieldwork, and the results were subsequently inspected by quality controllers who also
worked in the field. The quality controllers inspected mapping quality along linear routes [18]. These
routes and the quality control results were used in the current study.

To define the size of the controlled area, which was used for spatial analysis and the calculation of
quality measures, we generated buffers around the field inspection routes. We used buffer widths of
50 m on either side of the route if the surrounding landscape had a “closed” viewshed (e.g., was located
in forests, shrubs, or built-up areas) and 100 m in landscapes with “open” viewsheds. The routes were
11 to 15 km long. The quality control results were obtained from 2003 to 2006, and were recorded
in an error database that comprised 5100 records. In total, the work of 21 workers was inspected by
6 quality controllers at 93 sites (Figure 2), which covered all main landscape types in Estonia [44].
The field workers were trained in the field classification of a landscape and supported by a detailed
mapping specification [45] that included detailed descriptions of each category. Moreover, in each
spring before the mapping season, a joint two-day seminar for all workers and quality controllers was
held in order to harmonise their feature classifications. At the time of the survey, workers had 2 to
11 years of fieldwork experience. For each field worker, we also obtained data about their gender and
years of experience. Because no formal skill assessments were obtained for the field workers, we used
their years of experience as a proxy for their skill level.

Figure 2. Locations of the sites (red dots) where quality control was performed.
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2.2. Quality Elements and Measures

We described fieldwork quality in terms of completeness and thematic accuracy (Figure 1).
Completeness was subdivided into two quality elements: omission and commission. Omission
represents a case in which a landscape feature that must be mapped is missing, whereas commission
represents a case in which a feature exists on the map, but not in the landscape. For thematic accuracy,
we used only the classification correctness (expressed as the proportion of the total objects that were
misclassified), which represented the agreement between map objects and the corresponding features
in the landscape.

The ISO 19157 standard notes that errors can be classified differently into quality elements.
For example, the misclassification of a local road as a path could be considered an error of omission
of a local road or alternatively an error of commission in defining a path; therefore, it is possible to
define two errors for the same problem [18]. For efficient quality control, it is important to classify
all errors in the same way. For example, one rule that was used in quality reporting for the Estonian
Basic Map concerns areal features; it states that polygons can only be recorded as misclassified, not as
commission or omission errors [18]. Therefore, in our study, areal features do not have commission or
omission errors (Table 1).

Table 1. Quality elements and measures of each element according to the ISO 19157 [14] standard used
in the study.

Quality Element Quality Measure

Misclassification
Error rate of lines

Error rate of points
Error rate of polygons

Omission
Error rate of lines

Error rate of points

Commission
Error rate of lines

Error rate of points

Each quality element is described by a quality measure. To offer quality results in a comparable
way, ISO 19157 [14] provides a list of data quality measures. However, the list is not complete and
users can define their own measures according to the structure given by the standard. In the present
study, we used error rate as a quality measure for all quality elements. This rate is expressed as the
total number, length or area of erroneous items in a geometrical type (e.g., lines) divided by the total
number, length or area of items in that geometrical type, multiplied by 100. As there are different
numbers of points, lines, and polygons in the landscape, each of these geometrical types comprises
a different total number of features. Therefore, we calculated a weighted average for the error rate of
these three geometrical types for every quality element, and summarised these values across all types
to obtain a single combined error rate (Equations (1)–(3)). The weights equalled the proportion of the
total numbers of point, line, and polygon features in the total number of features (based on the total
number from the assessments by the expert quality controllers). Based on this assessment, 30% of the
features were points in the present study, so the weight for points was 0.30. For lines, the weight was
0.48, and for polygons, the weight was 0.22.

MWA = 0.22 Mpoly + 0.48 Mline + 0.30 Mpoint (1)

CWA = (0.48 Cline + 0.30 Cpoint)/(0.48 + 0.30) (2)

OWA = (0.48 Oline+ 0.30 Opoint)/(0.48 + 0.30) (3)

where M, C, and O are the rates of misclassification, commission, and omission errors, respectively;
WA indicates the weighted average; and poly, line, and point represent the corresponding
geometrical types.
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2.3. Landscape Indicators

The topographical vector database of the Estonian Basic Map consists of lines, points, and
polygons. Landscape indicators can be calculated only for polygons. Therefore, we integrated lines
(e.g., hedgerows, watercourses, and fences) and points (e.g., groves, trees, and heaps of stones) by
overlapping them to create areal features (e.g., fields, forests, and buildings) using buffers with
an average width equal to that of the feature in reality [46].

