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Abstract: In the study of spatiotemporal geographical phenomena, the space–time interpolation
method is widely applied, and the demands for computing speed and accuracy are increasing.
For nonprofessional modelers, utilizing the space–time interpolation method quickly is a challenge.
To solve this problem, the classical ordinary kriging algorithm was selected and expanded to
a spatiotemporal kriging algorithm. Using the OpenCL framework to integrate central processing
unit (CPU) and graphic processing unit (GPU) computing resources, a parallel spatiotemporal kriging
algorithm was implemented, and three experiments were conducted in this work to verify the results.
The results indicated the following: (1) when the size of the prediction point dataset is consistent,
the performance of the method is robust with the increasing size of the observation point dataset;
(2) the acceleration effect of the parallel method increases with an increased number of predicted
points. Compared with the original sequential program, the implementation of the improved parallel
framework showed a 3.23 speedup, which obviously shortens the interpolation time; (3) when
cross-validating the temperature data in the Beijing Tianjin Hebei region, the space–time acceleration
model provides a better fit than traditional pure space interpolation.

Keywords: spatiotemporal kriging; OpenCL; graphics processing unit; ordinary kriging

1. Introduction

A variety of spatial interpolation methods have been proposed to allow better understanding of
the spatial distribution of an area covered by existing observed points. Basically, spatial interpolation
becomes a standard tool for geographic information system (GIS) software and plays an important role
in Digital Earth (DE) research [1]. Due to the continuous accumulation of historical data and the societal
need for the analysis of variables that vary in space and time, such as weather and air quality variables,
the collection and processing of spatiotemporal data is rapidly increasing [2]. Researchers have begun
to pay attention to the space–time interpolation problem to estimate the spatial and temporal variation
characteristics of various spatial elements after time dimension integration and to provide support for
decision-making. In recent years, the theoretical aspects of spatiotemporal geostatistics have made
great progress [3], but there are still some application problems. Spatiotemporal models are more
complex than pure spatial models, and the operations involved in spatiotemporal models are much
more expensive.

For these reasons, many scholars have studied the space–time interpolation problem. With the
help of existing methods, some scholars have tried to improve time and space interpolations.
For example, the kriging method is used for the best, unbiased, optimal estimation of regionalized
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sampling point variables using the structural features of observations with known spatial distributions.
Although originally developed for geostatistics, the kriging method is now widely used in geology [4],
hydrology [5], meteorology [6], environmental science [7] and other disciplines. However, in the real
world, many geographical phenomena have temporal and spatial evolution processes. As a spatial
interpolation method, kriging often ignores the important information about the time dimension in
the problem, which is not conducive to further improving the accuracy of the interpolation.

Through the evolution of regionalized variables into spatiotemporal regionalized variables,
scholars established spatiotemporal variogram models [8], which can achieve the spatial and temporal
extension of kriging interpolation. To date, spatiotemporal kriging interpolation has been applied
in many fields. Raja et al. [9] used spatiotemporal kriging interpolation to research the trends of
spatiotemporal variation in regional precipitation, which can be used to plan and manage water
resources in areas that are heavily dependent on precipitation. Yang et al. [10,11] assessed the sources
and spatiotemporal trends of heavy metal accumulation in soil using the spatiotemporal kriging
method and provided suggestions for the prevention and control of heavy metal pollution in soil.
Jost et al. [12,13] used an interpolation method to determine the distribution of a forest ecosystem and
the water storage layer near the desert; their method can assist groundwater managers to make correct
decisions. Park et al. [14,15] used the spatiotemporal kriging method to more accurately estimate the
spread of air pollutants and the distribution of infectious diseases, adding to omissions in the data
collection process.

With the expansion of interpolation algorithms in the time dimension, it is necessary to acquire
sample points at different times and to obtain the time trend of the study area. As a result, the number
of sampling points increases linearly and interpolation algorithms require large computation and
storage resources; the algorithms are slow and inefficient on traditional personal computers (PCs),
which is not conducive to the use of applications.

With the development of computing technology, high-performance computing (HPC) technology
has been gradually integrated into the field of geographic information, which has improved the
application, promotion and development of the field. Multiple processors, parallel clustering,
grid computing, graphic processing unit (GPU) incorporation and other high-performance computing
technologies have attracted much research attention in the geosciences field [16–18]. In recent years,
parallel computing has mainly appeared in the form of multi-core processors [19]. A GPU has a large
number of cores, which makes up for the shortcomings of the traditional central processing unit
(CPU) architecture.

