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Abstract: In this paper, we develop a synthetic population as the first step in implementing
an integrated land use/transport model. The model is agent-based, where every household,
person, dwelling, and job is treated as an individual object. Therefore, detailed socioeconomic
and demographic attributes are required to support the model. The Iterative Proportional Updating
(IPU) procedure is selected for the optimization phase. The original IPU algorithm has been improved
to handle three geographical resolutions simultaneously with very little computational time. For the
allocation phase, we use Monte Carlo sampling. We applied our approach to the greater Munich
metropolitan area. Based on the available data in the control totals and microdata, we selected
47 attributes at the municipality level, 13 attributes at the county level, and 14 additional attributes
at the borough level for the city of Munich. Attributes are aggregated at the household, dwelling,
and person level. The algorithm is able to synthesize 4.5 million persons in 2.1 million households in
less than 1.5 h. Directions regarding how to handle multiple geographical resolutions and how to
balance the amount and order of attributes to avoid overfitting are presented.

Keywords: population synthesis; microscopic land use model; travel demand; agent based

1. Introduction

Synthetic populations are used in transportation modeling when individual records of households
and persons are not available due to privacy reasons, insufficient resolution, or missing attributes.
Within the context of transportation modelling, population synthesis is the process of creating
a representation of a complete, disaggregate population by combining a sample of disaggregate
members of a population in a way as to match key distributions for the entire population [1]. Key
distributions—also known as control attributes—can be at the household level, such as household
size, at the person level, such as gender, age or employment status, or at the dwelling level, such
as construction year or living space. Moreover, control attributes can be aggregated at different
geographical resolutions, such as boroughs, municipalities, or counties.

Synthesizing a population has two main phases: optimization (fitting) and allocation. The first
phase fits a disaggregate sample of agents (microdata) to aggregated constraints (control totals), while
the second phase replicates actual agents for the synthetic population using a probabilistic selection [2].
While the procedure on the second stage is usually the same across population synthesizers and relies
on Monte Carlo sampling, there is a broad range of procedures for the first stage.

There is an ongoing debate about which procedures and enhancements are best suited at
the optimization phase. As seen in Table A1, the Iterative Proportional Fitting (IPF) procedure
is a well-established algorithm for fitting [1,3–17]. This method, first proposed by Deming and
Stephan [18], identifies weights for the microdata iteratively by adjusting an n-dimensional array until
every dimension matches to the control totals. The same method is often called matrix balancing in

ISPRS Int. J. Geo-Inf. 2018, 7, 174; doi:10.3390/ijgi7050174 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-9003-4367
https://orcid.org/0000-0002-6874-0393
http://www.mdpi.com/2220-9964/7/5/174?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi7050174
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2018, 7, 174 2 of 20

computer science or RAS method in input-output analysis. The main disadvantage of the procedure is
that it can only handle one level of aggregation (person or household) and geographical resolution
(municipality or county) at each time. Some authors enhanced the procedure by: substituting the
n-dimensional array with sparse lists to accommodate a large number of control attributes without
exponentially increasing computational requirements [7]; using two-step IPF to accommodate person
level and household level attributes in sequence [11]; incorporating more heterogeneity into the initial
seed [17,19]; and combining IPF with spatial microsimulation [15] or reweighting IPF results using
Iterative Proportional Updating (IPU) [17]. Recent work has evolved IPF into IPU, which calculates a
set of weights for each one of the microdata records in an iterative approach. IPU is capable of closely
matching household-level, dwelling-level, and person-level control totals at the same time [20] and it
can accommodate control attributes defined at municipality-level and county-level simultaneously [21].
As with IPF, IPU is from the static family of models. Other procedures that can handle person and
household-level attributes are entropy maximization [16,22,23], hierarchical IPF [24,25], combinatorial
optimization [26,27], Monte Carlo Markov Chain [27,28], Hidden Markov Models [29], or multinomial
regression models [30,31]. Most of the procedures are compared to IPF and usually tend to better
match observed distributions in multiple dimensions, although the convergence time can be very
high [26].

In terms of control attributes, all studies for transportation engineering include at least household
size, age, and gender, as summarized in Table A2. Employment status has been included at the
household [4,5,11,21,27] or person level [8,13,26,31–33]. While household income is available for most
of the studies in the United States and Canada [4,7,9–11,20–22,26], it is commonly not included in
European countries and Australia [8,13,23,27,32]. Other variables are the number of cars, number of
children, type of dwelling, or ethnicity. Dwelling attributes are less common, with only a few studies
including dwelling tenure [4,9,34] or dwelling type [4,11,32].

The aim of this work is to synthesize the population of the greater Munich metropolitan
area. This paper does not intervene in the methodological debate by comparing performance of
alternative procedures but rather gathers alternative procedures available and selects one suitable
to the case study needs. The available data is limited in several respects, which triggered our need
to create a new multiresolution solution. Firstly, person and household attributes are aggregated at
the municipality level, but most dwelling attributes are aggregated at the county level. Secondly,
the German administrative division classifies the city of Munich as a single municipality-county
of 1.3 million inhabitants in 0.7 million households. A higher resolution is required to synthesize
demographic and dwelling differences across boroughs. Thirdly, the data do not cover all attribute
dimensions of households, individuals, and dwellings that the model requires. Specifically, data on
individual income, car availability, land price, or number of bedrooms are missing. The first and second
constraints lead to implementing one optimization procedure that can enable control at household,
dwelling, and person levels simultaneously and can deal with different geographical resolutions in
a reasonable amount of time. The third constraint is not fundamental and results in having a few
uncontrolled attributes that are directly copied from the microdata.