A landscape structure can be characterized by its composition (the amount of each patch type
within the landscape), which is measured by the proportions of different land use types and by diversity
metrics, although these metrics are not spatially explicit. The structure can instead be measured based
on its configuration (the spatial distribution or spatial characteristics of patches within the landscape),
which is measured by edge shape and size metrics [47]. From a mapping perspective, both aspects
are important. In this study, we used the Patch Analyst 5.1 software [48] to calculate 18 landscape
indicators for each field-inspection site (Table 2). In addition to classical landscape metrics, we also
calculated the proportion of land use that can be considered open areas (e.g., field and grassland),
closed areas (e.g., forest, bush, and orchard), and built-up areas (e.g., yards with buildings) of the
landscape to describe the land use composition.

Table 2. Landscape indicators used in the study. For a more detailed description, see Rempel et al. [48].

Landscape Indicator Type Landscape Indicator

Diversity metrics SDI: Shannon’s diversity index
SEI: Shannon’s evenness index

Shape metrics

AWMSI: area-weighted mean shape index
MSI: mean shape index

MPAR: mean perimeter–area ratio
MPFD: mean patch fractal dimension

AWMPFD: area-weighted mean patch fractal dimension

Edge metrics ED: edge density
MPE: mean patch edge

Patch density and size metrics

MPS: mean patch size
PD: patch density

PRD: patch richness density
MedPS: median patch size

PSCoV: patch size coefficient of variance
PSSD: patch size standard deviation

Land use composition
OV: proportion of land use creating open viewsheds in the landscape
CV: proportion of land use creating closed viewsheds in the landscape

BU: proportion of built-up areas in the landscape

2.4. Statistical Analyses

Landscape indicators have different units and scales. To rescale the data so that it could be
analysed together, we standardised all landscape indicators before the statistical analysis to have the
properties of a standard normal distribution with µ = 0 and σ = 1. Many of the landscape metrics
are very strongly correlated. Therefore, we eliminated some of them by means of factor analysis
using the varimax rotation. To find similar landscapes among the field inspection sites (Figure 1),
we used k-means clustering [49] based on the factor scores for the landscape indicators and the
proportion of built-up areas in the landscape. We identified similar landscape types to see if there were
differences in error rates within similar landscape types. According to the Kolmogorov–Smirnov test
for normality, none of the quality measures under consideration were normally distributed. Therefore,
we used Kruskal–Wallis analysis of variance (ANOVA) to calculate mean rank values of error rates
for each landscape type and used post-hoc multiple comparisons to identify significant differences
between landscapes.
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To detect differences in spatial data quality among the workers by gender and years of experience,
we used box-plots and the Mann–Whitney U test. We also performed Spearman rank-order correlation
to test the relationship between years of experience and error rates. All analyses were performed in
Statistica 12 software [50].

3. Results

3.1. Landscape Metrics

The factor analysis showed that the first two factors together explained 62.9% of the total variation
in the landscape indicators, and the first four factors together explained 82.3% of the variation (Table 3).
A rule-of-thumb for retaining factors is that the associated eigenvalue must be greater than 1 [51].
All four factors met this criterion, although the eigenvalue of the fourth factor was close to the threshold;
we retained the fourth factor because it appeared to be uniquely and strongly associated with one of
the landscape metrics (MSI). The first axis was significantly positively correlated with diversity (SDI,
SEI), edge (ED), shape (AWMPFD), and patch density (PD) metrics; it was also significantly negatively
correlated with patch size (MPS). We described this axis as diversity. The second axis was most strongly
correlated with patch size metrics (PSCoV, PSSD), but also with shape metrics (MPFD, MPAR) and
patch richness density (PRD). As MPAR and MPFD are both based on patch area, we described this
axis as the patch size distribution. The third axis was clearly related to landscape openness and closure,
and we therefore named it closure.

