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Abstract: Currently, huge quantities of remote sensing images (RSIs) are becoming available.
Nevertheless, the scarcity of labeled samples hinders the semantic understanding of RSIs. Fortunately,
many ground-level image datasets with detailed semantic annotations have been collected in
the vision community. In this paper, we attempt to exploit the abundant labeled ground-level
images to build discriminative models for overhead-view RSI classification. However, images
from the ground-level and overhead view are represented by heterogeneous features with
different distributions; how to effectively combine multiple features and reduce the mismatch of
distributions are two key problems in this scene-model transfer task. Specifically, a semi-supervised
manifold-regularized multiple-kernel-learning (SMRMKL) algorithm is proposed for solving these
problems. We employ multiple kernels over several features to learn an optimal combined model
automatically. Multi-kernel Maximum Mean Discrepancy (MK-MMD) is utilized to measure the data
mismatch. To make use of unlabeled target samples, a manifold regularized semi-supervised learning
process is incorporated into our framework. Extensive experimental results on both cross-view and
aerial-to-satellite scene datasets demonstrate that: (1) SMRMKL has an appealing extension ability to
effectively fuse different types of visual features; and (2) manifold regularization can improve the
adaptation performance by utilizing unlabeled target samples.

Keywords: remote sensing; scene classification; heterogeneous domain adaptation; cross-view;
multiple kernel learning

1. Introduction

With the rapid increase in remote sensing imaging techniques over the past decade, a large amount
of very high-resolution (VHR) remote sensing images are now accessible, thereby enabling us to study
ground surfaces in greater detail [1–5]. Recent studies often adopt the bag-of-visual-words (BOVW) [6–8]
or deep convolutional neural networks (DCNN) representation [9–18] associated with AdaBoost
classifiers or support vector machine (SVM) classifiers to learn scene class models. The collection of
reference samples is a key component for a successful classification of the land-cover classes. However,
in real-world earth observation (EO) applications, the available labeled samples are not sufficient in
number, which hinders the semantic understanding of remote sensing images. Directly addressing
this problem is challenging because the collection of labeled samples for newly acquired scenes is
expensive and the labeling process involves time-consuming human photo interpretation that cannot
follow the pace of image acquisition. Instead of collecting semantic annotations for remote sensing
images, some research has considered strategies of adaptation, which is a rising field of investigation
in the EO community since it meets the need for reusing available samples to classify new images.
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Tuia et al. [19] provided a critical review of recent domain adaptation methodologies for remote sensing
and divided them into four categories: (1) invariant feature selection; (2) representation matching;
(3) adaptation of classifiers; and (4) selective sampling. Nevertheless, all these methods [20–24] are
designed for annotation transfer between remote sensing images. With an increasing amount of freely
available ground level images with detailed tags, one interesting and possible intuition is that we
can train semantic scene models using ground view images, as they have already been collected and
annotated, and hope that the models still work well on overhead-view aerial or satellite scene images.
In detail, ground view represents the natural scene images taken from the ground view. Overhead
view represents the remote sensing images taken from the overhead view, which contains overhead
aerial scene images and overhead satellite scene images.

Transferring semantic category models from the ground view to the overhead view has two
advantages: First, ground-view and overhead-view images are classified under the same scene class
despite being captured from two different views, leading to consistency in the underlying intrinsic
semantic features. Second, large-scale ground-view image datasets such as ImageNet [25] and SUN [26]
have been built with detailed annotations that have fostered many efficient ways to describe the image
semantically. However, the generalization of the classifiers pre-trained from ground level annotations
is not guaranteed, as training and testing samples are drawn from different probability distributions.
To solve this problem, on the one hand, several works have addressed the cross-view (ground-to-aerial)
domain adaption problem in the context of image geolocalization [27]. On the other hand, the work
of [28–32] must be mentioned, as the authors aim to transfer scene models from ground to aerial
based on the assumption that scene transfer is a special case of cross-domain adaptation, where the
divergences across domains are caused by viewpoint changes, somewhat similar in spirit to our work.
However, all these methods are feature learning-based adaptation approaches, where ground view
and overhead view data are represented by one kind of feature, such as the histogram of oriented
edges (HOG) feature. Nevertheless, multiple features should be considered because the elements in
the same scene captured from two different views may appear at different scales and orientations.
Because different types of features describe different visual aspects, it is difficult to determine which
feature is better for adaptation. When considering heterogeneous types of features with different
dimensions, scene model transfer deals with an even more challenging task. Figure 1 illustrates
the appearance of considerable discrepancy in the same residential class captured from four views.
Six types of features of each image are projected onto two dimensions using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [33] with different colors. The solid points, hexagram points, represent
the residential class images captured from different views. The complexity of different features and
the distinct distributions between different views pose great challenges to adaptive learning schemes.