2. Materials and Methods

The algorithm builds on several of the methods and techniques that have been introduced thus far
in the field of population synthesis and expands it to three geographical levels. The method includes
three stages: (1) selecting geographical resolution and scales of analysis; (2) optimization; (3) allocation.
The following subsections will describe each stage and the application.

2.1. Selecting Geographical Resolution and Scales of Analysis

Two main data items required to synthesize populations are individual household structures
(or household microdata) and aggregate distributions at a certain geographical resolution (or
control totals).
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Household microdata is provided by many statistics bureaus in the form of the microcensus.
It includes basic socioeconomic information, current and previous employment, and location. Control
totals are usually available at statistics bureaus. The data can be aggregated to several geographical
resolutions: borough, municipality, county, state, or nationwide.

After data were collected, we selected attributes as control attributes. Control attributes must be
meaningful for the model, included in both databases, and have equal or comparable stratifications in
both databases.

2.2. Optimization: IPU with Three Geographical Resolutions

The optimization uses Iterative Proportional Updating (IPU). It was proposed by
Konduri et al. [21] for two geographical resolutions, and it was expanded for this research to three
geographical resolutions. The IPU procedure consists of adjusting the set of weights for each household
of the microdata to minimize the error between control totals and calculated distributions of each
attribute for each geographic resolution.

Before starting the IPU procedure, it is required to summarize each microdata record according
to the categories of the control attributes. The result is stored in the frequency matrix. The frequency
matrix shows the household and dwelling type and the frequency of different person types within each
household for the sample. The dimension of the matrix is N×M, where N is the number of households
in the microdata and M is the number of control attributes (household, person and dwelling type).

The set of weights is provided at the lowest geographical resolution. An initial set of weights
is set to one. In the next iterations, weights are updated after considering each control attribute. All
attributes, regardless of whether they are household, dwelling, or person type, are treated equally.
Weights are only updated in the households where the frequency of the control attribute is different
than zero. Attributes at the lowest geographical resolution (i.e., municipality) update only the weight
of one record, while attributes at the higher geographical resolution (i.e., county) update a set of
weights of all nested areas (i.e., municipalities or boroughs).

After all control attributes are considered, we calculate the relative difference in absolute difference
between control total and calculated distribution for each attribute. The average error is compared to
the previous iteration. If the absolute difference of average deviation values between two full iterations
satisfies a set of tolerance criteria, the algorithm stops updating household weights. The default
threshold is set equal to 0.01% and can be modified by the user. Average absolute relative difference
across all constraints has been used previously by Ye et al. [20] and Konduri et al. [21] in the original
IPU procedure and by others [3,5,23,31,35]. Other indicators for goodness of fit include standardized
root mean square error [7,11,24,27,36], difference on counts [1,8,10], or error percentages [9]. Additional
stopping criteria include the maximum number of iterations (default value set to 1500) and average
error threshold (default value of 1 × 10 − 7). The process converges after several iterations depending
on the number of control attributes and number of municipalities within one county.
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error threshold (default value of 1 × 10 − 7). The process converges after several iterations depending
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Table A3 shows the pseudocode for the IPU with three geographical resolutions and two
aggregation levels.

2.3. Allocation: Monte Carlo Sampling

To generate the synthetic population, households of the microdata are randomly drawn based on
their weights. Once a household is selected for the municipality, it is allocated to a traffic analysis zone
(TAZ) within the municipality or borough. The zone system nests TAZs within the municipal regions
respecting municipal boundaries. The probability for each TAZ is the ratio between the population in
the TAZ and the total population on the municipality.

The value of control attributes is directly copied from the microdata into the synthetic population.
Finally, we computed the absolute difference between the generated population and control totals.

The goodness of fit of the allocation is evaluated as the average relative error of the control attributes
at the highest-ranking geography (i.e., county).

shows the pseudocode for the IPU with three geographical resolutions and two
aggregation levels.

2.3. Allocation: Monte Carlo Sampling

To generate the synthetic population, households of the microdata are randomly drawn based on
their weights. Once a household is selected for the municipality, it is allocated to a traffic analysis zone
(TAZ) within the municipality or borough. The zone system nests TAZs within the municipal regions
respecting municipal boundaries. The probability for each TAZ is the ratio between the population in
the TAZ and the total population on the municipality.

The value of control attributes is directly copied from the microdata into the synthetic population.
Finally, we computed the absolute difference between the generated population and control totals.

The goodness of fit of the allocation is evaluated as the average relative error of the control attributes
at the highest-ranking geography (i.e., county).
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2.4. Application

We applied our approach to the greater Munich metropolitan area (Figure 1). The region includes
the cities of Munich, Augsburg, Ingolstadt, Landshut, and Rosenheim and their respective suburbs to
cover the large commuting shed of the Munich region. The delineation of the study area was defined by
the share of commuter flow into these five central cities. Municipalities were included in the area if at
least 25% of workers commute to one of the central cities. The area includes a population of 4.5 million
living in 2.1 million households. It has 444 municipalities distributed in 28 counties. The number of
municipalities by county varied from 1 to 46.
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After delineating the study area, municipalities are divided in Traffic Analysis Zones (TAZs) using
a gradual raster-based zone system [37]. The total number of TAZs is 4950 (Figure 2). Twenty-nine
percent of the population lives in the city of Munich itself, while the average population per
municipality is below 10,000. Therefore, a higher spatial resolution was created for the city of Munich
than for other less populated municipalities.
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Figure 2. Greater Munich metropolitan area: counties (in color) and traffic analysis zones.
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The German household microdata was purchased from the German State Statistical Office. Due
to privacy considerations, individual records are anonymized and not geolocated. In fact, the only
geographical resolution of the reference is the state of residence (e.g., Bavaria). Control totals are
available online at the German 2011 Household Census [38], the GENESIS Online database [39],
the Census Hub [40], and the website of the city of Munich [41].

