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Abstract: This paper describes a general framework alternative to the traditional surveys that are
commonly performed to estimate, for statistical purposes, the areal extent of predefined land cover
classes across Europe. The framework has been funded by Eurostat and relies on annual land
cover mapping and updating from remotely sensed and national GIS-based data followed by area
estimation. Map production follows a series of steps, namely data collection, change detection,
supervised image classification, rule-based image classification, and map updating/generalization.
Land cover area estimation is based on mapping but compensated for mapping error as estimated
through thematic accuracy assessment. This general structure was applied to continental Portugal,
successively updating a map of 2010 for the following years until 2015. The estimated land cover
change was smaller than expected but the proposed framework was proved as a potential for
statistics production at the national and European levels. Contextual and structural methodological
challenges and bottlenecks are discussed, especially regarding mapping, accuracy assessment, and
area estimation.
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1. Introduction

Up to date land cover and land use (LCLU) statistics are paramount for policy and decision
making and, thus, impact largely on economy and society. For example, LCLU patterns and their
change influence the climate [1,2] and concerns on the consequences of climate change are driving
high-level international policy, including the establishment of international commitments such as
the Paris Climate Agreement [3]. However, the production of LCLU statistics becomes increasingly
challenging when cross-border regions, such as political or geographical units formed by autonomous
states, are involved, which commonly use their own means and criteria for statistics production.
Comparability and assembly of national statistics for wider scales are thus commonly compromised.

Efforts have been made to produce harmonized LCLU statistics across countries. In Europe, for
example, national and international authorities have formed a partnership, the European Statistical
System (ESS), for the development, production, and dissemination of comparable statistics at the
European Union level. The ESS functions as a network in which the European Union authority for
statistics, Eurostat, in close cooperation with national statistical authorities, leads the way in the
harmonization of statistics.
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International cooperation can respond to the difficulty in producing coherent statistics across
states. For example, surveys for LCLU statistics are commonly used at various national levels. This is
the case of the Land Use and Coverage Area frame Survey (LUCAS), promoted by Eurostat with the
objective of identifying LCLU change in the European Union (EU). LUCAS takes place every three
years and implements a combined approach of field observations and photo-interpretation assigned to
field points. LUCAS surveys are carried out in situ in which a subset of the >1 million points defined
by a 2 × 2 km2 grid covering the European Union is visited on the ground [4].

Point-based samples periodically visited in situ and other methods commonly applied for
producing statistics, such as questionnaires, provide valuable information. However, there are some
limitations, notably the non-exhaustive geographical nature of sampling and the relatively long time
of revisit. Thus, the information produced has gaps in space and time, which can be small or great
depending on the sampling effort and periodicity. Increasing sample size and periodicity increases the
costs to possibly unaffordable levels.

An alternative means of obtaining information on LCLU is mapping. Specifically, mapping from
remote sensing has been used to produce information about the Earth’s surface and can inform on
the areal extent of LCLU across large areas, up to the entire globe. Dozens of LCLU maps have
been produced at global and continental scales [5]. Despite the value of these maps—some of them
represent milestones in remote sensing—their use is limited mostly because they have been produced
independently and for specific points in time and, thus, lack coherency and continuity [5,6].

Efforts have been made for harmonized LCLU mapping. For example, the CORINE Land Cover
(CLC) series of maps is a harmonized representation of the LCLU of most of Europe for the reference
years of 1990, 2000, 2006, and 2012 [7]. CLC is partly produced by each individual country and, in
most cases, by visual interpretation of remotely sensed data. CLC is coordinated by the European
Environmental Agency and all countries follow common guidelines to ensure comparability and
coherency between the national maps, which are assembled to produce pan-European products.
In North America, harmonized mapping has been undertaken based on semi-automatic methods
under a collaboration between Canada, Mexico, and the United States. This collaboration, called the
North American Land Change Monitoring System (NALCMS), has used national land cover mapping
efforts to assemble continental land cover and change maps for 2005 and 2010 [8–10].

Harmonized cross-border mapping affords great benefits but comes with challenges. The mapping
area is typically large, thus requiring vast volumes of data and resources. Research has addressed
these challenges and today there is a large body of digital methods for the detection and classification
of changes in LCLU from remotely sensed data [9,11–18]. Mapping is, however, typically performed
on a low-frequency basis (e.g., every five or more years [9,10,15]) and for general use. In some cases,
however, users have requirements that are not compatible with available LCLU maps, such as specific
minimum mapping unit and time reference. Moreover, when maps are produced to estimate the area
of land cover, additional methods are needed to translate the mapped areal extent of the classes to
statistics, which should include estimates and uncertainty measures for a specific confidence level.
Estimators have been derived for area estimation based on mapping [19,20] but they are underused
and are little explored.

Under the scope of the European Statistical System’s (ESS’s) objectives and mission, a project
funded by Eurostat, LUCAS Grant 2015, has been developed to produce harmonized, quality-assured
LCLU information according to a predefined classification and with a given precision (the third level
of the EU Nomenclature of Territorial Units for Statistics—NUTS). LUCAS Grant 2015 accommodates
the feasibility of future updates based on a national integrated approach to produce LCLU information
to comply with the ESS medium-term strategy for LCLU statistics. Another main goal of LUCAS Grant
2015 is to accomplish a general framework for LCLU mapping and statistics production across Europe
based on spatial databases that can provide exhaustive spatial coverage and frequent updating.