Techniques for addressing the mismatched distributions of multiple types of features with
different dimensions have been investigated under the names of heterogeneous domain adaptation
(HDA). Most existing HDA approaches were feature representation-based methods whose aim is
to make the data distributions more similar across the domains [21,34,35]. However, these methods
are suitable for transfer tasks with limited deformations, whereas the difference between cross-view
images are huge. With the rapid development of deep neural networks, more recent works use
deep adaptation methods [36,37] to reduce the domain shift, which brings new insights into our
cross view scene model transfer task. However, deep adaptation-based approaches involve a large
number of labeled samples to train the network in a reasonable time [38]. Generally, the ground-view
domain contains a large amount of labeled data such that a classifier can be reliably built, while the
labeled overhead view data are often very few and they alone are not sufficient to construct a good
classifier. Thus, based on the guidelines for choosing the adaptation strategy in [19], we focus on the
classifier adaptation methods that can utilize the source domain models as prior knowledge to learn
the target model. However, due to the huge domain mismatch between ground view images and
overhead view images, three problems need to be solved for better adaptation: (1) how to fuse multiple
features for cross-view adaptation; (2) how to reduce the mismatch of multiple feature distribution
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between cross-view domains; and (3) how to effectively leverage unlabeled target data to improve
the adaptation performance.

Figure 1. Ground-to-overhead view and aerial-to-satellite scene transfer task.

To address these issues, in this paper, we propose a semi-supervised manifold-regularized
multiple-kernel-learning (SMRMKL) algorithm to transfer scene models from ground-to-aerial. To
fuse heterogeneous types of image features, we employ multiple kernels to map samples to the
corresponding Reproducing Kernel Hilbert Space (RKHS), where multi-kernel maximum mean
discrepancy (MK-MMD) is utilized to reduce the mismatch of data distributions between cross-view
domains. To make use of available unlabeled target samples, we incorporate a manifold-regularized
local regression on target domains to capture the local structure for scene model transfer. After iterative
optimization of the unified components by the reduced gradient descent procedure, we obtain an
adapted classifier for each scene class; then, a new coming target sample’s label can be determined
accordingly. Extensive experimental results on both aerial-to-satellite, and ground-to-aerial or -satellite
scene image datasets demonstrate that our proposed framework improves the adaptation performance
by fusing different types of visual features and utilizing unlabeled target samples.

The rest of this paper is organized as follows. Section 2 presents our manifold-regularized multiple
kernel learning framework. Section 3 reports the experimental results. Finally, Section 4 concludes
the paper.

2. Semi-Supervised Manifold-Regularized Multiple Kernel Learning

We construct the cross-view scene model transfer task as a classifier adaptation-based HDA
problem. To be more precise, many labels are available for the source domain, and only a few labels
are provided for the target domain. Taking the ground view image set as the source domain and
the overhead view image set to be learned as the target domain, we want to adapt the scene model
categories in the label-rich source domain to the label-scarce target domain. The main goal of SMRMKL
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is to bridge the cross-view domain gap by jointly learning adaptive classifiers and transferable features
to minimize domain divergence. As shown in Figure 2, three regularizers are jointly employed in
our framework, including the MK-MMD to match feature distributions for feature adaptation; the
structural risk regularizer, which corresponds to an empirical risk minimization that makes SVM
exhibit good generalization; and the manifold regularizer based on the basic intuition that the closer
target unlabeled samples in the feature space may contain similar decision values. In the following,
we will first introduce the notations used in this paper, followed by constructing the three regularizers
of SMRMKL. Then, the optimization strategy of the overall objective is provided.

Figure 2. The flowchart of semi-supervised manifold-regularized multiple kernel learning.

2.1. Notations

For simplicity, we focus on the scenario where there is one source domain DS and one target
domain DT . Taking the ground-view scene image set with plenty of labels as the source domain
DS = (xi

S, yi
S)|nS

i=1 , where yi
S indicates the corresponding label of image xi

S and nS is the size
of DS . Similarly, let DT = Dl

T ∪ Du
T denote the overhead-view remote sensing image set of the

target domain with a limited number of labeled data and a large number of un-labeled data, where
Dl

T = (xi
T , yi

T)|nl
i=1 and Du

T = xi
T |nl+nu

i=nl+1 represent the labeled and unlabeled training images,
respectively. The size of DT is nT = nl + nu(nl � nu). We define N = nS + nT and n = nS + nl as
denoting the size of all training data and labeled training data from both domains, respectively. It is
assumed that both the ground level images and remote sensing images pertain to J categories, i.e., they
share the same label space. Our goal is to learn from

{
DS , DT} a scene model decision function f T(x)

that predicts the label of a novel test sample from the remote sensing domain.

2.2. Multi-Kernel Maximum Mean Discrepancy

In this section, we investigate how to bridge the source-target discrepancy in the feature space.
The broad variety of cross-view images requires different types of features to describe different visual
aspects, such as the color, texture and shape. Furthermore, with the development of deep neural
networks, the output feature (i.e., deep feature) of convolutional layer or fully collected layer can
represent image in a hierarchical way. As shown in Figure 3, each image is represented by different
features with different dimensions. To overcome the problem of diversity, kernel methods have been
extensively studied to minimize the mismatch of different distributions and combine different data
modalities. In this paper, we use the nonparametric criterion called MMD to compare data distributions
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based on the distance between means of samples from two domains in a Reproducing Kernel Hilbert
Space (RKHS), which has been shown to be effective in domain adaptation. The criterion of MMD is:

DIST(Di
S, Di

T) =

∥∥∥∥∥ 1
nS

nS

∑
i=1

ϕ(xi
S)− 1

nT

nT

∑
i=1

ϕ(xi
T)

∥∥∥∥∥ (1)

where xi
S and xi

T are images from the source and target domains, respectively, and ‖•‖ denotes
the l2 norm. A kernel function K is induced from the nonlinear feature mapping function ϕ(•), i.e.,
K(xi, xj) = ϕ(xi)

′ϕ(xj) . To simplify the MMD criterion, we defined a column vector

q = [1/nS, ..., 1/nS︸ ︷︷ ︸
nS

,−1/nT , ...− 1/nT︸ ︷︷ ︸
nT

]′

to transform Equation (1) to:
DIST(Di

S, Di
T) = tr(KQ) (2)

where Q = qq′ ∈ <N×N , K = [
KSS KST
KTS KTT

] ∈ <N×N , KSS, KTT and KST are the kernel matrices

defined for the source domain, target domain, and the cross-domain from the source images to the
target images, respectively.