Based on the available data in the control totals and microdata, we selected 60 control attributes:
47 attributes at the municipality level and 13 attributes at the county level. For the city of Munich,
we selected 14 additional attributes at the borough level. Table 1 summarizes the control attributes by
type and geographical resolution.

Table 1. Control attributes of the synthetic population.

Attribute Categories Geographical Resolution(s)
Type Name Number Description

Household Total 1 Sum of households Municipality and borough
Household size 5 1, 2, 3, 4, 5+ Municipality
Household size 1 1 Borough
Household with
children

1 Household with person(s) younger
than 18 years old

Borough

Person Total 1 Population Municipality and borough
Age by gender 34 Male/Female + age (under 5, 10, 15, 20,

25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
over 80)

Municipality

Age 4 Under 5, 17, 64, over 65 Borough
Gender 2 Male (reference), female Borough
Nationality 2 German (reference), foreigner Municipality and borough
Employment status
by gender

2 Male/Female + employed Municipality and borough

Dwelling Tenure status 2 Owned, rent Municipality
Dwelling living
space (m2)

5 Less than 60, 61–80, 81–100, 101–120,
more than 120

County

Building size by
construction year

8 Smaller/Larger (2 or less dwellings in
the building, 3 or more dwellings in the
building) + construction year (before
1948, 1949–1990, 1991–2000, after 2001)

County

The land use/transport model for which this synthetic population was generated requires other
attributes that are not in the microdata, such as person income, person workplace, dwelling monthly
cost, dwelling quality, or number of cars on the household. They are obtained from other submodels,
such as car ownership model or land price model, and assigned by Monte Carlo sampling.

3. Results

This section presents the results of the synthetic population for the greater Munich metropolitan
area. We analyze the differences between the aggregate distributions and the resulting synthetic
population by: (1) geographical resolution and (2) attribute.

The optimization phase is deterministic, but the allocation phase produces slightly different model
runs every simulation due to the random seed used while sampling. To provide some impression of
the range of the sampling error, we ran the allocation five times. The average result of the five runs
and the standard deviation between the five model runs are indicated.

3.1. By Geographical Resolution

Firstly, we analyzed the average error of control attributes at the municipality level (Figure 3).
We took the absolute value of each control attribute’s error to calculate the average error by municipality.
The errors after the optimization are shown in green, and the errors of the allocation are shown in
orange. The errors after the optimization phase are generally below 6%. In fact, only 7 out of
444 municipalities had an average error higher than 6%. Those municipalities are located in large
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counties containing 46 and 23 municipalities, respectively. Additionally, some of the municipalities
had a higher concentration of students or retired persons living in large households, which were
scarcely observed on the microdata. The microdata seemed to underrepresent selected combinations
of attributes, making it difficult to match all control totals very well.
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The errors of the allocation phase are, as expected, highly dependent on the size of the municipality.
In small municipalities, it is likely that many weights are near zero. Microrecords are sampled
proportionally to their weights an integer number of times. The “law of large numbers” generally
compensated the error on the attributes for a large number of draws, but it led to lower accuracy for
small municipalities with a small number of draws, given the high number of possible combinations
of attributes. In this sense, the size of the municipality, the number of microrecords, and the number
of combinations of attributes should be balanced. In our case study, the balance was produced for
municipalities with 5000 inhabitants or more (asymptote in Figure 3).

The standard deviation between the five runs is also highly dependent on the size of the
municipality (Figure 4). The standard deviation is generally lower than 1% for municipalities higher
than 10,000. The optimization phase is deterministic, and therefore the deviation in five runs is equal
to zero. As a consequence, only the allocation phase is plotted in Figure 4.

Secondly, we analyzed the errors at the county level for all attributes (Figure 5). Given the size
dependency of the allocation error, the average error at the county level was calculated weighting the
municipality error by its population. Weighted average error was used at the optimization phase as
well for consistency.

After the optimization phase, the majority of the counties had a weighted average error lower
than 1.5%, and only two counties exceeded 3%. Not surprisingly, the weighted average error increased
during the allocation phase. Rural counties with smaller municipalities presented the largest weighted
average errors, although they were below 6%. Compared to the municipality level, the weighted
average error at the county level is lower. The lower error of measurement for the larger zones is only a
natural effect of the scale-dependent accuracy of geoinformation, perhaps due to spatial autocorrelation
of the data and that at the county level, the number of microrecords is multiplied by the number of
municipalities within the county, having a bigger sample to distribute the control totals.
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Finally, we analyzed the results for the city of Munich at three geographical resolutions: county,
municipality, and borough. The error for the city of Munich was 2%, slightly higher than other large
cities. The attribute with the highest error is single-person households, which provided an average
error of 10%, similar across all boroughs. The error is produced due to inconsistencies between borough
and municipality control totals, as the total number of single-person households in Munich differs
from 368,447 at the municipality level to 410,993 as the sum of the boroughs. The difference is around
10%, which is the same result obtained from the algorithm.

Figure 6 shows the share of single-person households across Munich boroughs and the difference
between control totals and the results after the optimization. The differences in absolute value are
below 0.2%, providing practically the same distribution of the attributes across all boroughs. Therefore,
the sole analysis of the error could be misleading when control totals at different resolutions are
not consistent.
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Figure 6. Share of single-person households across Munich boroughs and difference in absolute value
between control totals and the results after the optimization.