This paper presents and discusses the framework designed under the scope of LUCAS Grant 2015,
centered on the production of land cover statistics for continental Portugal for a period of six years



ISPRS Int. J. Geo-Inf. 2018, 7, 157 3 of 21

(2010–2015). The framework was designed to combine digital classification of remotely sensed data
and available national geographical data sets and official statistics to estimate total areas of land cover
classes. The methodology proposed in this paper can be applied elsewhere since it is grounded on the
use of data under free access policy, following the EU Directive Infrastructure for Spatial Information
in Europe (INSPIRE), at the same time that it is harmonized with data acquisition and dissemination
procedures of the ESS. The results stress the potential of the general framework for continuous land
cover statistics production, but difficulties and bottlenecks were found spanning mapping, accuracy
assessment, and area estimation.

2. Study Area

Analyses focused on the continental territory of Portugal, which is located in the western extreme
of the Iberian Peninsula, Europe (Figure 1). The area of continental Portugal is approximately
89,100 km2 and includes a diversity of natural conditions spanning generally a north–south gradient
but also west–east due to the presence of the Atlantic Ocean in the west. Mediterranean and temperate
climatic influences are found in the country and relatively hot and dry summers follow cold and wet
winters. Mild weather conditions are typically found near the seaside, while rainy and dry weather
characterize the north and south, respectively. Main settlements are located along the coastline,
interwoven with low-density developed land. The Mediterranean bio-geographic region favors a great
variety of landscapes displayed as a mosaic of forest, intensive agriculture, and wetlands associated
with the major river mouths. Forests of eucalyptus targeted for production can be broadly found with
native species of pines, scrublands, and fine-grained complex agricultural practices dominating large
areas of the northern and hilly countryside; the typical Mediterranean silvopastoral system of oak
stands concentrate in the southern peneplain. Both cases are punctuated by other land cover types,
such as sprawling population centers and water reservoirs.
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Figure 1. Continental Portugal and corresponding Landsat path/rows. Colors indicate merged
path/rows to define five tiles used in image processing and classification.

Land cover was defined based on the classification system of LUCAS, which has eight main
categories: artificial land, cropland, woodland, shrubland, grassland, bareland, water, and wetland.
These main categories are divided into 15 classes (Table 1) according to the hierarchical disaggregation
of the classes of LUCAS and additional definitions of the Eurostat Annual Crop Statistics (ACS), Food
and Agriculture Organization (FAO) of the United Nations, and INSPIRE Directive.
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Table 1. Land cover classification system (main LUCAS categories are shown in capitals for guidance).

Class Description Reference

A ARTIFICIAL LAND

Roofed built-up areas Roofed constructions that can be entered by persons. LUCAS

Artificial non-built-up areas Non-built-up areas characterized by an artificial and/or impervious cover
of hard artificial material, concrete, gravel. LUCAS

Other built-up areas Other artificial areas (such as power plants and water sewage plants). LUCAS

B CROPLAND

Cropland Areas where crops are planted and cultivated. LUCAS

C WOODLAND

Broadleaved forest Woodlands composed of more than 75% of broadleaved species. FAO/LUCAS
Coniferous forest Woodlands composed of more than 75% of coniferous species. FAO/LUCAS

Mixed forest Woodlands composed of broadleaved and coniferous trees comprising both
>25% of the tree canopy. FAO/LUCAS

Other land with tree cover Agricultural or urban land with 10% or more tree cover able to reach a
height of 5 meters at maturity. FAO/LUCAS

D SHRULAND

Shrubland
Areas dominated (at least 10% of the surface) by shrubs and low woody
plants normally not able to reach more than 5 m of height. It may include
sparsely occurring trees with a canopy below 10%.

LUCAS

E GRASSLAND

Grassland Sown or self-seeded grassland, grass-like plants, and forbs without trees
and shrubland and that are not included in the crop rotation on the holding. LUCAS/ACS

F BARE LAND AND LICHENS/MOSS

Consolidated bare surfaces Consolidated bare surfaces and organic and chemical deposits. INSPIRE

Unconsolidated bare surfaces Unconsolidated bare surfaces, organic and chemical deposits, and intertidal
flats assigned to inland areas. INSPIRE

G WATER AREAS

Inland water bodies Inland areas of still standing surface water. LUCAS
Inland running water Inland channels of running water. LUCAS

H WETLANDS

Wetlands
Areas that fall between land and water and wet for long enough periods
that the plants and animals living in or near them are adapted to, and often
dependent on, wet conditions for at least part of their life cycle.

LUCAS

3. Materials and Methods

Statistics on land cover in continental Portugal were produced for 2010–2015 based on mapping.
That is, a land cover map was produced for each year to support the estimation of land cover statistics.
The year 2010 was selected as a base for statistics production. For this specific year, one main data
source, the land use and land cover map (COS) (see Section 3.1.2), was used as the base map. Land
cover was estimated from the map after accuracy assessment. In cases where no such map is available,
one must be produced from scratch.

The general framework for map and statistics production for the following years included three
main phases for updating the base map (Figure 2). First, data collection and analysis were performed
under a free data acquisition policy and according to the project requirements, which combined a
mixed methodology of applying remote sensing and auxiliary data to statistics. Second, a land cover
map was produced for each of the years from 2011 to 2015. Third, the thematic accuracy of the maps
was estimated and land cover statistics produced. The specific methods used are described in the
following sections.
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3.1. Data Collection

A comprehensive survey of data potentially meeting the requirement of the project and helpful for
mapping land cover according to Table 1 was initially performed. In respect to remotely sensed data,
Landsat imagery was considered convenient in terms of resolution (spatial, spectral, and temporal)
and processing requirements. In terms of GIS-based data, numerous countrywide data sets were
acquired and analyzed in respect to their suitability for the project, including their thematic information,
temporal reference, and spatial representation. Details on the data sets finally used are given below.