Figure 3. Illustration of multiple kernel learning and manifold regularization.

To effectively fuse multiple types of features for cross-view scene model transfer task, we employ
multiple kernel learning method to construct the kernel matrices by a linear combination of different
feature kernels matrices K(m).

K =
M

∑
m=1

dmK(m) (3)

where dm are the linear combination coefficients and
M
∑

m=1
dm = 1. K(m)(m = 1, 2, ..., M) is a base kernel

matrix that combines both source and target images derived from different feature mapping functions
ϕ(•). Thus, the MK-MMD criterion is simplified:

DISTK(DS, DT) = tr(
M

∑
m=1

dmK(m)Q) = p′d (4)

where p = [tr(K(1)Q), ..., tr(K(m)Q)]′ and d = [d1, ..., dM]′ is the vector of kernel combination
coefficients. When we minimize DISTK(DS, DT) to be close to zero, the data distributions of the
two domains are close to each other.
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2.3. Structural Risk

In this section, we investigate how to bridge the discrepancy of source classifier f S(x) and
target classifier f T(x). Previous works [39] assume that f T(x) = f S(x) + ∆ f (x), where ∆ f (x) is
the perturbation function adapted from the training data. In this paper, we learn a robust target
decision function adapted from a combination of pre-learned classifiers and a perturbation function as
follows [39]:

f T(x) = f S(x) + ∆ f (x) =
P

∑
p=1

βp fp(x) +
M

∑
m=1

dmw′m ϕm(x) + b (5)

where fp(x) is the pre-learned classifiers with a linear combination coefficients βp trained based
on the labeled data from both domains and P is the total number of the pre-learned classifiers.

∆ f (x) =
M
∑

m=1
dmw′m ϕm(x) + b is the perturbation function with b as the bias term. w′m and ϕm(x) are

the mth kind of normal vector and feature mapping function. Therefore, we form the structural risk
functional as follows:

min
wm ,β,b,ξi

1
2

(
M
∑

m=1
dm ‖wm‖2 + λ‖β‖2

)
+ C

n
∑

i=1
ξi

s.t.yi f T(xi) ≥ 1− ξi, ξi ≥ 0
(6)

β = [β1, ..., βP]
′ is the vector of βps, and λ, C > 0 are the regularization parameters. Denote

ṽm = dm[w′m,
√

λβ′]′ , and the optimization problem in Equation (6) can then be computed as follows:

min
ṽm ,b,ξi

1
2

M
∑

m=1

‖ṽm‖2

dm
+ C

n
∑

i=1
ξi

s.t.yi(
M
∑

m=1
ṽ′m ϕ̃m(xi) + b) ≥ 1− ξi, ξi ≥ 0

(7)

Denote ϕ̃m(xi) = [ϕm(xi)
′, 1√

λ
f (xi)

′]′, where f (xi) = [ f1(xi), ..., fP(xi)]
′, a new kernel matrix

K̃ = [ϕ̃m(xi)
′ ϕ̃m(xj)] =

M
∑

m=1
dmK̃(m) = [

K̃L K̃LU
K̃UL K̃U

] ∈ <N×N , is defined by the both labeled and

un-labeled training data from two domains. K̃L = [
K̃SS

L K̃ST
L

K̃TS
L K̃TT

L
] ∈ <n×n is the kernel matrix defined

for labeled samples for both two domains. K̃U ∈ nu×nu and K̃LU ∈ n×nu are the kernel matrices
defined for the unlabeled samples and cross-domain from the labeled images to the unlabeled images,
respectively. Motivated by the optimization problem of SVM, Equation (7) can be solved by its
dual problem:

max
α∈A

1′nα− 1
2
(α ◦ y)′K̃L(α ◦ y) (8)

where y = [y1, ..., yn]′ is the training samples’ label vector. A = {α|α′y = 0, 0n ≤ α ≤ C1n} is the
feasible set of the dual variables α .

2.4. Manifold Regularization

In this section, we investigate how to leverage unlabeled target data based on manifold
regularization, which has been shown effective for semi-supervised learning [40]. This regularizer’s
basic intuition is that the outputs of the predictive function are restricted to assign similar values
for similar samples in the feature space. Inspired by Laplacian based semi-supervised learning [41]
and Manifold Regularized Least Square Regression (MRLS) [42], the estimation of the manifold
regularization can be measured by similarity of the target pairwise samples. Specifically, it can
be given by

min
ṽm

nT

∑
i,j

Sij

∥∥∥∥∥ M

∑
m=1

ṽ′m ϕ̃m(xT
i)−

M

∑
m=1

ṽ′m ϕ̃m(xT
j)