High-performance GIS computing algorithms are a research hotspot that is mainly divided into
two aspects. One aspect is the optimization of processing from the technical level, parallel to existing
high-density computing, to improve operational efficiency. The second aspect is the exploration of
a new spatiotemporal analysis model using modeling and algorithms to develop a more efficient and
convenient spatiotemporal analysis model.

To represent the spatial interpolation model by the kriging interpolation method in the technical
level of optimization and new space interpolation algorithm improvement, scholars have begun
to use GPUs to reduce computing time and introduce mature parallelization schemes. Cheng [20]
accelerated the universal kriging algorithm on the NVIDIA Compute Unified Device Architecture
(CUDA) platform and achieved a nearly 18-fold speed increase with respect to the sequential program.
Liu [21] used the computation power of modern programmable graphics hardware (GPU) for 3D
visualization in a reservoir modeling system. In terms of algorithms and model improvements, Liu [22]
proposed an algorithm based on the k-d tree method to address the unevenly distributed spatial data.
Hu et al. [23] proposed an fast Fourier transform (FFT)-based parallel algorithm to accelerate regression
kriging interpolation, which was computed on a GPU device. As far as we know, spatiotemporal
kriging is an improved method for spatiotemporal interpolation; however, the model and the algorithm
have changed, and the original parallel method cannot adapt.
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Although many people pay attention to the general spatial analysis of GIS, the support of
spatiotemporal interpolation and efficiency improvement calculations lack in-depth research. To solve
the above problems, the spatiotemporal kriging algorithm was analyzed, data associations were
decoupled and parallelized, and a parallel algorithm of spatiotemporal kriging interpolation was
proposed. The parallel model of the space–time interpolation is tested with meteorological data in
this paper. The purpose of this paper is to propose a new space–time interpolation algorithm and
technology supported by HPC, which will provide new research ideas for GIS spatiotemporal analysis
modeling and the enrichment of GIS research contents.

This article is arranged as follows: in the first and second parts of Section 2, we introduce the
spatiotemporal kriging algorithm and the space–time extension in detail. The third part of Section 2
focuses on the design of the parallel spatiotemporal kriging algorithm and implementation by the
OpenCL framework. In Section 3, the experimental results and analysis are given. Section 4 presents
the conclusion.

2. Methodology and Implementation

Similar to spatial interpolation, spatiotemporal geostatistics need are dependent on a suitable
spatiotemporal covariance model [24]. Many kinds of models have been designed, including linear,
separable and nonseparable models [25–27]. We aimed to implement space–time interpolation using
a product–sum model with the support of HPC. Other types of interpolation methods can be properly
extended or adjusted on the basis of this method. The data selected in this article are meteorological
data. Ordinary kriging interpolation can meet the needs of homogeneous regions. Therefore, ordinary
kriging interpolation was used in the experiment.

2.1. Ordinary Kriging

The kriging method makes an unbiased, optimal estimation of the regionalized variables of the
sampling points and uses a semi-variogram to represent the structural features of the region. Kriging
is a linear interpolation method. Using the obtained spatial structure and the known sampling points
to predict results, we can use Equation (1):

Ẑs0 =
N

∑
i=1

λiZ(si), (1)

where Ẑs0 is the estimated value, Z(si) refers to each known point, N is the measured value number
and λi is the weight value at the position.

The ordinary kriging assumption is that the estimator expected value is equal to the true value,
and the prediction error variance is minimized. Therefore, to ensure the best linear unbiased prediction
of the prediction point, the sum of the weight coefficients of the surrounding sampling points must be
equal to 1. This process can be represented by kriging Equation (2):

γ11 · · · γ1N 1
...

. . .
...

...
γN1 · · · γNN 1

1 1 1 0

×


λ1
...

λN
µ

 =


γ10

...
γN0

1

, (2)

where γ11 stands for the variogram value between point i and point j, and µ is a Lagrange multiplier.

2.2. Spatiotemporal Kriging Algorithm

The spatiotemporal kriging interpolation method is used to extend the time dimension to
the kriging interpolation. The regionalized variables are evolved into spatiotemporal regionalized
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variables, and the spatiotemporal variogram model is used to fit the sampling points. The relationship
between the variogram and covariance is:

γs(hs) = Cs(0)− Cs(hs), (3)

γt(ht) = Ct(0)− Ct(ht), (4)

γst(hs, ht) = Cst(0, 0)− Cst(hs, ht), (5)

where γs(hs), γt(ht), and γst(hs, ht) are the spatial, temporal, and spatiotemporal variograms, Cs(hs),
Ct(ht), and Cst(hs, ht) are the spatial, temporal, and spatiotemporal covariance functions, and hs and
ht are space and time distances, respectively.