3.1.1. Landsat Data

The remotely sensed data used were collected by three Landsat satellites (5, 7, and 8) during the
summer and spring seasons of 2010–2015. Continental Portugal corresponds to eight Landsat images
as defined in the Landsat’s Worldwide Reference System (Figure 1). The images were calibrated,
converted to top-of-atmosphere reflectance, and atmospherically corrected. The processed images are
delivered by the U.S. Geological Survey as surface reflectance [21,22].

The Landsat images were further processed according to the specifications described in the
Landsat 4–7 Surface Reflectance Product Guide and Landsat 8 Surface Reflectance Product Guide
before undertaking the analyses. Specifically, the pixels ranging between 0 and 10,000 were multiplied
by the scale factor 0.0001; all the remaining pixels were reclassified as “no data” as they were outside
the valid range of values. Pixels contaminated by clouds and cloud shadow were also reclassified as
“no data.” After this initial processing step, the pixels represented surface reflectance raging between 0
and 1.

An additional processing analysis was needed to fill in the “no data” pixels with data, especially
those of the Landsat images of 2012. These specific images were acquired by the Landsat 7 ETM+
sensor whose scan line corrector (SLC) failed permanently in 2003. In practical terms, since 2003, all
images present striping effects in which the pixels have no data. In some other images, there were
pixels with no data due to cloud cover and other issues. To overcome these problems, the pixels with
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no data were filled in with pixel values from other images of the same year. Table 2 summarizes the
Landsat data used.

Table 2. Landsat data.

Year Path Row
Spring Summer

Date [Landsat] Additional Date(s) [Landsat] Date [Landsat] Additional Date(s) [Landsat]

2010

204

31 19-May [7] 30-July [5]
32 25-April [5] 30-July [5]
33 25-April [5] 30-July [5]
34 25-April [5] 30-July [5] 8-September [7]

203

31 20-May [5] 21-June [5]
32 20-May [5] 21-June [5]
33 20-May [5] 21-June [5]
34 4-May [5] 21-June [5]

2011

204

31 28-April [5] 4-April [7]; 19-March [7] 1-July [5] 18-August [5]
32 28-April [5] 14-May [5]; 19-March [7] 25-July [7] 10-August [7]; 18-August [5]
33 28-April [5] 14-May [5]; 4-April [7] 25-July [7] 10-August [7]; 18-August [5]
34 14-May [5] 25-July [7] 15-June [5]

203

31 23-May [5] 26-July [5] 26-June [5]
32 23-May [5] 15-May [7]; 13-April [7] 26-July [5] 24-June [5]
33 23-May [5] 5-April [5] 26-July [5]
34 23-May [5] 26-July [5]

2012

204

31 24- April [7] 21-March [7] 11-July [7] 25-June [7]
32 21-March [7] 24-May [7] 25-June [7] 13-September [7]
33 21-March [7] 5-March [7]; 24-May [7] 11-July [7] 13-September [7]
34 21-March [7] 5-March [7] 11-Jul [7] 13-September [7]

203

31 14-March [7] 30-March [7] 21-August [7] 6-September [7]
32 14-March [7] 27-February [7]; 11-February [7] 21-August [7] 6-September [7]
33 27-February [7] 11- February [7] 20-July [7] 21-August [7]
34 27-February [7] 11- February [7] 20-July [7] 21-August [7]

2013

204

31 17-April [8] 11-May [7] 6-July [8] 28-June [7]; 30-July [7]
32 17-April [8] 25-April [7]; 11-May [7] 22-July [8] 6-July [8]; 20-June [8]
33 17-April [8] 25-April [7]; 11-May [7] 22-July [8]
34 17-April [8] 22-July [8]

203

31 12-May [8] 4-May [7]; 18-April [7] 31-July [8]
32 12-May [8] 31-July [8]
33 26-April [8] 12-May [8] 31-July [8]
34 26-April [8] 31-July [8]

2014

204

31 19-March [8] 14-May [7] 9-July [8]
32 19-March [8] 11-Mar [7] 9-July [8]
33 14-May [7] 6-May [8]; 28-April [7] 9-July [8]
34 14-May [7] 6-May [8] 9-July [8]

203

31 15-May [8] 19-August [8]
32 15-May [8] 19-August [8]
33 15-May [8] 19-August [8]
34 15-May [8] 19-August [8]

2015

204

31 25-May [8] 9-May [8] 12-July [8]
32 25-May [8] 28-July [8] 4-July [7]
33 25-May [8] 28-July [8] 26-June [8]
34 25-May [8] 9-May [8] 28-July [8]

203

31 3-June [8] 6-August [8]
32 3-June [8] 6-August [8] 21-September [8]
33 3-June [8] 21-July [8]
34 3-June [8] 21-July [8]

Six out of the eight Landsat path/rows were merged to define five regions here called tiles
(Figure 1). Path/rows 204/31 and 204/32 were not merged, however, as the dates of the corresponding
imagery were not compatible with other path/rows; tiles 3 and 4 correspond to these path/rows alone.
Each tile was treated independently. Therefore, all the methods described in the following sections
were performed five times per year (2011–2015). Reducing the initial eight path/rows to five tiles
reduced some unnecessary routines and improved efficiency.
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3.1.2. Auxiliary Data

The Land Use and Land Cover map (COS) is the official LCLU map of continental Portugal,
produced through visual interpretation of orthophotomaps and auxiliary data for 1990, 1995, 2007,
and 2010. COS of 2010 (COS2010) is a vectorial map with a minimum mapping unit (MMU) of one
hectare and offers a detailed level of thematic and positional accuracy, harmonized with global and
European policies related to geographic data quality and standards [23]. COS2010 was identified to
provide improved thematic compliance with the project requirements and, thus, was selected as a base
for statistics production. Therefore, the land cover nomenclature of COS, which is hierarchical and
identifies 225 classes at the most detailed level, was converted to the nomenclature of Table 1, and an
initial map was produced. That is, COS2010 was used to produce statistics for 2010 and then updated
for the following years based on the remotely sensed data described above and the auxiliary data
described below (Table 3).