The fourth axis was only significantly related to MSI (shape), but the loading was strong. Metrics
that evaluate the shape of the patches have been one of the important factors in most previous
landscape studies [52–54]. Moreover, MSI is a good indicator of human influence on the landscape,
because its value is significantly lower for areas with strong human influence, as humans tend to
create patches with a regular shape. Therefore, we named this axis patch shape complexity. BU only
contributed significantly to axis 3, but as built-up areas are important features in field mapping and
the loading was strong, we included BU as an additional parameter to in our cluster analysis.

Table 3. Results of the factor analysis using the varimax rotation. Significant values are in bold (p <
0.05).

Factor Number

1 2 3 4

Diversity Patch Size Distribution Closure Patch Shape Complexity

Eigenvalue 6.93 4.39 2.43 1.06
Cumulative % of variance 38.52 62.92 76.41 82.32

% Total variance 38.52 24.40 13.49 5.91

Factor Loadings (after Varimax Rotation)

SDI 0.92 0.12 −0.07 0.11
SEI 0.90 0.04 0.01 0.17

AWMSI 0.41 0.56 0.10 −0.04
MSI −0.07 0.09 0.30 0.90

MPAR −0.10 −0.78 0.00 0.51
MPFD 0.22 0.86 0.29 −0.06

AWMPFD 0.83 −0.34 0.14 −0.22
ED 0.94 0.17 0.15 −0.05

MPE −0.36 0.71 0.40 0.37
MPS −0.76 0.43 0.10 0.26

MedPS −0.32 0.38 0.46 0.21
PSCoV −0.03 0.92 −0.04 0.07
PSSD −0.51 0.75 0.06 0.20
PRD 0.15 −0.74 −0.03 −0.31
PD 0.92 −0.14 −0.13 −0.23
OV −0.15 −0.10 −0.94 −0.08
CV 0.65 −0.02 −0.45 −0.33
BU −0.10 0.08 0.92 0.19
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3.2. Cluster Analysis of the Landscapes

We used clustering based on the factor scores for the landscape indicators and the proportion
of built-up areas in the landscape to reveal clusters that represent different landscape types (Table 4,
Figure 3). There were 17 sites in the first cluster and these landscapes had high diversity, mainly because
of the relatively high amount of buildings between fields and grasslands. Patch shape complexity was
very low, mainly because of the simple shape of buildings and other characteristics of built-up areas.
We named this cluster built-up-diverse. The second landscape cluster had 37 sites. The diversity and the
proportion of built-up areas in those landscapes were very low, patch shape complexity was relatively
simple, and they were mainly dominated by cultivated and grassland areas. Therefore, we named this
landscape cluster open-simple. The third landscape cluster had the opposite of the characteristics in the
second cluster, with higher diversity, closure, and patch shape complexity, so we named this landscape
cluster closed-complex. The 39 sites belonging to this landscape cluster were mainly forested.

Table 4. Means, standard deviations, and variances of factor values for the landscape clusters. N is
number of sites, and FW is the number of field workers who mapped sites in that cluster. Landscape
factors were derived from the factor analysis (Table 3).

Landscape Indicator
or Factor

Cluster 1 Cluster 2 Cluster 3

Built-Up-Diverse Open-Simple Closed-Complex

(N = 17; FW = 7) (N = 37; FW = 14) (N = 39; FW = 19)

Mean St.Dev. Variance Mean St.Dev. Variance Mean St.Dev. Variance

Built-up area 1.63 1.19 1.41 −0.34 0.44 0.2 −0.39 0.42 0.18
Diversity 1.3 1.01 1.02 −0.68 0.67 0.45 0.08 0.58 0.34

Patch size distribution 0.07 0.98 0.96 0.63 0.99 0.97 −0.63 0.54 0.29
Closure −0.59 0.51 0.26 −0.37 0.81 0.66 0.6 1.01 1.03

Patch complexity −0.44 0.84 0.71 −0.06 0.74 0.54 0.25 1.21 1.46

Figure 3. Plot of the mean factor values of landscape factors and built-up areas for the three landscape
clusters (types) and examples of maps for those landscape clusters: (1) built-up-diverse landscape;
(2) open–simple landscape; and (3) closed-complex landscape.
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3.3. Characteristics of Field Workers

Of the 21 field workers, 67% were male and 33% female (Table 5). Female field workers had
slightly lower error rates than men. However, the Mann–Whitney U test showed that the difference in
error rates between the male and female workers was not statistically significant (Figure 4a).