Due to the different dimensions of the spatial domain and the time domain, the spatial and
temporal variograms are difficult to calculate directly. According to a type of product–sum model [28],
the sum–product model of space–time covariance function is defined as Equation (6):

Cst(hs, ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht). (6)

The introduction of k1, k2 and k3 ensures the positivity of the space–time covariance function,
Cst(hs, ht). Where hs = 0, ht = 0 can be obtained from Equation (7):

Cst(0, 0) = k1Cs(0)Ct(0) + k2Cs(0) + k3Ct(0). (7)

Cst(0, 0), Cs(0), and Ct(0) are the nugget values of space, time and space–time, respectively.
Using the above equations, the spatiotemporal variogram is obtained (Equation (8)):

γst(hs, ht) = (k1Ct(0) + k2)γs(hs) + (k1Cs(0) + k3)γt(ht)− k1γs(hs)γt(ht). (8)

According to ordinary kriging prediction formula, the ordinary spatiotemporal kriging
interpolation is obtained with Equation (9):

Z∗(s0, t0) =
n

∑
i=1

m

∑
j=1

λ(i,j)Z
(
si, tj

)
. (9)

The number of spatial sampling points is i = 1, 2... n, the time sampling points are j = 1, 2, ... m,
and the total number of samples is n × m. Z*(s0, t0) is the linear estimation of the interpolation point
(s0, t0). Z

(
si, tj

)
is the value of the neighboring sampling point

(
si, tj

)
. λ(i,j) is the weighting coefficient

of the point and the kriging model in Equation (10):[
K
]
×
[

λ
]
=
[

M
]
, (10)

[K] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ11,11 γ12,11 · · · γ1n,11 γ11,12 · · · γ1n,1m 1
γ21,11 γ22,11 · · · γ2n,11 γ21,12 · · · γ2n,1m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

γn1,11 γn2,11 · · · γnn,11 γn1,12 · · · γnn,1m 1
γ11,21 γ12,21 · · · γ1n,21 γ11,22 · · · γ1n,2m 1
· · · · · · · · · · · · · · · · · · · · · · · ·

γn1,m1 γn2,m1 · · · γnn,m1 γn1,m2 · · · γnn,mm 1
1 1 · · · 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (11)

[
M
]
=
[
γ(01,01), γ(02,01), . . . , γ(0n,01), γ(01,02), . . . , γ(0n,0m), 1

]T
, (12)[

λ
]
=
[
λ(1,1), λ(2,1), . . . , λ(n,1), λ(1,2), . . . , λ(n,m), µ

]T
. (13)
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Specifically, the serial algorithm of the ordinary spatiotemporal kriging interpolation consists of
the following four steps:

• Step 1: Calculate the variograms of the pure time domain and the pure space domain and fit
them. At different time points, the space point has a different nugget, sill and range. Calculate the
average Cst(0, 0), Cs(0), and Ct(0) here.

• Step 2: Based on the results of Step (1), γs(hs) and γt(ht) are constructed. Substituting
k1, k2, k3, γs(hs) and γt(ht) into Equation (8), we get the spatiotemporal variograms, γst(hs, ht).

• Step 3: Calculate the space–time distance between the point to be measured and the surrounding
points (known points, where the sum is n × m), i.e., d1, d2, . . . , dn, t1, t2, . . . , tn. Obtain the
variogram vector (Equation (12)).

• Step 4: Bring the known points and the spatiotemporal variogram γst(hs, ht) into the kriging
equations to obtain the weight vector, and then calculate the estimation of an unobserved point.

2.3. Parallel Ordinary Spatiotemporal Kriging Algorithm Design and Implementation with OpenCL

2.3.1. Design and Framework of the Parallel Algorithm

The spatiotemporal kriging interpolation predicts the interpolation points using the structural
features of spatiotemporal sample points. According to the principle of the ordinary spatiotemporal
kriging algorithm, the algorithm can be divided into the following four steps:

• Step 1: Organize the original data and establish the index to facilitate the query retrieval
(Spatiotemporal Data Organization Module, STDOM).