∥∥∥∥∥
2

(9)
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where S ∈ nT×nT denotes the affinity matrix defined on the target samples, whose element Sij
reflects the similarity between xT

i and xT
j. By setting the derivative of the Lagrangian obtained

from Equation (7) to zero, we can obtain ṽm = dm
n
∑

i=1
αiyi ϕ̃m(xi). Thus, Equation (9) can be rewritten

as follows:
nT

∑
i,j

Sij

∥∥∥∥∥ M

∑
m=1

dm(α ◦ y)′(K̃(1 : n, i + nS)− K̃(1 : n, j + nS))

∥∥∥∥∥
2

(10)

One way of computing the elements of affinity matrices S is based on Gaussian functions, i.e.,

Si,j =

 e−
‖xi

T−xj
T‖2

σ2

0

if xi
Tand xj

Tare k nearest neighbors
else

(11)

where σ is the bandwidth parameter. By defining the graph Laplacian L = D − S, where D is a

diagonal matrix defined as Dii =
nT
∑

j=1
Sij, the manifold regularization can be rewritten as:

((α ◦ y)′
M

∑
m=1

dmK̃(m)(1 : n, nS : N)) · L((α ◦ y)′
M

∑
m=1

dmK̃(m)(1 : n, nS : N))T (12)

2.5. Overall Objective Function

In this section, we integrate DISTK(DS, DT) in Equation (4) and structural risk functional in
Equation (8) into the manifold regularization function in Equation (12) and then arrive at the overall
objective function.

G(d)=p′d + θ
(
1′nα − 1

2
(α ◦ y)′K̃L (α ◦ y)) + ζ((α ◦ y)′

M

∑
m=1

dmK̃(m)(1 : n, nS : N))L((α ◦ y)′
M

∑
m=1

dmK̃(m)(1 : n, nS : N))T (13)

where θ, ζ is the trade-off parameter. Thus, we propose an alternating update algorithm to obtain
the globally optimal solution. Once we have initialized the linear combination coefficient dm, the
optimization problem can be solved by existing SVM solvers such as LIBSVM [43] to obtain the dual
variable α. Then, the dual variable α is fixed, and the linear combination coefficient dm is updated
by the second-order gradient descent procedure [44] to make the value of the objective function in
Equation (13) decrease. Thus, the alternating algorithm of SMRMKL is guaranteed to converge.

3. Experimental Results

We conducted our experiments for both ground-to-aerial scene model adaptation and aerial-to-satellite
scene model adaptation.

3.1. Data Set Description and Experimental Configuration

Two couples of source-target image sets were used to evaluate the proposed framework
of scene adaptation.

3.1.1. Cross-View Scene Dataset

We collected a cross-view scene dataset from two ground-level scene datasets, SUN database
(Source domain 1, S1) and Scene-15 [38] (Source domain 2, S2), and three overhead remote sensing scene
datasets, Banja Luka dataset [45] (Target domain 1, T1), UC Merced dataset [46] (Target domain 2, T2),
and WHU-RS19 dataset [47] (Target domain 3, T3). The Banja Luka dataset consists of 606 RGB aerial
images of size 128× 128 pixels. The UC Merced dataset is composed of 2100 aerial scene images
measuring 256× 256 pixels, with a spatial resolution of 0.3 m per pixel in the red green blue color
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space. The WHU-RS19 dataset was extracted from a set of satellite images exported from Google
Earth with spatial resolution up to 0.5 m and spectral bands of red, green, and blue. Our cross-view
scene dataset consists of 2768 images of four categories (field/agriculture, forest/trees, river/water
and industrial). Figure 4 shows an example of the cross-view scene dataset (one image per class per
dataset). Table 1 gives the statistics of the image numbers in the dataset.

Figure 4. Samples of our cross-view datasets.

Table 1. Statistical number of images in Cross-view scene dataset. SUN database (S1) and Scene-15 (S2)
are the source domains, while Banja Luka (T1), UC Merced (T2), and WHU-RS19 (T3) datasets are the
target domains.

Overhead-View Datasets Ground-View Datasets

T1 T2 T3 S1 S2

1 agriculture 178 100 50 84 410
2 forest/trees 105 100 53 62 328
3 river/water 77 100 56 125 360
4 industrial 75 100 53 41 311

3.1.2. Aerial-to-Satellite Scene Dataset

We have collected 1377 images of nine common categories from the UC Merced aerial scene
dataset and WHU-RS19 dataset. In this experiment, we use the aerial scene dataset as the source
domain, while examples from the satellite scene dataset are used as the target domain training data.
In total, there are 900 source training images. Satellite scene dataset has 495 images for all nine
categories. Figure 5 shows the images from 9 out of 19 classes.

Figure 5. Nine common categories of satellite scenes from WHU-RS19 dataset (top row) and aerial
scenes from UC Merced dataset (bottom row): (1) residential; (2) parking lot; (3) port/harbor;
(4) industry/building; (5) farmland/ agriculture; (6) viaduct/ overpass; (7) river; (8) forest; and
(9) beach.
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3.1.3. Base Features and Training/Testing Settings

For images in our two couples of source-target image sets, we extracted four types of global features:
HOG (histogram of oriented), DSIFT (dense SIFT), TEXTON and Geo-color. These heterogeneous base
features can better describe different visual aspects of images. In addition, we also take the output of fc6
and fc7 layers by using DeCAF [48] as image representation for comparison.