Table 3. Auxiliary data used in supervised and rule-based image classifications.

Auxiliary Data Source

Land Use and Land Cover map (COS2010) Direção-Geral do Território (DGT)
http.//www.dgterritorio.pt

Land Parcel Identification System (LPIS) Instituto de Financiamento da Agricultura e Pescas (IFAP)

Quarries and wind farms Direção-Geral de Energia e Geologia (DGEG)

Burnt areas
Instituto da Conservação da Natureza e das Florestas (ICNF)
http://www.icnf.pt

STRM
U.S. Geological Survey (USGS)
Earth Resources Observation and Science (EROS) Center
https://earthexplorer.usgs.gov/

Data were obtained from official national data sources to aid land cover mapping. Agriculture
patches were identified on the Land Parcel Identification System (LPIS) of Instituto de Financiamento
da Agricultura e Pescas (IFAP). LPIS is a countrywide spatial data set with information about the
area, land cover, and physical limits of agricultural parcels, allowing farmers to apply for European
subsidies and functions also as a means to control actions. LPIS is continually updated according
to new funding requests and is based on aerial images. Quarries and wind farms were identified in
the GIS-based data sets of Direção-Geral de Energia e Geologia (DGEG). These vectorial (polygons
and points) data sets are continually updated. Wildfires were identified in the national mapping of
burnt areas published by Instituto da Conservação da Natureza e das Florestas (ICNF). These vectorial
(polygons) data set maps show burnt areas larger than five hectares at the end of each fire season based
on visual interpretation of remotely sensed data (Landsat TM/ETM). While these auxiliary data were
used for rule-based image classification, a digital elevation model at 30 m spatial resolution of the
Shuttle Radar Topography Mission (SRTM) [24] was used as an aid for supervised image classification.
Altitude and slope were useful for distinguishing some classes such as bare rock (consolidated bare
surfaces), which tends to appear in mountainous regions.

3.2. Mapping

3.2.1. Change Detection

There are numerous methods to detect land cover change from remotely sensed data [25] but
their implementation is not always straightforward. A relatively simple but effective approach for
change detection is to compare remotely sensed data acquired on different dates. Some techniques
based on this approach, often called differencing or layer arithmetic [18,25], calculate descriptive
statistics for the difference of vegetation indices between two points in time. A threshold of the spectral
difference is used to differentiate change from no-change pixels [26–28]. This technique was used

http.//www.dgterritorio.pt
http://www.icnf.pt
https://earthexplorer.usgs.gov/
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here and land cover change was identified based on the Normalized Difference Vegetation Index
(NDVI) [29] differencing.

The NDVI is expected to change from one year to the next due to many reasons (e.g., vegetation
growth), but only substantial changes should reflect real land cover changes. Thus, the difference
of NDVI between two years should in principle follow a normal distribution in which most of the
differences observed are associated with natural variability of the surface reflectance and only few
marked differences are caused by land cover change [26–28].

The pixels of the potential land cover change were identified if the magnitude of the difference
between two successive years in terms of NDVI exceeded a threshold [26–28]. A threshold was defined
for decreasing NDVI as two standard deviations away from the mean difference between the images
compared. One standard deviation was defined as the threshold for the opposite case of increasing
NDVI. The identified pixels could then be classified using the relevant Landsat images of the second
year of the pair of years analyzed (see next sections). This strategy potentially detects land cover
change if the pixels are allocated to a new land cover class, while the remaining pixels maintain the
class of the previous year.

3.2.2. Supervised Image Classification

A training sample dedicated to each year was collected to perform per-pixel supervised image
classifications. Each training pixel was allocated to a land cover class visually interpreted based on
auxiliary data, such as Google street view and orthophotomaps of 2010, 2012, and 2015. The land cover
classes used in training were, however, different from those desired in the maps (Table 1) as some
of them correspond to a variety of spectral responses. For example, croplands include irrigated and
non-irrigated crops, which have very distinct spectral properties. Moreover, some classes could be
classified based on expert knowledge and/or auxiliary data (see Section 3.2.3). Therefore, spectral
training classes rather than the final classes were used, namely, irrigated crops, non-irrigated crops,
bare rock, bare soil, sand, forest, shrubland, grassland, and water. These classes may be adjusted as a
function of the country to be mapped, data, etc.

The training samples preferably included pixels located in areas of variable NDVI, which are more
representative of the areas of potential land cover change. However, the training samples excluded the
pixels that by chance had no data originally and were filled in with pixel values from other images
(Table 2). Nearly all classes were trained with 80 or more pixels per tile and per year, except 2012,
for which 75 pixels on average were available per class due to the limited quantity of Landsat data
for that year, as only the Landsat 7 satellite was operational and presenting striping effects (Table 2).
In all cases, a minimum and a maximum of 50 and 100 pixels per class were accepted for training to
ensure class representativeness and avoid very imbalanced samples. The total number of training
pixels collected is presented in Table 4.

Table 4. Number of training pixels used in supervised classification.