• Step 2: Fit the spatiotemporal variation model of the sample data to obtain the variogram,
γst, of the spatiotemporal structure of the representative sample (Spatiotemporal Variation Model
Fitting Module, STVMFM).

• Step 3: Proceed with the set of points to be predicted, search for the adjacent spatiotemporal
points and set up the data sets (Adjacent Spatiotemporal Points Searching Module).

• Step 4: Use the spatiotemporal variogram, γst, and the data sets of the neighboring points for the
ordinary spatiotemporal kriging interpolation to calculate the estimated values of the unknown
points (Ordinary Spatiotemporal Kriging Interpolation Module, OSTKIM), as shown in Figure 1.
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1. Spatiotemporal Data Organization Module (STDOM)

Spatiotemporal data have space coordinates and time information. In the spatiotemporal kriging
interpolation algorithm, it is necessary to search for the points neighboring an unknown point in the
spatiotemporal sample data. To facilitate this process, an STDOM was designed to index the data.
The spatiotemporal index numbered all space points, and then the station number and date were
cross-referenced to obtain the index values shown in Table 1.

Table 1. Definition of the spatiotemporal index.

Station Number (s1, s2, . . .) Date (t1, t2, . . .) Spatiotemporal Index (s1t1, s2t1, . . .)
00001 201706 00001201706

2. Spatiotemporal Variation Model Fitting Module (STVMFM)

STVMFM is designed to fit different time and space variogram models to obtain the average Cs,
Ct as the γs, γt parameters and to calculate k1, k2, and k3 to construct the spatiotemporal variogram
γst. To fit the model, according to the spatiotemporal index, data must be divided into the vector
matrix of the same time and the vector matrix of the same space (Figure 2). Each vector in the vector
matrix is a set of sample points in time or space. Since the solution to the spatiotemporal parameters of
each vector is independent, this step can be parallelized.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 14 
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3. Adjacent Spatiotemporal Points Searching Module (ASTPSM)

The amount of data for space–time interpolation is much greater than that for the pure spatial
interpolation. Therefore, instead of using all the sample points, the points in a certain spatiotemporal
range are calculated according to the arrangement obtained by fitting of the variation model. In ASTPSM,
using the spatiotemporal index established before, a neighbor points search method based on the
KD-tree is used. The KD-tree algorithm is used to find the adjacent station number in the neighborhood
and this is crossed over with the neighboring date to obtain the target index.

4. Ordinary Spatiotemporal Kriging Interpolation Module (OSTKIM)

The OSTKIM module was used to calculate Equation (9). Parallel calculation of the matrix can
greatly speed up the interpolation process. In this step, the coefficient matrix [K] needs to be inversed,
and the weight vector [λ] is calculated by matrix-vector multiplication. Much progress has been made
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on the parallelization of matrix operations. Here, an efficient solution that decomposes the coefficient
matrix into a lower triangular matrix and an upper triangular matrix by LU decomposition has been
chosen before solving a linear system. Then, the system of linear equation decomposition is solved
directly by forward and backward substitution without directly calculating the inverse matrix.

2.3.2. OpenCL-Based Implementation

Open Computing Language (OpenCL) is a framework for writing programs on heterogeneous
platforms [29]. OpenCL assumes that computing systems consist of multiple computing devices,
which can be central processing units (CPUs) or hardware accelerators, such as graphics processing
units (GPUs) connected to a host processor. OpenCL provides a standard interface for parallel
computing based on task and data parallelism, as shown in Figure 3:ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 14 
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The OpenCL execution model consists of the following two components: the host program and
the kernel. The host program is executed on the host to define the device context, queue the kernel,
and execute kernel instances using the command queue. The kernel is an executable code based on
the OpenCL standard that runs on the computing device, similar to data or task-parallel functions.
In the spatiotemporal kriging interpolation, the calculation of each vector in the STVMFM and the
solution to each unknown point in the OSTKIM are independent. So, parallel kernel functions are
written, the calculation is distributed to computing devices, and the computing speed is improved.