All the instances in the source domain are used as the source training data. The instances in the
target domain are evenly split into two subsets: One is used as the target training data and the other is
as the target test data. Furthermore, to investigate the effect of the semi-supervised learning in our
proposed framework, we divide the target training data into two halves: half is used as the labeled
set (we randomly select 1, 3, 5, 7, and 10 samples per class from the target domain set), in which
we consider that the labels are known; and the remaining instances are used as the unlabeled set.
For all these datasets, the splitting processes are repeated five times to generate five source and target
training/testing partitions randomly, and then the average performance of the five-round repetitions
is reported.

3.1.4. Compared Approaches

We compare the following competing approaches for performance evaluation.

• SVM-ST: An SVM classifier trained by using the labeled samples from both source and target
domains,

• SVM-T: An SVM classifier trained by only using the labeled samples from the target domain.
• A-SVM [49]: Adaptive-SVM is adapted from f S(x) (referred to pre-learned classifier trained by

only using the labeled samples from the source domain). In detail, the samples from the target
domain are weighted by f S(x) then these samples are adopted to train a perturbation function
∆ f (x). The final SVM classifier is a combination of pre-learned classifiers f S(x) and a perturbation
function ∆ f (x), as shown in Equation (5).

• CD-SVM [50]: Cross-domain SVM used k-nearest neighbors from the target domain to define
a weight for each source sample, and then the SVM classifier was trained with the reweighted
source samples.

• KMM [51]: Kernel Mean Matching is a two-step approach to reduce the mismatch between two
different domains. The first step is to diminish the mismatch between means of samples in RHKS
from the two domains by reweighting the samples in the source domain. Then, the second step is
to learn a classifier from the reweighted samples.

• AMKL [39]: Adaptive MKL can be considered as an extension of A-SVM. Firstly, the unlabeled
target samples are used to measure the distribution mismatch between the two domains in the
Maximum Mean Discrepancy criterion. Secondly, the final classifier is constrained as the linear
combination of a set of pre-learned classifiers and the perturbation function learned by multiple
kernel learning.

• SMRMKL is our approach described in Algorithm 1.

Six parameters in our proposed framework need to be set. We set k = 5 in the kNN (k Nearest
Neighbors) algorithm to calculate neighbors in the manifold regularizer and empirically set the value
of bandwidth parameter σ to be 0.1. The trade-off parameters θ, λ, and ζ and regularization
parameter C are selected from

{
10−3 , 10−1, 1, 10, 102, 104

}
and the optimal values are determined.

For the comparison algorithms, the kernel function parameter and tradeoff parameter were optimized
by the gird search technique on our validation set. Classification accuracy is adopted as the
performance evaluation metric for scene classification. Following [39], four types of kernels, including
Gaussian kernel, Laplacian kernel, inverse square distance (ISD) kernel, and inverse distance (ID)
kernel, are employed for our multiple kernel learning approach.
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Algorithm 1 Semi-supervised Manifold-Regularized Multiple Kernel Learning (SMRMKL).

Input:
Source data with labels DS = (xi

S, yi
S)|nS

i=1, target data DT = Dl
T ∪Du

T , regularization parameter
C. trade-off parameter λ , θ, ζ , bandwidth parameter σ ;

Output:
Predicted target labels YT .

1: Step 1: Compute pre-learned classifiers fp(x) and K = [
KSS KST
KTS KTT

] using base kernels K(m);
2: Step 2: Initialization: d = 1

M 1 ;
3: Step 3: Compute MK-MMD values DISTK(DS, DT) for each base kernels K(m);
4: Repeat:
5: Compute K̃ = [ K̃L K̃LUK̃UL K̃U ] = K + ∆K , ∆K = 1

λ f (xi)
′ f (xi) and S ;

6: Solve for the dual variables α in Equation (13) by using SVM;
7: Update the base kernel combination coefficients dm ;
8: Until Maximum Iterations.
9: Output α, d

3.2. Ground-to-Overhead View Transfer

In this experiment, we focus on one source to one target domain adaptation. In each setting of
our experiments, we train scene models using one ground view domain and the corresponding labels
and test on one overhead view domains. Then, six source-target domain pairs are generated by the
aforementioned five domains, i.e., S1→T1, S1→T2, S1→T3, S2→T1, S2→T2 and S2→T3.

3.2.1. Performance Comparison

Traditional methods are single feature-based methods; thus, we investigate different approaches
on individual features. Figure 6 shows the performance of different approaches with different features
for the S1→T3 transfer task in terms of overall accuracy (OA) against the number of target positive
training samples. In detail, the curves represent the means of OA and the error bars represent the
statistical deviation. The smaller the statistical deviation, the better the consistency of the algorithm.
For multiple kernel-based methods, such as A-MKL and SMRMKL, each sub-figure shows the results
of single feature with multiple kernels. Figure 7 shows the distributions of S1→T3 cross view scenes
with six types of features. Each image’s features in the dataset are projected into two dimensions
using t-SNE [33]. The solid points and hollow points represent the source images and target unlabeled
images, respectively. In addition, the cross points represent the target labeled images. We observe
the following from the results: (1) In most instances, the accuracy curves increase along with the
increased number of target labeled training images, which shows that the more information the target
domain provides, the better the performance of transfer learning. When the number of target positive
training samples exceeds 10, SVM-T has similar performance with other adaptation methods, such
as SMRMKL, AMKL and ASVM. (2) A-MKL and SMRMKL lead to better performance than other
approaches, which demonstrates the superiority of multiple kernel learning. Compared with A-MKL,
SMRMKL achieves higher accuracy in most cases, which demonstrates the successful utilization of
unlabeled training images. The exception is the HOG feature in Figure 6d. This observation is not
surprising because the differentiation of the HOG feature is worse than the other features’ distributions
(as shown in Figure 7d), deteriorating the effect of unlabeled target data in local manifold regularization.
(3) The DeCAF and TEXTON features with better differentiation in distribution perform better than
the HOG, DSIFT and Geo-Color ,which shows that the texture and DeCAF features are more suitable
for cross-view transfer tasks.
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Figure 6. The performance (means and standard deviation of overall accuracy) of different approaches
with different features for S1→T3 transfer task.