3.2. By Attribute

The weighted average errors (in absolute value) and deviations for household, dwelling,
and person attributes are summarized in Tables 2–4, respectively. We took the absolute value per
municipality and calculated the weighted average error, as in the previous analysis. In all the cases,
the errors at the allocation phase are higher than the errors at the optimization phase. Deviation at the
optimization phase is equal to zero because the procedure is deterministic.
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Table 2. Weighted average error and standard deviation for household attributes.

Attribute
Weighted Average Error (%) and Standard Deviation (%)

Optimization Phase Allocation Phase

Total 0.0 [-] 0.0 [0.00]
Size: 1 0.1 [-] 1.5 [0.08]
Size: 2 0.2 [-] 1.5 [0.08]
Size: 3 0.3 [-] 2.2 [0.12]
Size: 4 0.7 [-] 2.8 [0.10]

Size: 5+ 0.6 [-] 3.8 [0.11]

Table 3. Weighted average error and standard deviation for dwelling attributes.

Attribute
Weighted Average Error (%) and Standard Deviation (%)

Optimization Phase Allocation Phase

Tenure status: owned 0.7 [-] 1.4 [0.09]
Tenure status: rented 0.2 [-] 1.3 [0.05]

Living space: <60 sqm 0.1 [-] 1.4 [0.08]
Living space: 60–80 sqm 0.1 [-] 0.6 [0.08]

Living space: 80–100 sqm 0.1 [-] 1.2 [0.20]
Living space: 100–120 sqm 0.1 [-] 1.5 [0.12]

Living space: >120 sqm 0.2 [-] 1.4 [0.09]
Smaller building constructed before 1948 0.2 [-] 2.1 [0.22]
Smaller building constructed 1949–1990 0.1 [-] 1.3 [0.16]
Smaller building constructed 1991–2000 0.2 [-] 1.8 [0.38]
Smaller building constructed after 2001 0.3 [-] 1.6 [0.11]
Larger building constructed before 1948 0.2 [-] 1.4 [0.33]
Larger building constructed 1949–1990 0.1 [-] 0.6 [0.07]
Larger building constructed 1991–2000 0.1 [-] 1.2 [0.29]
Larger building constructed after 2001 0.0 [-] 0.8 [0.09]

Table 4. Weighted average error and standard deviation for person attributes.

Attribute
Male Female All

Phase O Phase A Phase O Phase A Phase O Phase A

Total persons 1.9 * 1.9 * 2.1 * 2.2 * 2.0 [-] 2.0 [-]
Workers 0.6 [-] 1.8 [0.06] 0.9 [-] 2.3 [0.05] 0.7 * 1.8 *
Foreigners - - - - 0.7 [-] 4.6 [0.12]
Age: <4 years old 2.3 [-] 6.5 [0.18] 2.8 [-] 6.9 [0.45] 2.4 * 4.9 *
Age: 5–9 years old 2.7 [-] 6.9 [0.27] 2.6 [-] 6.8 [0.32] 2.5 * 5.0 *
Age: 10–14 years old 3.0 [-] 6.9 [0.32] 2.8 [-] 6.5 [0.26] 2.7 * 4.7 *
Age: 15–19 years old 2.7 [-] 6.2 [0.25] 3.1 [-] 7.0 [0.36] 2.8 * 5.1 *
Age: 20–24 years old 1.9 [-] 5.1 [0.26] 1.4 [-] 5.5 [0.55] 1.6 * 4.2 *
Age: 25–29 years old 1.3 [-] 4.5 [0.13] 1.3 [-] 4.5 [0.24] 1.3 * 3.2 *
Age: 30–34 years old 1.7 [-] 4.2 [0.24] 2.1 [-] 4.7 [0.12] 1.8 * 3.3 *
Age: 35–39 years old 2.2 [-] 4.4 [0.11] 2.8 [-] 4.9 [0.15] 2.4 * 3.8 *
Age: 40–44 years old 2.0 [-] 4.1 [0.19] 2.9 [-] 4.6 [0.15] 2.3 * 3.3 *
Age: 45–49 years old 2.0 [-] 3.7 [0.17] 2.4 [-] 3.9 [0.15] 2.1 * 3.3 *
Age: 50–54 years old 1.8 [-] 3.7 [0.13] 1.9 [-] 3.5 [0.14] 1.8 * 2.9 *
Age: 55–59 years old 1.3 [-] 3.6 [0.10] 1.7 [-] 3.8 [0.28] 1.5 * 3.1 *
Age: 60–64 years old 1.2 [-] 3.8 [0.16] 1.5 [-] 4.1 [0.23] 1.3 * 3.1 *
Age: 65–69 years old 2.0 [-] 4.6 [0.30] 2.0 [-] 5.0 [0.20] 1.9 * 3.8 *
Age: 70–74 years old 1.7 [-] 4.3 [0.33] 2.3 [-] 4.9 [0.29] 1.9 * 4.1 *
Age: 75–79 years old 2.4 [-] 6.0 [0.32] 2.0 [-] 5.4 [0.35] 2.1 * 4.8 *
Age: >80 years old 1.5 [-] 5.5 [0.27] 2.0 [-] 5.4 [0.18] 1.7 * 4.2 *

Notes: O stands for optimization and A stands for allocation; * Not used to calculate the average error, included for
comparison purposes.
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The error in the total number of households is equal to zero because the method adjusted weights
to match that number. During optimization, the total number of households was the last attribute
to compute. As a consequence, the final weight provides a perfect match for the total number of
households. During allocation, households are drawn N-times, with N being the total number of
households at the control total.