As the hardware continues to evolve, CPUs and GPUs vary widely in architecture due to their
different positioning. Taking the Intel Core i7-7700 and NVIDIA GTX1060 6 G as examples, the former
has a base frequency speed of 3.60 GHz and four physical cores with 8 threads per core, and the latter
has a base frequency speed of 1.50 GHz with 1280 cores. This shows that the main difference between
the two is that the CPU has a faster clock speed and processes a single calculation faster, and the
GPU has more cores and is better at handling multiple calculations. Based on these characteristics,
this paper implemented the spatiotemporal kriging interpolation algorithm as shown in Figure 4.
This algorithm uses the CPU as a host to achieve an STDOM module, an ASTPSM module as well as
to create a context, task queue and data division distributed to the computing device. At the same
time, the GPU is used as a computing device to achieve an STVMFM module, an OSTKIM module and
to speed up the interpolation process.

When using the OSTKIM, the coefficient matrix [K] is the same for the prediction points with the
same neighboring points. Memory resources are invaluable in GPU operations. Therefore, for the
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unknown points that have the same neighboring points, the coefficient matrix [K] is stored once,
and the vectors [M] of the unknown points with the same coefficient matrix are used to construct
the matrix for matrix multiplication. This step reduces memory redundancy and avoids high data
communication costs, as shown in Figure 5.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  9 of 14 
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3. Experiments and Analysis

3.1. Computational Environment

To facilitate further research, considering the mainstream configuration of computers on the
market, we chose the computing platform with the following parameters to carry out the experiment,
as shown in Table 2.

Table 2. Detailed configurations of the experimental platforms.

Platform Hardware Configuration

Intel® Core™ i7-7700 Processor

Cores: 4
Threads: 8

Processor Base Frequency: 3.60 GHz
Max Turbo Frequency: 4.20 GHz

Cache: 8 MB Smart Cache
Bus Speed: 8 GT/s DMI3

Nvidia GeForce GTX 1060

NVIDIA CUDA® Cores: 1280
Base Clock (MHz): 1506
Boost Clock (MHz): 1708
Memory Speed: 8 Gbps

Standard Memory Config: 6 GB GDDR5
Memory Bandwidth (GB/sec): 192

The experimental data were the monthly average temperatures of 57 sites from 2007 to 2016 in
Beijing, Tianjin, Hebei and its surrounding areas (Figure 6), collected by the meteorological data center
of the China Meteorological Administration (http://data.cma.cn/data/cdcdetail/dataCode/B.0021.
0002.html).
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3.2. Experimental Methodology Design

In the above hardware environment, we compared the efficiencies of a CPU sequential program
and a GPU-accelerated parallel algorithm. To this end, the following three experiments were designed.

1. Experiment 1: four observation point dataset sizes of 2000, 3000, 4000 and 5000 points were used
to interpolate a regular grid (1000 × 1000) at a specified time, and the influence of the number of
sampling points was tested to determine the algorithm’s efficiency.

2. Experiment 2: the dataset of observations with 5000 points was used to determine the effect of
the number of interpolation points on the efficiency of the algorithm for the interpolation of five

http://data.cma.cn/data/cdcdetail/dataCode/B.0021.0002.html
http://data.cma.cn/data/cdcdetail/dataCode/B.0021.0002.html
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types of prediction point datasets including space images of one moment with resolutions of
500 × 500, 800 × 800, 1000 × 1000 and 2000 × 2000.

3. Experiment 3: the results of the space–time interpolation were verified by cross-validation.
The detailed cross-validation process was as follows:

• Step 1: Delete the first observation value, Z1, from the data set.
• Step 2: Use other observations, the variogram model and the kriging method to predict the

point value, Z∗
1 .

• Step 3: Put Z1 into the dataset and repeat Step 1 to Step 4 until the other predicted values,
Z∗

1 , Z∗
2 , . . . , Z∗

n, are obtained.
• Step 4: Through comparison of the original data, Z1, Z2, . . . , Zn , and predicted data,

Z∗
1 , Z∗

2 , . . . , Z∗
n, the error is calculated, and the effect of interpolation can be judged.

Cross-validation is a gradual process, and the best parameters and variation models can be
obtained through many comparisons and practices.

The speed increase was calculated according to Equation (14), and the interpolation performances
were compared. Sp is the speed up, T1 represents the run time serial executed by CPU, and T2 is
the execution time of the parallel accelerated model in the parallel system. The performance of the
proposed parallel algorithm was evaluated with Sp:

Sp =
T1

T2
. (14)

3.3. Interpolation Acceleration Effect and Analysis

The results of experiment 1 are shown in Table 3. As the number of observation points increased,
the spatiotemporal kriging parallel algorithm did not significantly increase the time consumption,
and the acceleration ratio was approximately 3:1. The parallel interpolation method was able to
effectively adapt to changes in the number of sampling points and had good stability.