Figure 4. Box plots of the error rates by field workers based on (a) gender (M—male; F—female)
and (b) years of experience. For each fieldworker, we calculated the median value across the sites
they examined.

Table 5. Field workers’ gender, years of experience in field mapping, and number of mapped sites they
investigated in the different landscape types described in Table 4. M—male; F—female.

Field
Worker ID

Gender Years of
Experience

Total Number of
Inspected Sites

Number of Sites in the Landscape

Built-Up-
Diverse

Open-
Simple

Closed-
Complex

1 M 6 3 0 1 2
2 F 6 8 2 4 2
3 M 5 1 0 1 0
4 M 2 6 0 5 1
5 M 4 4 0 2 2
6 M 7 11 6 2 3
7 M 7 5 0 4 1
8 F 11 6 0 4 2
9 M 7 10 0 4 6

10 M 7 9 4 2 3
11 M 5 3 0 1 2
12 M 5 2 0 0 2
13 M 6 8 0 4 4
14 M 7 3 1 0 2
15 F 7 1 1 0 0
16 F 8 3 1 1 1
17 M 3 1 0 0 1
18 F 8 6 2 2 2
19 M 5 1 0 0 1
20 F 8 1 0 0 1
21 M 7 1 0 0 1



ISPRS Int. J. Geo-Inf. 2018, 7, 205 9 of 16

The experience in field mapping ranged from 2 to 11 years. One-third of the field workers had
five or fewer years of experience, and two-thirds had more than five years of experience (Table 5).
According to the Spearman rank-order correlation, there was no statistically significant negative
relationship (ρ = −0.38; p= 0.09) between the years of experience and MCO error rates (Figure 5).
Nonetheless, Figure 5 indicates an overall decreasing trend in error rates with increasing years of
experience. There was only one field worker with two years of experience, and he had one of the
lowest error rates (Figure 4b). Workers with three to four years of experience had significantly higher
error rates, but the error rate decreased thereafter.

Figure 5. Relationship between the field worker’s (n = 21) years of experience and their median
misclassification, commission, and omission (MCO) error rate across sites (all error types summed for
one site).

3.4. Misclassification, Commission, and Omission (MCO) Error Rates in Different Landscapes

The Kruskal–Wallis H test showed a statistically significant difference between the error rates
in different landscapes. All three types of error rates were lowest in the built-up-diverse landscapes
(Figure 6). The variation of the error rate was also the lowest for the built-up-diverse landscapes.
The highest error rate occurred in closed-complex landscapes, which also had the highest variation.
The commission category had the lowest error rate across all landscapes, and there was only
a statistically significant difference for commission error rates between the built-up-diverse and
open-simple landscapes. Open-simple landscapes had slightly higher commission error rates than
built-up-diverse areas. Misclassification error rates varied the most across landscapes, with the highest
values in closed-complex landscapes and the lowest values in built-up-diverse areas.
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Figure 6. Box plots for the rates of misclassification, commission, and omission errors in the different
landscapes defined in Table 4. For a given error type, based on the Kruskal–Wallis multiple comparison
of mean ranks for all groups: 1 = statistically significant difference from built-up-diverse, 2 = statistically
significant difference from open-simple, 3 = statistically significant difference from closed-complex.

3.5. Misclassification, Commission, and Omission Error Rates among Field Workers in Different Landscapes

The number of sites mapped by a given field worker was unevenly distributed, and ranged from
1 to 11 (Table 5). Six field workers had inspected only one site, but nine field workers had inspected
at least five sites (Table 5). In the built-up-diverse landscapes, the error rates were relatively low for
all field workers (Figure 7). In addition, 13 field workers mapped open-simple and closed-complex
landscapes, and nine of them made fewer mistakes in open-simple landscapes. There were five field
workers (2, 6, 10, 16, and 18) who worked in all three landscape types, which let us evaluate the effect
of landscape pattern on mapping quality independently from the characteristics of the individuals
(Figure 7). Four out of five had the lowest error rates in built-up-diverse landscapes, and three out
of five exhibited the highest error rates in closed-complex landscapes. All of them had higher error
rates in closed-complex landscapes than in built-up-diverse landscapes. In general, there seems to be
a trend that the more closed the landscape and the more complex its shape, the higher the error rate.