The distribution of household sizes provides individual errors below 1% after the optimization
phase and below 4% after the allocation phase. Errors increase slightly with household size. Large
households have more possible combinations of attributes and they are less frequent in the microdata,
which increases the error. The initial categories of household size were reduced from six to five to
reduce the allocation errors in small municipalities for very large household sizes.

Similar conclusions are obtained from dwelling attributes. There are very few microdata records
with dwellings in small buildings constructed after 2005. After a series of trials and errors, the initial
categories of dwelling construction period were reduced from six to four categories.

The errors for person attributes are higher than for household and dwelling attributes. It is caused
by the high number of possible cross-classifications by age and gender (equal to 34). Age-by-gender
distributions are a key demographic characteristic for the land use model. Therefore, we opted
to maintain the relatively large number of stratifications. The errors were below 3.1% after the
optimization phase and varied between 3.5% and 7.0% after the allocation phase. If only age is taken
into account, the error decreases considerably and is below 5%. Given that census data have a small
error term as well (between 5% and 10% for the number of microrecords used in this case study [42]),
the results are assumed to represent the population of the study area reasonably well.

4. Discussion

In this paper, we developed the synthetic population of the greater Munich metropolitan area.
The algorithm is written in Java 8, taking advantage of memory efficiency benefits and parallelization
of some methods for the optimization procedure. As with some other authors, we used IPU for
optimization [17,20,21,25] and, like almost all synthesizers, Monte Carlo sampling for allocation.
The runtime of the optimization phase is 17 min, while the allocation phase takes 1 h. Household,
person, and dwelling objects are created during the allocation phase sequentially, increasing the total
runtime of the program. The population synthesizer outperforms other synthesizers, which usually
take between a couple of hours to an overnight run [17] for a similar scale.

We developed, for the first time, one application for three geographical areas. This feature could
be beneficial in large municipalities with different characteristics across boroughs and case studies
with control totals clustered at different geographical resolutions. We observed that the attributes
controlled at the higher geographical resolution (i.e., county) presented lower errors than those
controlled at the lower geographical resolution (i.e., municipality). At the county level, the number of
microrecords is multiplied by the number of municipalities within the county. Having a bigger sample
of microrecords to calculate the weights leads to better distributions of control totals, and therefore,
to more accurate allocation results at the county level. Nevertheless, the local distribution at the
municipality level is not controlled and could lead to higher errors if there are strong differences
across the municipalities. In some cases, the algorithm can produce better results if the attributes are
controlled at the higher geographical resolution, and the lower resolution is only used for validation.
In the case of inconsistencies between control totals at two geographical levels, it is misleading to solely
use the average error. The results should be analyzed with caution to determine whether the share
across the lower level resembles the control totals distribution. Another approach could be rescaling
the control totals distributions of the less reliable area to have the same total in both resolutions.

Another important discussion is the order of attributes at the optimization phase. The algorithm
updates sequentially the set of weights to match the control totals. Therefore, the weights better
represent those attributes that are matched at the end. As a consequence, the most important attributes



ISPRS Int. J. Geo-Inf. 2018, 7, 174 12 of 20

shall come last, while the least reliable (or least relevant) attributes shall come first. During this exercise,
all county attributes were considered before starting with municipality attributes due to reliability.

The application presents one of the highest numbers of attributes found in the literature
(see Table A2). As far as the authors know, there is no open discussion regarding the number of
attributes and their categorization to avoid overfitting. Some categories were merged to reduce the
number of possible combinations of household, person, and dwelling types. Having a fast algorithm
allowed for testing multiple combinations of attributes and categories that reduced the resulting error
without significantly decreasing the fidelity of the results. In this case study, the initial categories for
household size were reduced from six to five to control the errors at small municipalities. Similarly,
the number of dwelling ages by building size was reduced from 12 to 8.

5. Conclusions

Our algorithm to create a synthetic population maintained the advantages of the original IPU
algorithm and added two important improvements. Foremost, it expanded the geographical scope
from two to three geographic levels. This allowed for a more accurate synthesis of the city of Munich,
which contains 29% of the population and has differentiated demographic profiles by boroughs.
The method can include different attributes at each geographical level.

The algorithm is also able to synthesize 4.5 million persons in 2.1 million households in less than
1.5 h. Having a faster algorithm can improve the accuracy of the synthesized population. A series of
trials with different attribute stratifications and a different order in which attributes are controlled
are usually required to better replicate the population. The order of control attributes during the
optimization alters the results. Control attributes with lower reliability or less relevance for the task at
hand should be tested first to reduce their influence on the final results. The most important control
attributes, such as total population or total number of households, should be tested last to assure that
the final weights accommodate their control totals.

Equally important is to avoid overfitting. An excessive number of attributes could drastically
increase the number of possible combinations of household, person, and dwelling types and lead to
very scarce combinations of those attributes on the microdata. This issue becomes more relevant for
larger counties with a high number of municipalities. In such cases, the user needs to balance the
relative importance and reliability of having more categories from the attributes and the error that
could be produced after allocation. This consideration is especially important for small municipalities.

The population synthesizer is incorporated with the open-source land use model SILO [43] and
is available at the GitHub repository: https://github.com/msmobility/silo. The pseudocode for the

optimization phase is in
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Household microdata is provided by many statistics bureaus in the form of the microcensus. It
includes basic socioeconomic information, current and previous employment, and location. Control
totals are usually available at statistics bureaus. The data can be aggregated to several geographical
resolutions: borough, municipality, county, state, or nationwide.

After data were collected, we selected attributes as control attributes. Control attributes must be
meaningful for the model, included in both databases, and have equal or comparable stratifications in
both databases.