Year Training Pixels

2011 3756
2012 3365
2013 3692
2014 3893
2015 4252

Three classifiers were used in the classification: (i) artificial neural network with no hidden layer
(ANN) [30], (ii) random forest (RF) [31], and (iii) support vector machine (SVM) [32]. The ANN fits a
multinomial linear regression that calculates the probability of a pixel belonging to a given class [30].
RF and SVM are non-parametric classifiers. The former is an ensemble of a tree-type classifier while
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the latter seeks to find the optimal separating hyperplane between classes based on the training cases
that lie at the edge of the class distributions [33,34].

The settings of the non-parametric classifiers were defined through a resampling-based procedure
to search for optimal tuning parameters [35]. Optimal settings were selected based on the mean overall
accuracy across 10-fold cross validation, repeated twice. There was no need to define settings for the
ANN as this is a special case of a neural network that uses neural net technology with no hidden layer
to fit multinomial models [30].

The classifiers produced three classifications and a fourth and final classification was then
generated through a voting process. Specifically, the final classification was determined by a majority
vote of the three classifiers. For pixels in which all three classifiers disagreed, the classification of the
SVM was adopted as, in general, the SVM was the most accurate classifier individually.

3.2.3. Rule-Based Image Classification

Several rule sets of the type if-then-else were defined based on expert knowledge to interpret
the supervised image classifications with the help of auxiliary data. In some cases, thematic classes
that were more detailed than required were identified, such as several agricultural classes and forest
clear-cuts. Rules were defined to identify dynamic patches such as forest clear-cuts based on image
classification. For example, a clear-cut was identified if a forest patch was classified as a bare surface in
the following year. Other rules used the image classifications and auxiliary data together to address
more challenging changes. For example, other built-up areas could be identified when removal of
vegetation recorded in Landsat data and the wind farm locations provided by DGEG were spatially
coincident. Overall, four main types of rules were defined and are summarized in Table 5. The detailed
classification system and the rule set types used for mapping each class are shown in Table 6.

Table 5. Rule sets used for mapping are summarized as four main types (A, B, C, and D).

Rule Set Type Rationale and Land Cover Change Target

A
Plausible land cover change within one year, such as change from non-irrigated to irrigated
agriculture. Spectral data was used. This set of rules avoided unlikely or impossible
annual land cover change (e.g., water to forest) that could arise from misclassification.

B

Land cover change dependent on the trajectory of land cover history. Spectral data was
used but also auxiliary data for fires. Forest fires and clear-cuts are typical events
associated with possible different trajectories, such as new agriculture fields or built-up
areas, but also forest recovery.

C
Land cover change identified by auxiliary data, such as mineral extraction sites.
Contributions of the auxiliary data were ignored if contradicted by image analysis (e.g.,
mineral extraction associated with a large NDVI).

D
Land cover change dependent on context. Spatial analysis of spectral data and land cover
was used. Built-up areas and rice fields are typical classes appearing in spatial clusters or
expanding from established patches.

Note that although many classes were identified and a detailed nomenclature was possible, a
conservative strategy was followed to reduce mapping false changes. That is, rules were defined so
that only probable changes could be mapped (e.g., rules of type C). This ensured that errors included
in the auxiliary data were not included in mapping.

This conservative strategy resulted in three classes (i.e., other land with tree cover, inland running
water, and wetlands) not being mapped (Table 6). In general, these classes would require dedicated
and complex methodologies (e.g., [36]) and/or data not available and, thus, satisfactory results were
not guaranteed at this stage of the project. This means that new patches of these classes could not be
identified from 2011 onwards. Therefore, the maps show only the patches of these classes that did not
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change since 2010. However, these classes are very stable over time and, thus, a negligible impact on
the results was expected.

Table 6. Rule set types by which land cover classes were mapped (black circle indicates use). The
source of the auxiliary data used in rules of type C is identified in square brackets. The rule set types
are described in Table 5.

Main Nomenclature Detailed Nomenclature Rule Set Type

A B C D

Roofed built-up areas Roofed built-up areas

Artificial non-built-up areas Artificial non-built-up areas

Other built-up areas Other built-up areas [DGED]

Cropland

Non-irrigated crops [IFAP]
Irrigated crops [IFAP]
Rice fields
Vineyards [IFAP]
Fruit trees [IFAP]
Olive groves [IFAP]

Broadleaved forest
Broadleaved forest
Clear-cuts
Burnt broadleaved forest [ICNF]

Coniferous forest
Coniferous forest
Clear-cuts
Burnt coniferous forest [ICNF]

Mixed forest
Mixed forest
Clear-cuts
Burnt mixed forest [ICNF]

Other land with tree cover Other land with tree cover

Shrubland
Shrubland
Burnt shrubland [ICNF]

Permanent grassland Permanent grassland
Burnt grassland [ICNF]

Consolidated bare surfaces
Mineral extraction sites [DGED]
Bare rock

Unconsolidated bare surfaces
Beaches, dunes, and sand
Bare soil

Inland water bodies Inland water bodies [IFAP]

Inland running water Inland running water

Wetlands Wetlands

3.2.4. Map Updating and Generalization

The land cover changes identified between two consecutive years in the five tiles were merged
to produce a single layer covering the entire country. Also, the detailed thematic classes were
merged to the corresponding classes of Table 1. Converting changes from raster to vector format was
needed since raster processing was the basis of image analysis; the maps that were to be produced
needed to be vectorial according to the project requirements. The changes inevitably gave a grid-like
appearance after conversion and, thus, were subjected to geometric smoothness. Then, the changes
were superimposed on the map of the previous year to update it. This created small polygons, often
called sliver polygons, which needed to be generalized to match the MMU of one hectare. Adopting a
consistent MMU ensures comparability of the statistics produced for different years and, if needed,
allows the use of remotely sensed data of various spatial resolutions. The sliver polygons were merged
with the neighboring polygon with the longest shared border and the final land cover maps came out.
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3.3. Statistics