Figure 7. Box plots of the summed values of MCO error rates (all three categories combined) by field
workers in the three landscape types defined in Table 4. Field workers who mapped all three landscape
types are shaded grey.
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4. Discussion and Conclusions

Based on the factor and cluster analysis, we divided the study sites into three different landscape
types: built-up-diverse, open-simple, and closed-complex. We found that the rates of MCO errors in
these different landscape types differed significantly. The lowest error rates were in the built-up-diverse
landscapes. This is likely a result of the fact that buildings are very distinctive features of the landscape
and are very easy to recognize in the field. At the same time, buildings increase the landscape
diversity, which might increase the attention of the field worker, leading to fewer mistakes. In addition,
built-up-diverse landscapes had high openness, which increases the visibility of features such as
buildings and thus eases mapping. The variation of error rates was also lowest in this landscape type,
which in turn might be caused by the lower number of sites in this landscape type (i.e., fewer workers
are required to map a smaller number of sites, leading to decreased variation).

In contrast, the closed-complex landscape types were mainly forested areas, and the error rates and
variation of the error rates were highest. This can probably be explained by the mapping technology.
Stereophotogrammetry was used for mapping all of the objects that could be recognized from the aerial
photos, but the class of the object often could not be determined clearly by this method. In addition,
many objects could be hidden by dense forest cover and not detected at all; this may mean that the field
worker will not look for those features. Mõisja et al. [18] found that the features with the highest error
frequency were culverts, paths, forest cutlines (8-m-wide areas in which trees had been removed), and
ditches, which are often not visible from the aerial photos. These features were common in the forested
areas and at the edges of forested areas. Therefore, their presence would lead to a high error rate in
this landscape type. Moreover, the closed-complex landscapes have low visibility, which requires more
work to cover the landscape on foot.

In terms of the quality elements, misclassification was the most common error type, regardless
of the landscape type and field worker. This is also likely to be because of the mapping method,
in which all features that are recognizable from the aerial photos have been put on the map based on
stereophotogrammetry, followed by subsequent verification of these features during the field work [18].
Misclassification mainly results from uncertainty in classifying some objects, because some natural
features are hard to consistently place in the same class, and it can be difficult to draw clear borders
between certain features [35,55]. Some misclassification mistakes may also occur when the field worker
has not actually checked the feature in the field. The misclassification errors are most frequent between
relatively similar classes, in which case the errors may be unimportant from a practical perspective,
whereas other errors may be highly significant [20]. In contrast with the classification of remote sensing
images, in which commission errors are more common than omission errors, we found that commission
errors were least common. This is likely because the field workers mostly checked the features detected
from the aerial photos; in contrast, field checks are often not performed in the classification of remote
sensing images.

When we explored each landscape type separately, we found large variation in error rates within
each landscape type. This indicates that the individual characteristics of field workers have some effect
on the mapping quality. Mõisja et al. [18] reached the same conclusion in their investigation of the
distribution of errors among feature types and field workers. For example, they found that more than
half the errors related to grasslands and narrow ditches were made by just two field workers; similarly,
most of the mistakes related to culverts and open spaces were made by three field workers. This means
that some field workers are not successful in correctly mapping specific features. This agrees with
studies that explored the accuracy of vegetation mapping, which found that individual skills affected
the values of MCO error rates [34,35,56]. Moreover, our results indicated that in some landscapes,
individual characteristics may have had a bigger effect on mapping quality than in other landscapes.
For example, in the built-up-diverse landscapes, the variation of error rates and overall error rates
were lower than in closed-complex and open-simple landscapes, which suggests that built-up areas
were easier to map than natural areas. In contrast, different vegetation communities that are similar in
species composition and appearance can be easily confused in fieldwork in natural areas [35,56].
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However, when we compared the five field workers who mapped all three landscape types,
we found that four out of the five field workers had the lowest error rates in built-up-diverse landscapes
and that most of them also had the highest error rates in closed-complex landscapes. We could not
identify a statistically significant relationship, but there was still a visible trend that more open and
simple landscapes are mapped with higher quality, most likely because they often are easier to access
and because their better visibility enables higher mapping quality.