2.2. Optimization: IPU with Three Geographical Resolutions

The optimization uses Iterative Proportional Updating (IPU). It was proposed by Konduri et
al. [21] for two geographical resolutions, and it was expanded for this research to three geographical
resolutions. The IPU procedure consists of adjusting the set of weights for each household of the
microdata to minimize the error between control totals and calculated distributions of each attribute
for each geographic resolution.

Before starting the IPU procedure, it is required to summarize each microdata record according
to the categories of the control attributes. The result is stored in the frequency matrix. The frequency
matrix shows the household and dwelling type and the frequency of different person types within each
household for the sample. The dimension of the matrix is N×M, where N is the number of households
in the microdata and M is the number of control attributes (household, person and dwelling type).

The set of weights is provided at the lowest geographical resolution. An initial set of weights
is set to one. In the next iterations, weights are updated after considering each control attribute. All
attributes, regardless of whether they are household, dwelling, or person type, are treated equally.
Weights are only updated in the households where the frequency of the control attribute is different
than zero. Attributes at the lowest geographical resolution (i.e., municipality) update only the weight
of one record, while attributes at the higher geographical resolution (i.e., county) update a set of
weights of all nested areas (i.e., municipalities or boroughs).

After all control attributes are considered, we calculate the relative difference in absolute difference
between control total and calculated distribution for each attribute. The average error is compared to
the previous iteration. If the absolute difference of average deviation values between two full iterations
satisfies a set of tolerance criteria, the algorithm stops updating household weights. The default
threshold is set equal to 0.01% and can be modified by the user. Average absolute relative difference
across all constraints has been used previously by Ye et al. [20] and Konduri et al. [21] in the original
IPU procedure and by others [3,5,23,31,35]. Other indicators for goodness of fit include standardized
root mean square error [7,11,24,27,36], difference on counts [1,8,10], or error percentages [9]. Additional
stopping criteria include the maximum number of iterations (default value set to 1500) and average
error threshold (default value of 1 × 10 − 7). The process converges after several iterations depending
on the number of control attributes and number of municipalities within one county.

Table A3 shows the pseudocode for the IPU with three geographical resolutions and two
aggregation levels.

2.3. Allocation: Monte Carlo Sampling

To generate the synthetic population, households of the microdata are randomly drawn based on
their weights. Once a household is selected for the municipality, it is allocated to a traffic analysis zone
(TAZ) within the municipality or borough. The zone system nests TAZs within the municipal regions
respecting municipal boundaries. The probability for each TAZ is the ratio between the population in
the TAZ and the total population on the municipality.

The value of control attributes is directly copied from the microdata into the synthetic population.
Finally, we computed the absolute difference between the generated population and control totals.

The goodness of fit of the allocation is evaluated as the average relative error of the control attributes
at the highest-ranking geography (i.e., county).

. Implementations of this work in Cape Town and Kagawa (Japan)
demonstrated the adaptability of the algorithm to other study areas. Further plans to implement
this work in Sydney and Teheran, and to compare the results in Cape Town with an alternative
approach will appraise the adaptability of the algorithm to other study areas and modeling scales.
More empirical work still needs to be done to evaluate the model performance of the algorithm in land
use models or other applications, such as travel demand models [44,45] or public health models [46],
and to improve allocation based on dasymetric mapping [47]. Including agents’ microlocation (or
explicit coordinates) is also under investigation.
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Appendix A

Table A1. Summary of previous population synthesis based on optimization technique.

Model Ref. Optimization Procedure 1 Allocation Procedure

TRANSIMS [1] IPF for hh and pp Monte Carlo
CEMDAP [3] IPF for hh and pp Monte Carlo with replacement

ILUMASS [4] Microsimulation for hh and pp,
IPF for dd and jj Monte Carlo

PopSynWin [5,13] IPF for hh and pp Monte Carlo

ILUTE [6,7,36,48] IPF for hh and families with
sparse list Conditioned Monte Carlo

ALBATROSS [8] IPF with relation matrix at pp
level and IPF for hh Monte Carlo

Zhu and Ferreira [11] Two step IPF for hh and pp Monte Carlo
FSUTMS [9] IPF Monte Carlo
Lovelace et al. [14] IPF for pp Monte Carlo
Whitworth et al. [15] IPF with spatial microsimulation Monte Carlo
Bar-Gera et al. [22] IPF, entropy maximization Monte Carlo

Barthelemy and Toint [23] IPF, entropy maximization Monte Carlo for household
head

PopSyn [10] IPF, entropy maximization Monte Carlo
Rose et al. [16] IPF, entropy maximization Monte Carlo
PopGen [12,13,20,21,32] IPU Monte Carlo
Fournier et al. [17] IPF, integerization, IPU Monte Carlo
Mueller and Axhausen [49] Hierarchical IPF Monte Carlo
Ryan et al. [50] Combinatorial optimization With fitting
Synthesizer [26] Combinatorial optimization With fitting

Farooq et al. [27] Full or Partial conditionals using
discrete choice models Monte Carlo Markov chains

Saadi et al. [19,28] Partial conditionals using
Hidden Markov Models Monte Carlo

Saadi et al. [28] Partial conditionals using
Hidden Markov Models Monte Carlo

SILC [31] Multinomial regression model Monte Carlo
Agenter [30,33] Multinomial regression model Choice modeling

1 hh stands for households; pp stands for persons.
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Table A2. Summary of previous population synthesis based on geographical area, location, and variables.