3.3.1. Accuracy Assessment

A test data set was built through stratified random sampling. The strata corresponded to the
spatial distribution of the 15 classes across continental Portugal as depicted in the map of 2010.
One hundred points per class were collected, making 1500 points in total. The point is a valid spatial
unit to assess the accuracy of polygonal maps [37]. Each point was assigned a primary and alternative,
if needed, reference land cover class label for each of the years (i.e., 2010, 2011, etc.). The alternative
label was needed when the point presented characteristics of more than one class, as often occurs in
transitional land. To collect the reference data, very high-resolution orthophotomaps of 2010, 2012 and
2015, Google street view, and other auxiliary data sets were visually interpreted. The reference data
collected for each year at each point were compared with each map to produce a confusion matrix.
There was an agreement between the testing points and the maps if the latter matched the primary or
alternative reference class label. Overall, users’ and producers’ accuracies were estimated according
to [19].

3.3.2. Area Estimation

The area mapped of a class is close to the true area of cover if the map error is small. However,
mapping error can be large and varies depending on the class. Thus, the area values obtained directly
from a map may differ greatly from the true area. As stratified random sampling was used to assess
the accuracy of mapping (previous section), it is possible to estimate the area of the land cover classes
by adjusting the area for the mapping error. This was done using the unbiased estimator presented
in [20] that includes the area of map omission error and leaves out the area of map commission error:

Âj = At × ∑
i

Wi
nij

ni+
(1)

where nij is the number of testing points of class j mapped as class i, ni+ is the total number of testing
points of class i, Wi is the proportion of the total area mapped as class i, and At is the total area of
the map.

Because area is estimated from a sample, uncertainty of each class j was quantified and reported
by 95% confidence interval [20]:

Âj ± 1.96 × S
(

Âj
)

(2)

where S(Âj) is the standard error of the estimated area of class j and can be expressed as [20]:

S(Âj) =

√√√√∑
i

W2
i

nij
ni+

(
1 − nij

ni+

)
ni+ − 1

(3)

4. Results

A land cover map was produced for 2010 (Figure 3) where cropland, woodland, shrubland, and
grassland form approximately 92% of the mapped area. Artificial land, bareland, water, and wetlands
are minority classes. The estimated overall accuracy of the 2010 map is 87.5%. This result is closely
related to COS2010, as this official map was the basis for the map production.

Land cover is generally stable over time and, thus, similar maps were produced for the following
years (Figure 3). Table 7 shows the area of each map that changed as compared to the precedent year’s
map while Figure 3 shows an example of grassland converted to cropland. The estimated thematic
accuracy of these maps is similar to that of 2010 but slightly smaller and follows a decreasing trend
(Figure 4). The differences between the accuracy of the maps are not statistically significant.
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Table 7. Mapped area (km2) that changed as compared to the precedent year’s map (percentage of the
country in brackets).

2011 2012 2013 2014 2015

226 130 144 197 111
(0.25) (0.15) (0.16) (0.22) (0.12)
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The overall accuracy of the maps depends on the accuracy of the classes mapped. Relatively more
challenging classes present smaller user’s (Figure 5) or producer’s (Figure 6) accuracy, which expresses
commission and omission errors, respectively. With regard to the former error type, mixed forest,
consolidated bare surfaces, and permanent grassland are especially over-represented on the maps



ISPRS Int. J. Geo-Inf. 2018, 7, 157 13 of 21

(relatively small user’s accuracy), and this error tended to increase over time, except for consolidated
bare surfaces (Figure 5). On the other hand, artificial non-built-up areas, unconsolidated bare surfaces,
and permanent grassland are under-represented (relatively small producer’s accuracy), with an unclear
increasing or decreasing trend over time (Figure 6). Permanent grassland is particularly problematic
as it accumulates considerable commission and omission map errors. In some cases, the difference
between the accuracy of the classes is statistically significant, such as the user’s accuracy of artificial
built-up areas and mixed forest (Figure 5). However, the differences between the maps for the
accuracies of the same class over time are always statistically insignificant.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 21 
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The mapped area of the land cover classes and the estimated error of the maps were used to
estimate the actual area of each class in each year. The two most abundant classes (Figure 7a) are
cropland (~23,000 km2) and broadleaved forest (~19,000 km2) and their abundance tended to increase
during the period analyzed. Next, a group of six classes cover a relevant fraction of the territory:
shrubland (~12,500 km2), coniferous forest (~9000 km2), other land with tree (~7500 km2), permanent
grassland (~7200 km2), mixed forest (~4500 km2), and roofed built-up areas (~3500 km2). Differences
between classes are statistically significant, except for coniferous forest, other land with trees, and
permanent grassland, so the true order of their abundance may be swapped. The estimates suggest
that the area of coniferous forests, mixed forests, and permanent grassland is in decline, while roofed
built-up areas are expanding, although slightly. Then, a group of seven minority classes (Figure 7b)
cover a total of ~2600 km2. Inland running water and other built-up areas are the most and least
abundant minority classes (~850 km2 and ~42 km2), respectively. These classes are predominantly
stable over time but unconsolidated bare surfaces increased substantially from 149 km2 in 2010 to
484 km2 in 2015. To note in most cases, the evolution of the classes’ areas over time indicates differences
in estimations, which are not statistically significant. Despite the interest that drivers for landscape
change may be raised by these results, they are out of the scope of this paper.
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5. Discussion

5.1. Mapping

A total of five land cover maps were produced by successively updating an initial map.
The differences between the maps were expected to be relatively small as previous studies show
an average land change rate of 1.1% for the region every year between 1995 and 2007 and 0.3% between
2007 and 2010 [38]. These statistics were produced using a nomenclature of nine classes. Thus, slightly
larger change statistics were deemed possible for the period 2010–2015 as more classes were used.
However, the differences between the maps ranged from 0.12% to 0.25% of the mapped area.