Traditionally, mapping has been conducted by trained and experienced professionals. However,
in the modern age, many volunteers are mapping the world (i.e., VGI). VGI has become an increasingly
common source of spatial data, thus there is an increasing need to assess the accuracy of
VGI data [15,57]. In this context, it is interesting to observe the differences between professionals
and volunteers. Girres and Touya [24], Haklay [23], and Dorn et al. [26] found that in urbanized areas,
the completeness and classification correctness were higher than in rural areas, which agrees with the
present results, in which the built-up areas were mapped with better quality. Girres and Touya [24]
found that differences in mapping completeness were caused by the fact that VGI contributors are
more focused on capturing attractive objects. They found that the main effect of landscape was that
it biased the area and features that volunteers preferred to map. Moreover, Haklay [23] showed that
mapping quality varied among the different parts of London; it was lower in poorer regions. Therefore,
the quality of VGI spatial data can exhibit high spatial variation.

Several studies that investigated the differences in spatial ability and orientation between men
and women found that men and women interpret space differently, and most of the studies suggested
that men had better spatial orientation abilities [37–39]. Coluccia et al. [38] also pointed out that in
their study of volunteer classifiers, men approached maps from a global perspective (the pattern of
routes), whereas women focused on local features (landmarks). This might give women an advantage
in mapping. Our results showed that women generally had lower error rates, although the difference
from men was not statistically significant. This might be because all field workers in our study were
trained before mapping and were professionals, whereas the participants in previous studies were
mostly volunteers with no previous training or professional mapping experience. This demonstrates
the importance of training, particularly if a worker’s classifications can be assessed quickly to detect
errors so that they can be trained to avoid these errors.

In addition, several studies have shown that people navigate their environment better when
they feel safe [36,58,59]. In our study, however, field workers could choose their preferred landscapes;
this means that if a worker did not feel confident or safe in the forested areas, then they were assigned
to map open and built-up areas. Only 23% of the closed-complex landscapes were mapped by women,
whereas 43% of the open-simple landscapes were mapped by women, who indicated a preference for
open landscapes. This might also partially explain why there was no significant difference in mapping
quality between genders.

We found that the mapping quality was influenced by the field workers’ years of experience.
There was general decreasing trend in the values of error rates with increasing years of experience.
However, the trend was not statistically significant. The field worker with the fewest years of experience
had one of the lowest error rates, which was an unexpected result; we expected that longer mapping
experience would result in better mapping quality. Instead, we saw a large increase in mapping
errors during the third and fourth years of work. We hypothesize that this is because the work had
become routine, possibly leading to excessive self-confidence and a failure to consult the mapping
guidelines, leading to mistakes. Subsequently, the mapping quality again improved, which indicated
the influence of experience on mapping quality. Therefore, the relationship between years of experience
and mapping quality might not be linear, but rather U-shaped. However, our study did not provide
enough data to confirm this hypothesis because there were too few field workers with short experience.
Hearn et al. [35] found similar results, with years of experience not significantly correlated with
classification correctness in habitat mapping. This is probably because vegetation mapping is also
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more subjective, and it is more complicated to determine clear vegetation borders and vegetation types;
even after many years of experience, this remains a complex task.

In conclusion, we found that the quality of mapping varied among the landscape types.
Some landscape types show higher correctness (built-up-diverse) than others (open-simple and
closed-complex). This is most likely because man-made objects are easier to identify than natural
vegetation, where the similarity of species composition between different vegetation types might be
confusing and where drawing clear borders between different vegetation types is harder. The mapping
quality was also generally higher in more open landscapes because better visibility decreases the risk of
MCO errors. Interestingly, there was no statistically significant difference in mapping quality between
men and women. However, although there was a trend of decreasing error rates with increasing years
of experience, it was also not statistically significant because the field worker with the fewest years of
experience had among the lowest error rates, whereas field workers with average experience showed
the poorest results, and field workers with the most extensive experience showed improved mapping
quality. In the current study, it was impossible to clearly differentiate the effect of the individual
characteristics of field workers on the mapping quality from the effect of landscape, partially because
the number of field workers was limited, and because these effects are interrelated and it is inherently
hard to separate them. Our results suggest that mapping quality can be improved if field workers
can choose their preferred landscape. In addition, it will be beneficial if the mapping guidelines
are improved for forested areas to reduce potential errors that can be avoided by proper fieldwork.
Monitoring fieldwork to detect errors, so that workers can be trained to avoid such errors in the future,
would also improve mapping accuracy.
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