Figure 7. 2D visualization of the S1→T3 cross-view scene dataset with different features. The solid
points, hollow points, and cross points represent the source images, target unlabeled images and target
labeled images, respectively.

3.2.2. Analysis on the Kernel Combination Coefficients dm of the Multiple Features

To investigate the performance of multiple kernel learning and the ability to fuse multiple
features, we propose two scenarios of cross-view classification with respect to different features and
kernels: single-feature with multi-kernels and multi-feature with multi-kernels. Figure 8 shows
the performance of SMRMKL for six transfer tasks in terms of classification accuracy against the
number of target positive training samples. Multi-Fuse represents the fusion of six features with
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four types of kernels, and the other features represent the single feature with four types of kernels.
From the results, we observe the following: (1) The performance of different features has an obvious
dissimilarity in different source-target domain pairs. In most instances, when the number of the
target positive training samples exceeds 3, DeCAF features have noticeable improvement over other
handcraft features. The results reveal that the DeCAF features generalize well to our cross view datasets.
(2) The TEXTON feature has better performance than the DeCAF features for S1→T3 and S2→T3
transfer tasks, whereas it has poor performance for S1→T2 and S2→T2 transfer tasks. This result is
possibly caused by the resolution of the image dataset: T3 is a high-resolution satellite scene dataset
that has a more similar texture with ground-level datasets. (3) Multi-Fuse generally leads to the highest
accuracies in the S1→T1, S1→T2, S1→T3 and S2→T3 transfer tasks. For the S2→T1 and S2→T2
transfer tasks, Multi-Fuse has better performance than four sing hand-craft feature-based methods but
slightly worse than single DeCAF feature-based methods. This is possibly caused by the gray-level of
S2 dataset and the low-resolution of the T1 and T2 datasets. The results demonstrate that our multiple
kernel learning-based approach has the ability to fuse multi-features for improving the performance of
cross-view scene classification.

Figure 8. The performance (means and standard deviation of overall accuracy) of our approach with
different features for six transfer tasks.

Based on the noticeable improvement of the Multi-Fuse approach, we learned the linear
combination coefficient dm of the multiple features with different types of kernels. The absolute
value of each dm reflects the importance of the corresponding feature and kernel. Taking six types
of image features with the Gaussian kernel, we plot the combination coefficient dm for each class
with a fixed number of three target-positive training samples for six pairings of the transfer tasks in
Table 2. We observe that the absolute values of DSIFT and HOG are generally larger than other features
in S1→T1, S1→T2 and S1→T3 transfer tasks, which shows that DSIFT and HOG play dominant
roles among those tasks, whereas the DeCAF features are always larger than other features in the
S2→T1,S2→T2 and S2→T3 transfer tasks. This is not surprising because the DSIFT, HOG and DeCAF
features are much more distinctive than the Geo-Color and TEXTON features in Figure 7. In Table 2,
we also observe that the values of TEXTON are generally close to zero except for the industrial class,
which demonstrates that texture is better able to describe the industrial cross-view scene classification.
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Table 2. The combination coefficients dm of the multi features with a fixed number of three target
positive training samples.

Kernel Coefficients dm DSIFT Geo-Color HOG TEXTON FC6 FC7

S1->T1

agriculture 0.38 0 0.35 0 0.13 0.13
forest 0.21 0.09 0.19 0 0.24 0.27
river 0.23 0 0.28 0 0.26 0.23

industrial 0.34 0 0.39 0 0.13 0.14

S1->T2

agriculture 0.21 0.06 0.36 0 0.17 0.19
forest 0.07 0.17 0.12 0.16 0.25 0.23
river 0.23 0.05 0.18 0 0.27 0.27

industrial 0.33 0.06 0.42 0.02 0.09 0.08

S1->T3

agriculture 0.13 0 0.27 0 0.37 0.23
forest 0.25 0.06 0.19 0 0.23 0.27
river 0.16 0.06 0.31 0 0.22 0.25

industrial 0.29 0.06 0.32 0.03 0.16 0.14

S2->T1

agriculture 0.13 0 0.27 0 0.37 0.23
forest 0.11 0 0.24 0 0.39 0.26
river 0.13 0 0.33 0.01 0.37 0.17

industrial 0.23 0 0.28 0.44 0.05 0

S2->T2

agriculture 0.1 0.07 0.33 0 0.41 0.1
forest 0.04 0.22 0.22 0 0.42 0.11
river 0.11 0.02 0.33 0 0.43 0.1