This result is possibly related to the slowdown of land cover change in Portugal observed between
1995 and 2010, which may have continued through 2010–2015. However, while this argument is
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somewhat speculative, there are objective reasons to believe that some land cover change went
unnoticed. Overall accuracy followed a decreasing and undesirable trend (Figure 4). This suggests
that the methods used for map updating were less effective than those used to produce the first map
(visual interpretation of very high-resolution orthophotomaps and auxiliary data). Specifically, the
increased mapped area of some classes related to larger mapping error (see Section 5.2) may have
acted to decrease the overall accuracy.

A practical method was used for change detection but it is largely dependent on the thresholds
selected to discriminate change from no-change [18,25]. While this issue is minor when land cover
change corresponds to abrupt NDVI changes (e.g., severe vegetation removal), some concerns arise
when the NDVI changes smoothly. The latter may correspond, for example, to a new forest patch with
small growth rates. An improvement to the method could be to allow for flexibility and therefore vary
the thresholds of change over time and space to adapt to temporary and local conditions. Alternative
methods should also be tested [25].

Change detection may also have suffered from the remotely sensed time series that was used.
A time series of a few years may be too short to detect some regeneration and succession. This may be
relevant especially in the first years of the series, such as 2011, as data before 2010 were not available.
Therefore, a longer time series is recommended, which may include data from diverse sensors such as
that collected by the Sentinel constellation [39,40].

Another cause for missing land cover changes is the conservative mapping strategy adopted
(e.g., rule set C). Such a strategy promotes robustness of mapping but is unable to cope with possible
incongruity between the satellite and auxiliary data. This issue was common in terms of temporal
reference as the satellite data have specific acquisition dates, while the auxiliary data sets often refer
to vague dates. Two ways may be followed to address this issue. First, the rule-based classification
step may allow for flexibility on the temporal match regarded as acceptable between the satellite and
auxiliary data. For example, mapping of a specific year may include contributions from the auxiliary
data available for a time window around the year of interest. A larger land cover change will certainly
be detected and mapped as a result but certainly at the expense of some inaccuracy about the year
of change. However, the benefits of mapping land change imprecisely greatly outweigh the loss of
not mapping change at all. The second measure for coping with incongruity is to liaise with data
producers. Simple adjustments on data production may be needed, such as including a specific date
related to land change while updating GIS-based records.

Map updating and generalization adopted a simple approach of merging polygons with the
longest shared border. This makes generalization biased towards large polygons, which tend to define
the longest shared border of small polygons. Also, the 30 m raster format classifications were converted
to vector format, which may distort or produce undesirable geometries. In theory, this issue may
have a small impact on the results as errors caused by geometry distortions may compensate for each
other and, hence, preserve the relative abundance of the classes. However, landscape structure may be
fragmented and some classes may tend to cover smaller patches than other classes, which can affect
per-class classification accuracy; smaller patches are challenging to classify [41] and are found in some
regions of the country, such as suburban areas of small and mixed agricultural fields, forest patches,
built-up areas, etc.

Other issues may have affected the results negatively, such as insufficient correction for clouds
and atmospheric effects. This is particularly relevant when alternative images were used to fill in pixels
with no data (Table 2). This correction is problematic when the vegetation phenology or some other
change occurs between data acquisitions, thereby causing the detection of false land cover changes.
This issue had a minor impact in practice. Many false changes were masked by the MMU or allocated
to the same class as mapped in the previous year, thereby neutralizing false change.

Some other issues are expected to have an impact on the result but are not necessarily negative.
For example, ensemble classification possibly afforded larger accuracy than the traditional practice of
using a single classifier and further exploration of this approach may offer further accuracy. The MMU
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of one hectare was adopted as the vector map of 2010 used this initially. Different values for the MMU
could have been defined with little impact on map accuracy and statistics.

5.2. Statistics

The quality of the land cover statistics produced from mapping inherits the limitations discussed
above. However, good practices for classification accuracy assessment and area estimation can
minimize the issue. Random sampling enables the estimation of commission and omission errors,
which can be used to compensate for map error while producing the statistics. Thus, the statistics
indicate that the area of broadleaved forests followed an increasing trend from ~19,000 km2 to ~20,500
km2 (Figure 8) whereas the mapped area of this class remained stable across all maps (~17,800 km2).
The differences between the statistics over time are not statistically significant at the 95% confidence
level as the confidence intervals overlap (Figure 7). However, an increasing area of broadleaved
forest was expected according to historical observations since eucalyptus plantations began to increase
mainly due to paper manufacturing.
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The statistics produced show that in some cases compensation for map error was insufficient.
For example, a relatively strong increase in the area of unconsolidated bare surfaces was estimated
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(Figure 7) as the mapped area of this class increased (Figure 8). However, a part of the mapped area
of the class is forest. The confusion between the classes stems from change involving the removal of
vegetation, such as shrubs, so that tree plantations could follow. Such areas were classified as bare land
while the vegetation was removed; however, such classification should be temporary and remain only
until the plantation has grown. However, as noted above, vegetation growth is difficult to detect, as the
NDVI tends to increase smoothly. Therefore, new forest patches often remain classified as bare land.