Model Ref. Application Geographical Resolutions Household Attributes Person Attributes Dwelling Attributes

TRANSIMS [1] Bay Area Local Size - -

CEMDAP [3] Dallas/Forth Worth MA Target area Family, type, children,
size, zone Gender, age, race -

TriLat [4] Netanya, 159,000 persons
50,000 households Zones Size, workers, income, cars Age, gender, religion, education,

workplace -

ILUMASS [4] Dortmund, 2.6 M persons in
1.1 M households Zones Size, workers, income, cars Age, gender, religion, education,

workplace
Type, tenure, size,
quality, rent

PopSynWin [5] Chicago, 1.5 M persons in 0.5
M households Block groups Size, income, workers, zone Gender, age, ethnicity -

PopSynWin [13] Melbourne, 4 M persons in
1.4 M households Census zones Type, size, cars Gender, age, employment -

ILUTE [6,7,36,48] Toronto, 3.4 M persons 1.1 M
households Census tracts Size

Gender, Income, age by family, age
by labor, age by education,
education by labor, occupation

Type, tenure, size,
age, rooms, families

ALBATROSS [8] The Netherlands, 6.4M
households Zones and regions HH type, region and density Gender, age, employment -

FSUTMS [9] Florida state 87,800 persons
in 23,000 households Census tracts Workers, income, cars,

size, structure
Age, gender, ethnicity, working
hours, citizenship Size, tenure

Zhu and Ferreira [11] Singapore TAZ Size, income, workers Age, gender, ethnicity Type

Whitworth et al. [15] Wales MSOAs - Age by sex, employment, quals,
health, region Tenure

Lovelace et al. [14] South Yorkshire Area code - Age by gender, travel mode,
distance to work, income -

Rose et al. [16] Bangladesh, 150 M persons Fit to division and estimate
district -

Age by gender by school attendance
female occupation, average size of
household, electricity, tenure status,
rural/urban, division

-

Bar-Gera et al. [22] Maricopa county Type, size, income Gender, age, ethnicity -

Barthelemy and Toint [23] Belgium, 10 M persons in 4.3
M households Districts Type, children, other adults Age, gender, activity, education,

driving license -

PopSyn [10] Maricopa, 4 M persons County, TAZ, MAZ Size, type, income, workers Age -

PopGen [20]
Maricopa county, 5.4 M
persons, 2.0 M households,
0.1 M quarters

Block groups Type, size, income Gender, age, ethnicity -

PopGen [21] Baltimore metro council County, PUMA, TAZ Size, income, workers Age, employment -

PopGen [32] Sydney, 4.9 M persons 1.8 M
households TAZ Type, size, cars Age, gender, employment Type

PopGen [12] Southern California 17 M
persons 5.5 M households TAZ Family, head age, size, type,

children, income Age, gender, ethnicity -
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Table A2. Cont.

Model Ref. Application Geographical Resolutions Household Attributes Person Attributes Dwelling Attributes

PopGen [13] Melbourne, 4 M persons
1.4 M households Census tracts Type, size, cars Gender, age, employment -

Mueller and
Axhausen [49] Switzerland, 7 M persons

3.1 M households Municipality
Size, type, children, age of
head, age oldest child, age
youngest child

Age, gender, foreigner, marital
status, education, workplace
location, commute mode

-

Fournier et al. [17] Boston, 4.6 M persons in
1.7 M households Census tracts Size, cars, income, race

Gender, age, work hours, school
enrollment, relationship, travel time,
industry, occupation

Type

Synthesizer [26]
California STDM, 33.9 M
persons, 11.5 M households
0.8 M group quarters

TAZ Size, income, cars, resident Age, occupation, grade level Type

Farooq et al. [27] Brussels, 1.2 M households Regions Size, workers, children, cars,
education, income - -

Farooq et al. [27] Switzerland Sectors Household size Age, gender, education -

Saadi et al. [19,29] Belgium Municipality - Age, gender, education, travel
distance, profession -

Saadi et al. [28] Belgium Municipality -

Age, gender, socio-professional
status, working time expenditure,
public transport subscription,
driver license

-

SILC [31] Austria, 10 M persons
3.8 M households Region Size, region, urbanization Age, gender, employment -

Agenter [30,33] Beijing TAZ Income, size, parcel ID,
distance to center

Age, gender, marriage,
education, occupation -
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Table A3. Pseudo code of IPU with three geographical resolutions and two levels. 

(a) Main routine, to be repeated for each county 

Require: Reference sample H in frequency matrix 

Require: County C control totals  𝑇𝑐,𝛼1
, 𝑇𝑐,𝛼2

, …  

Require: Municipalities mi control totals 𝑇𝑚1,𝛽1
, 𝑇𝑚1,𝛽2

, … , 𝑇𝑚2,𝛽1
, 𝑇𝑚2,𝛽2

, … 

Require: Boroughs bj control totals 𝑇𝑏1,𝛾1
, 𝑇𝑏1,𝛾2

, … , 𝑇𝑏2,𝛾1
, 𝑇𝑏2,𝛾2

, … 

Require: Initial set of weights wbh(0) 

Ensure: Set of weights wbh for each borough b of the county and each household h from the 

reference sample H obeying all control totals 

    wbh ← wbh(0) for all h ∈ H 

while convergence not reached do 

   wbh ← County IPU (H, wbh, 𝑇𝑐,𝛼1
, 𝑇𝑐,𝛼2

, … ) 

   wbh ← Municipality IPU (H, wbh, 𝑇𝑚1,𝛽1
, 𝑇𝑚1,𝛽2

, … , 𝑇𝑚2,𝛽1
, 𝑇𝑚2,𝛽2

, …) 

   wbh ← Borough IPU (H, wbh, 𝑇𝑏1,𝛾1
, 𝑇𝑏1,𝛾2

, … , 𝑇𝑏2,𝛾1
, 𝑇𝑏2,𝛾2

, …) 