industrial 0.18 0 0.26 0.52 0.04 0

S2->T3

agriculture 0.03 0.07 0.23 0 0.47 0.2
forest 0.01 0.34 0.15 0 0.38 0.13
river 0.04 0 0.32 0 0.45 0.18

industrial 0.06 0 0.28 0.51 0.15 0

3.2.3. Effect of Each Regularizer

Our proposed SMRMKL has three components, i.e., multi-kernel minimizing mismatch
distribution (MK-MMD) (Section 2.2), structural risk (SR) (Section 2.3), and manifold regularization
(MR) (Section 2.4). Here, we investigated the degree of each component’s contribution. Table 3
shows the performance improvements on different combinations of regularizers (i.e., SR+MK-MMD,
SR+MR, and SR+MK-MMD+MR) with a fixed number of three target-positive training samples.
The results indicate that SR+MK-MMD+MR exhibits a higher accuracy than SR+MK-MMD and
SR+MR, which demonstrates that the combination of three regularizers can effectively improve the
adaptation performance. Furthermore, SR+MK-MMD leads to a better performance than SR+MR,
which means that the MK-MMD regularizer has a higher contribution than the MR regularizer.

Table 3. The overall accuracy (percent) improvements with different combination of regularization
across six pairing of the transfer tasks.

Overall Accuracy S1->T1 S1->T2 S1->T3 S2->T1 S2->T2 S2->T3

SR+MK-MMD 70.65 81.04 81.00 75.18 90.04 65.08
SR+MR 50.89 62.19 61.25 54.11 63.94 61.63

SR+MK-MMD+MR 81.19 95.21 84.50 77.14 93.08 65.27

3.2.4. Analysis on Parameters

To investigate the impact of each parameter, the regularization parameter C and three trade-off
parameters θ, λ, ζ are taken into consideration. In Figure 9a–c, we show the impact of regularization
parameter C and trade-off parameters λ when they are set to take different values of the S1→T1 transfer
task. From the results, we can see that C has a dominant impact on classification accuracy, whereas
λ is not considerably sensitive to the performance. Thus, we empirically set C = 100 and λ = 10 in
our subsequent evaluations. In Figure 9d,e, we show the impact of trade-off parameters θ and ζ with
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different values for the S1→T1 transfer task. From the results, we can see that the performance of our
method is not sensitive to trade-off parameters θ and ζ.

Recall that we iteratively update the linear combination coefficient dm and dual variable α in
SMRMKL (see Section 2.5). We discuss the convergence of the iterative algorithm of SMRMKL. Taking
S2→T1 transfer task, we draw the change of the objective value for each class with respect to the
number of iterations in Figure 10. We observe that SMRMKL converges after about six iterations for all
categories. Other transfer tasks also have similar observations.

Figure 9. The performance (classification accuracy) of Multi-Fuse based SMRMKL for S1→T1 transfer
task with different trade-off parameters.

Figure 10. Illustration of the convergence of the SMRMKL learning algorithm for four categories.

3.3. Aerial-to-Satellite Transfer

To demonstrate the robustness of our method, we evaluated the performance of our method
in transferring scene models from aerial scenes to satellite scenes. Figure 11 further details the
performance of different approaches with different features for the aerial-to-satellite transfer task
in terms of classification accuracy against the number of target-positive training samples. In this
figure, SMRMKL successfully brings up the performance of different features, which demonstrates
that SMRMKL is significantly better than other approaches to the aerial-to-satellite transfer task.
The exception is the TEXTON feature in Figure 11c. This observation may be the result of the
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differentiation of the TEXTON feature deteriorating the effect of unlabeled target data in local manifold
regularization, which deteriorates the adaptation performance.

Figure 12 shows the performance of SMRMKL with different features for the aerial-to-satellite
transfer task in terms of classification accuracy against the number of target positive training
samples. From the results, we can see that DeCAF features have noticeable improvement over
other handcraft features. Geo-Color has better performance than other three hand-craft features.
In addition, Multi-Fuse generally leads to the highest accuracies in this transfer task. The result
indicates that our multiple kernel learning-based approach has the ability to fuse multi-features to
improve the performance of aerial-to-satellite scene classification. Furthermore, we can observe that
the classification accuracy is very low without using samples form the target domain (i.e., the number
of target train samples is 0). As the number of target training samples increases, the classification
accuracy increases significantly. As can be seen in Figures 11 and 12, the curve does not have a gentle
trend. This proves that the participation of target domain training samples is very important for
improving the classification accuracy. However, due to the small size of aerial-to-satellite scene dataset,
up to 10 samples per class from the target domain participated in the training. This will result in limited
classification accuracy. In our future work, we will collect more samples for training. We believe that
the classification accuracy will be improved.

Figure 11. The performance (mean and standard deviation of overall accuracy) of different approaches
using different features with respect to different numbers of target samples per class for the
aerial-to-satellite transfer task.

To further observe the performance in individual categories, the mean Average Precision (mAP)
of different features with respect to each class is drawn in Table 4. The corresponding confusion
matrices are shown in Table 5. We can observe that different feature responds differently to each
class. For instance, “parking” and “industry” are better classified with TEXTON, and “residential”
and “harbor” show better results with DeCAF features. For the last five categories, Multi-Fuse-based
SMRMKL successfully improves the mAP performance. In Table 5, we can see that most of the scene
categories could be correctly classified except “residential”, “harbor”, “industry”, “river”, and “beach”,
whose visual aspects are significantly different between the aerial images and satellite images. In
addition, “residential” and “harbor” from the aerial images are easily confused with “parking” and
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“industry” from the satellite images due to the similar configuration in Figure 5. It is also difficult to
distinguish “viaduct” and “river” due to the similar winding attribute.