Limited compensation for map error of unconsolidated bare surfaces may be related to two factors.
First, the extent of relatively rare classes, as in the case of unconsolidated bare surfaces, is typically
overestimated [42]. Next, area estimation based on accuracy assessment typically assumes that the
testing data contains no error. This may be untrue despite the efforts to produce a gold standard as
it is common in the remote sensing community [43]. Errors embedded in testing data impacts area
estimations and amplifies the tendency for overestimating rare classes [42].

Then, the size of the test data set may have been small. Note that a relatively strong increase
in the area of unconsolidated bare surfaces was mapped and estimated as discussed above but the
producer’s accuracies (Figure 6) suggest that this class is under-represented. This may be caused by a
spatially clustered distribution of map error that is difficult to detect if the test data set is small and
hence spatially sparse. A larger test data set would have detected more easily the commission errors of
rare classes proportionally to the amount of error. The precision of all estimates would have increased
as well.

5.3. Transfer and Improvement

The framework proposed was illustrated for Portugal and modifications are needed for its
operational application. The success of mapping and production of harmonized statistics largely
depends on the data used and land cover patterns, which typically vary from country to country. Thus,
for example, the rule-based image classification step will have to be revised and rewritten, not only to
adapt to different contexts but also to integrate a variety of data sets. These, however, are increasingly
harmonized across Europe, for example, due to the INSPIRE Directive. Full and exhaustive exploration
of auxiliary data should be performed, including those commonly available for the countries and not
used here, such as cadaster and roadmaps. Furthermore, data from private sources can be incorporated
into the methodology after ensuring they meet acceptable quality and technical standards. Making
use of auxiliary data is perhaps the aspect of the methodology most dependent on the context of
the application.

It is also important that action is taken to improve map accuracy within each individual case.
For example, advanced training methods with a focus on operational use [44–48] can be explored
to improve the supervised image classification stage. Moving from pixel-based to object-based
image analysis (OBIA) may also be advantageous, especially if a vector land cover map is desired.
OBIA enables the geometry of the auxiliary GIS-based data to be incorporated directly into the
image classification with a reduced need of generalization as raster to vector conversion is avoided.
If, however, pixel-based image analysis is performed, map generalization should use semantic rules
rather than geometric rules to decide polygon merging. The general framework proposed here can
accommodate both pixel- and object-based image analyses.

Mapping is a fundamental component of the framework but land cover statistics production is
critical. Land cover mapping will always experience error and statistical methods should account for
it. Future research should address three main issues in this regard. First, the error embedded in the
reference data and the uneven abundance of land cover types negatively impacts the area estimation.
The influence of these issues is known in general [42] but the magnitude of the impact is specific
to each case and unknown. Second, land cover statistics must commonly be produced for specific
regions of a country, such as the NUTS in Europe, but the traditional accuracy assessment protocols
are implemented to assess entire maps. Thus, the statistics produced are valid for the entire extent
of the maps only, which commonly is the total extent of a country such as Portugal in this study.
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This is because sound accuracy assessment typically builds on a random testing sample and confusion
matrix, which inevitably demand much effort and time [19]. Thus, replicating accuracy assessment for
multiple regions, such as NUTS individually, is unfeasible. In practice, geographical fluctuations of the
map accuracy are unknown as the confusion matrix produced summarizes the entire maps. Third,
often a testing data set is reused to assess the thematic accuracy of several maps for similar practical
reasons. This is problematic when stratified sampling is used and based on strata defined by one of the
maps, which changes every time it is updated. As such, the strata defined by the updated maps are
no longer coincident with the strata used in sampling. In such cases, the estimators proposed by [49]
can be used as they account for the difference between the map and sampling strata. However, larger
standard errors are expected [49], which may be undesirable.

6. Conclusions

A general framework for frequent land cover mapping was explored with the ultimate goal of
producing harmonized land cover statistics across Europe. The methodology proposed aims to be
repeatable and transferable, which requires adjustments to some of the methods that populated the
workflow used in the Portuguese case study. The adjustments should address the limitations identified
here and the particularities of each country, such as data availability and land cover patterns.

The first phase of the framework is the ground foundation of the whole methodology—data
collection plays a crucial role in gathering relevant and official data sets. Despite its relevance, data
collection was not discussed in this paper. Data set coherence and harmonization depend largely on
the reality of each country. The final data sets used would benefit from a partnership selection between
national authorities and Eurostat to ensure harmonized and quality-assured statistics. Land cover
mapping, the second phase of the general framework, is formed by change detection, two-stage image
classification, and map updating and generalization. An effective change detection method should
be used, which can be adopted by different countries, as only satellite data are needed. Likewise,
map updating and generalization are not dependent on national contexts and the same method
can be widely adopted. Therefore, the variety of natural conditions and human activities of each
country should be considered mainly to design the supervised and rule-based image classifications.
This requires the definition of tailored spectral classes for supervised image classification able to
provide meaningful information to the second classification, which should be adapted to interpret
the preliminary classification and national GIS-based data sets. The combination of supervised
and rule-based classifications is perhaps a singular aspect of the framework as it enables numerous
opportunities for larger mapping accuracy and transference to other countries. An estimation of
the area from the maps, the last framework’s phase, can take advantage of the accuracy assessment
information to compensate for the estimated map errors; however, some challenges remain, such as
removing bias related to the uneven abundance of the land cover classes and producing statistics valid
for sub-national regions. The development of alternative accuracy assessment approaches with clear
advantages for operational use [50,51] is recommended.
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