Table 3. Comparison of acceleration of different data sizes, the serial spatiotemporal kriging (SSTK)
and the parallel spatiotemporal kriging (PSTK).

Observation Datasets Grid Resolution SSTK/ms PSTK/ms Speed Up

2000 1000 × 1000 25,043 8480 2.95
3000 1000 × 1000 25,654 8718 2.94
4000 1000 × 1000 26,766 8847 3.02
5000 1000 × 1000 27,389 8970 3.05

With CPU serial operation, because the number of interpolation points increased, the computation
time of the 2000 × 2000 prediction point set at a single time was 11 times that of the 500 × 500
prediction point set. When the parallel framework was used, the time consumption for calculating the
five kinds of prediction point datasets significantly decreased. When the prediction point dataset was
2000 × 2000, the speed up ratio was up to 3.23. Compared with an existing solution in R gstat [2], in the
same experimental environment, when using the dataset of 3600 observation points to interpolate
a 1000 × 1000 grid at one moment, it required 89.6 s (Table 4). Obviously, the parallel framework
provided faster computing speeds.

Upon further analysis, the interpolation process included the serial part and the parallel part as
well as the communication costs. With the increase in the number of parallel parts, the acceleration
effect gradually increased.

Based on the two experiments, the parallel algorithm and small mesh interpolation parallel model
were verified through data decoupling, increasing the concurrent number and accelerating operation.
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This configuration was able to cope with the changes in sampling points and interpolation grids,
provide fast operation and solve practical application problems.

Table 4. Acceleration at different resolutions.

Observation Datasets Grid Resolution SSTK/ms PSTK/ms Speed Up

5000 500 × 500 8663 4009 1.41
5000 800 × 800 16,780 6683 2.51
5000 1000 × 1000 25,138 8970 2.80
5000 1500 × 1500 56,824 18,192 3.12
5000 2000 × 2000 95,470 29,583 3.23

Experiment 3 shows the cross-validation results of the spatiotemporal kriging interpolation.
Only some of the cross-validation results are displayed because of the large number of time and
space points. A comparison of the spatiotemporal kriging interpolation model and the pure spatial
kriging interpolation model is shown in Figure 7. The actual observed values, compared to the root
mean square error (RMSE) of the spatiotemporal kriging interpolation, was 5.38—less than the kriging
interpolation space (6.17). As a result, the spatiotemporal kriging interpolation results were closer
to the actual measured values. The use of the proposed parallel spatiotemporal kriging acceleration
method for interpolation of the Beijing Tianjin Hebei region in September 2009 was examined.
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4. Conclusions

In the study of large-scale spatiotemporal phenomena, there are often missing data. The application
of spatiotemporal kriging interpolation to spatiotemporal data interpolation can complement the missing
historical data. It is beneficial to obtain the evolution process of temporal and spatial phenomena,
which can improve the cognitive level of scholars and establish a spatiotemporal database.

In this paper, to address the shortage of space–time interpolation computing resource consumption
and slow speed, a parallel accelerated algorithm based on OpenCL for spatiotemporal kriging
interpolation is proposed, which solves the problem. The time dimension of the data is added to
rationally and realistically improve the original spatial interpolation.

The experiments described showed that the method proposed in this paper can greatly improve
the interpolation speed, and it can achieve fast computation of spatiotemporal kriging interpolation on
a standard PC when compared with some of the existing solutions. The proposed method has great
improvement in usability, experience and universality.
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In future research, we will expand to other spatiotemporal interpolation methods with the help
of this research method and run the interpolation algorithm on different heterogeneous computing
platforms. At the same time, we will also expand the type and quantity of the experimental data as
well as further improving and promoting the results of this paper.
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The following abbreviations are used in this manuscript:

CPU Central Processing Unit
GPU Graphics Processing Unit
GIS Geographic Information System
DE Digital Earth
PC Personal Computer
HPC High-Performance Computing
CUDA Compute Unified Device Architecture
FFT Fast Fourier Transform
STDOM Spatiotemporal Data Organization Module
STVMFM Spatiotemporal Variation Model Fitting Module
ASTPSM Adjacent Spatiotemporal Points Searching Module
OSTKIM Ordinary Spatiotemporal Kriging Interpolation Module
SSTK Serial Spatiotemporal Kriging
PSTK Parallel Spatiotemporal Kriging
RMSE Root Mean Square Error
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