Figure 12. The performance (mean and standard deviation of overall accuracy) of our approach using
different features with respect to different numbers of target samples per class for the aerial-to-satellite
transfer task.

Table 4. Per-class mAPs of different features with 10 target positive examples for all nine categories.

mAPs DSIFT Geo-Color HOG TEXTON FC6 FC7 Multi-Fuse

residential 0.42 0.46 0.44 0.47 0.48 0.5 0.42
parking 0.47 0.37 0.45 0.61 0.5 0.48 0.5
harbor 0.5 0.51 0.49 0.5 0.57 0.56 0.51

industry 0.44 0.39 0.41 0.51 0.47 0.46 0.46
farmland 0.66 0.63 0.63 0.56 0.67 0.65 0.72
viaduct 0.42 0.44 0.44 0.49 0.46 0.45 0.53

river 0.55 0.51 0.45 0.44 0.57 0.52 0.57
forest 0.76 0.71 0.77 0.78 0.81 0.79 0.84
beach 0.86 0.86 0.68 0.81 0.94 0.93 0.93

Table 5. The confusion matrices of Multi-Fuse based SMRMKL with 10 target positive examples per
class for aerial-to-satellite classification. The overall accuracy is 56.79% and the Kappa is 0.5139.

Class Residential Parking Harbor Industry Farmland Viaduct River Forest Beach Total User. Acc (%)

residential 18 16 11 0 0 0 0 0 0 45 29.51
parking 9 30 4 1 0 0 1 0 0 45 56.6
harbor 16 6 19 1 0 0 1 2 0 45 51.35

industry 10 1 3 14 16 1 0 0 0 45 70.00
farmland 0 0 0 4 39 2 0 0 0 45 61.9
viaduct 0 0 0 0 8 20 17 0 0 45 60.61

river 0 0 0 0 0 10 24 9 2 45 55.81
forest 0 0 0 0 0 0 0 32 13 45 69.57
beach 8 0 0 0 0 0 0 3 34 45 69.39
Total 61 53 37 20 63 33 43 46 49 405

Prod. Acc (%) 40.00 66.67 42.22 31.11 86.67 44.44 53.33 71.11 75.56
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3.4. Running Time and Memory Usage

In the following, the computational complexity of SMRMKL in Algorithm 1 is investigated.
Here, we suppose multiple types of features are pre-computed before SMRMKL training. Then, the
computational cost for the calculation of the kernel matrix K in Step 1 and K̃ in Step 3 takes the same
time O(MN2), where M is the number of base kernels and N is the number of training images in the
source and target domains. Suppose the mean computational cost for the two-class classification takes
the time O(D2N2), where D is the dimensionality of each feature. Then, the computational cost of
Step 3 is O(J(kD2N2 + MN2)), where k is the number of required iterations for convergence and J is
the number of categories. For Memory Usage, taking six types of image features with four kind of
kernels, the kernel matrix of the small size transfer tasks (i.e., S1→T1, S1→T2 and S1→T3) occupies
40.6 megabytes on average, while the kernel matrix of the large size transfer tasks (i.e., S2→T1, S2→T2
and S2→T3) occupies 348.5 megabytes on average. When the kernel matrixes are pre-computed, our
algorithm is still effective in computation.

4. Conclusions

In this paper, we propose transferring scene models from ground-view images to very high-resolution
remote sensing images. Specifically, a semi-supervised manifold-regularized multiple kernel learning
(SMRMKL) algorithm that jointly minimizes the mismatch of distributions between the two domains and
leverages available unlabeled target samples to capture the local structure in the target domain is presented.
In addition, we conduct an in-depth investigation on various aspects of SMRMKL, such as analysis on the
effect of each regularizer, the combination coefficients on the multiple kernels, and the convergence of the
learning algorithm. Extensive experimental results on both cross-view and aerial-to-satellite scene datasets
show that: (1) SMRMKL has an appealing extension ability to effectively fuse different types of visual
features and improve the classification accuracy, whereas traditional methods focus on one kind of features.
In addition, SMRMKL could indicate which type of feature plays dominant roles among scene transfer
tasks, this is important for feature selection. (2) In the past, most cross-view scene model adaptation
models are unsupervised methods [28–30]. Without using target domain samples, the classification
accuracy is limited. SMRMKL is semi-supervised method which proves that the participation of
target domain training samples is very important for improving the adaptation classification accuracy.
(3) Manifold regularization can improve the adaptation performance by utilizing unlabeled target
samples. In practical applications, there are many unlabeled samples. How to effectively leverage these
unlabeled samples has important application significance. However, the results in our manuscript are
still limited in practical applications. The dataset constructed is simple. The number of samples in the
dataset is small. In our future work, we will extend this work to a larger cross-view dataset collected
from web images and UAV( unmanned aerial vehicle) images. Furthermore, our work is expected to
be applied to the visual attributes adaptation. Visual attributes can be considered as a middle-level
semantic cue that bridges the gap between low-level image features and high-level object classes. Thus,
visual attributes have the advantage of transcending specific semantic categories or describing scene
images across categories.
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