  Check convergence 

return wbh 

(b) Subroutine County IPU  

Require: Households h from the reference sample H in frequency matrix 

Require: County c control totals 𝑇𝑐,𝛼1
, 𝑇𝑐,𝛼2

, … 

Require: Attributes at the county level α1, α2, … 

Require: Boroughs bj of the county C 

Require: Current set of weights wbh 

Ensure: Improved set of weights wbh that fits control totals at the county level 

    For all attributes α at the county level do  

           𝐻𝛼  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛼} 

                 𝑓 ← 𝑇𝑐,𝛼 ∑ ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝𝑏⁄   

                For all boroughs b of the county C 

        𝑤𝑏ℎ ← 𝑤𝑏ℎ ∙ 𝑓   ∀ℎ ∈ 𝐻𝛼 

                  return wbh 

(c) Subroutine Municipality IPU  

Require: Households h from the reference sample H in frequency matrix 

Require: Municipalities mi control totals 𝑇𝑚1,𝛽1
, 𝑇𝑚1,𝛽2

, … , 𝑇𝑚2,𝛽1
, 𝑇𝑚2,𝛽2

, … 

Require: Attributes at the municipality level β1, β2, … 

Require: Boroughs bk of the municipality mi 

Require: Current set of weights wbh 

Ensure: Improved set of weights wbh that fits control totals at the municipality level 

    For all attributes β at the municipality level do  

           For all municipalities m within the county do 

                𝐻𝛽  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛽} 

                      𝑓 ← 𝑇𝑚,𝛽 ∑ ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝𝑏⁄   

                       For all boroughs b of the municipality do 
        𝑤𝑏ℎ ← 𝑤𝑏ℎ ∙ 𝑓   ∀ℎ ∈ 𝐻𝛽 

                  return wbh 

 

(d) Subroutine Borough IPU  

Require: Households h from the reference sample H in frequency matrix 

Require: Boroughs bi control totals 𝑇𝑏1,𝛾1
, 𝑇𝑏1,𝛾2

, … , 𝑇𝑏2,𝛾1
, 𝑇𝑏2,𝛾2

, … 

Require: Attributes at the borough level γ1, γ2, … 

Require: Boroughs bk of the county c 

Require: Current set of weights wbh 
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Ensure: Improved set of weights wbh that fits control totals at the borough level 

    For all attributes γ at the borough level do  

           For all boroughs b within the county do 

                𝐻𝛾  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛾} 

                      𝑓 ← 𝑇𝑏,𝛾 ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝⁄   

       𝑤𝑏ℎ ← 𝑤𝑏ℎ ∙ 𝑓   ∀ℎ ∈ 𝐻𝛽  

                 return wbh 

 

(e) Subroutine Check convergence  

Require: Households h from the reference sample H in frequency matrix 

Require: County c control totals 𝑇𝑐,𝛼1
, 𝑇𝑐,𝛼2

, … 

Require: Attributes at the county level α1, α2, … 

Require: Municipalities mi control totals 𝑇𝑚1,𝛽1
, 𝑇𝑚1,𝛽2

, … , 𝑇𝑚2,𝛽1
, 𝑇𝑚2,𝛽2

, … 

Require: Attributes at the municipality level β1, β2, … 

Require: Boroughs bi control totals 𝑇𝑏1,𝛾1
, 𝑇𝑏1,𝛾2

, … , 𝑇𝑏2,𝛾1
, 𝑇𝑏2,𝛾2

, … 

Require: Attributes at the borough level γ1, γ2, … 

Require: Boroughs bk of the county c 

Require: Current set of weights wbh 

Require: Previous average error in absolute value 𝜀̅(0) 

Require: Threshold for the average error in absolute value 𝜀𝑚𝑖𝑛 

Require: Threshold for difference between two iterations ∆𝜀𝑚𝑖𝑛 

Require: Maximum number of iterations 𝑖𝑚𝑎𝑥 

Ensure: Check for stopping criteria based on the average error in absolute value 𝜀 ̅ and 

iteration i 

       For all attributes α at the county level do  

          𝐻𝛼  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛼} 

          For all boroughs b within the county do 

                        𝜀 ← 𝜀 + |(𝑇𝑐,𝛼 − ∑ ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝𝑏 )/𝑇𝑐,𝛼|  

                        𝑛 ← 𝑛 + 1 

       For all attributes β at the municipality level do  

           𝐻𝛽  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛽} 

           For all municipalities m within the county do 

                   For all boroughs b within the municipality do 

                          𝜀 ← 𝜀 + |(𝑇𝑚,𝛽 − ∑ ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝𝑏 )/𝑇𝑚,𝛽| 

                                𝑛 ← 𝑛 + 1 

       For all attributes γ at the borough level do  

           𝐻𝛾  ← {ℎ𝑝: 𝑝 ∈ 𝑃𝛾} 

           For all boroughs b within the county do 

                        𝜀 ← 𝜀 + |(𝑇𝑏,𝛾 − ∑ (𝑤𝑏ℎ ∙ ℎ𝑝)𝑝 ) 𝑇𝑏,𝛾⁄ |   

                        𝑛 ← 𝑛 + 1 

            𝜀̅ ← 𝜀 𝑛⁄  

           If 𝜀̅ < 𝜀𝑚𝑖𝑛 stop 

           If (𝜀̅ − 𝜀̅(0)) 𝜀̅(0) < ∆𝜀𝑚𝑖𝑛⁄  stop 

           If 𝑖 = 𝑖𝑚𝑎𝑥  stop 

              return stop or continue 
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