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Abstract: 3D building façade reconstruction has become a very popular topic in various applications
related to restoration and preservation of architectural structures as well as urban planning. This paper
deals with the reconstruction of realistic 3D models of buildings façades, in the urban environment
for cultural heritage. We present an approach that enables the relation of stereoscopic images with
tacheometry data. The proposed multimodal fusing scheme results in an accurate 3D realistic façade
reconstruction and provides a fast and low cost solution. In the first stage of the proposed approach a
2D skeleton of the building is extracted from the viewed scene using Active Contour and Hough line
extraction. The next stage of our method utilizes depth information, extracted from a stereoscopic
layout, to infer the structural details of inner façade structures, such as windows or doors. In the
final stage, the structural information extracted from the image data is integrated with georeferenced
point datasets. The final output of our method is a georeferenced 3D model of the structure’s façade,
which can be further refined with the use of image-driven texture information.
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1. Introduction

The main point of this paper is the creation of a 3D model of buildings, using stereoscopic
images and control points. The 3D reconstruction of building façades has become an important task
for different applications, such as architectural design, cultural heritage, urban planning, cadaster,
and virtual tourism. Building façades differ in their structures, shapes and geometries. On one hand,
there are historical buildings in old cities, and on the other hand, there are large modern buildings
with different architectural designs. The continuous expansion and renewal of cities results in the need
for process automation for the buildings documentation.

A number of façade reconstruction methods are based on close-range images or terrestrial laser
data [1]. Close-range photogrammetry has been used to produce heritage building façade maps [2] for the
documentation of historical buildings [3] and for architectural documentation [4]. The terrestrial laser
point cloud has been extensively used to collect large datasets. Laser scanning technology is a widely
accepted and frequently used method for 3D reconstruction. LiDAR (light detection and ranging) has
revolutionized mapping for close-range objects [5]. It has been used for highly-detailed city models and
façade reconstruction [6]. An approach based on the segmentation of building façades using terrestrial
laser data is described in [7]. An automatic extraction of building features from laser-scanned data is
presented in [8]. In recent years there have been approaches that create dense 3D models of exteriors
of historical buildings [9]. Most existing state-of-the-art 3D model reconstruction approaches use 3D
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laser scanner technology as an increasingly important tool in the fields of archaeological survey and
restoration work [10,11]. However, the weakness of this method lies in the cost of the equipment and
the post-processing needed in order to arrive at the final reconstruction. The raw data from the laser
scanner cannot be directly processed and referenced to a geographical coordinated system. To do so,
existing approaches utilize a method called registration which is semi-automated in most cases [12,13].
The reasoning behind semi-automation lies in the limitations of laser scanning. The technology is
highly susceptible to the existence of gaps along laser points. These gaps can lead to reconstruction
distortions manifested in the form of offsets between the represented and the actual positions of the
structure’s edges. Moreover, to obtain photorealistic results, textures must be mapped from images
to the geometric models [14]. An accurate alignment between the laser space and image space is
required which is semi-automatic. Moreover, laser-based methods are constrained by the requirement
of large amounts of data points to produce accurate reconstructions. Even so, despite the density
of the laser-produced point clouds they often create inconsistencies between the laser and image
spaces, leading to texture mapping discontinuities. Laser-based systems are also susceptible to surface
material-induced distortions in the form of reflections from glass surfaces and moving objects, thus
requiring further data processing in order to counteract them and increase the reconstruction accuracy.
To resolve these limitations and obstacles, various approaches have been proposed which combine laser
and image sensor data [15–17]. The idea behind such methods is that image data can be used to enrich
the laser-driven depth information by extracting semantic information from the ground view images
in the form of texture and morphological information [18,19]. For this task, well-studied machine
learning and image processing techniques have been used to determine structural information cues of
the structure/building, such as its basic skeleton or boundary information, through morphological
operations or edge and contour extraction techniques, and then, combine them with a laser-driven 3D
reconstruction of the model [19,20]. Combining these data sources has proven to result to an increase
in reconstruction accuracy, as well as a broadening of the reconstruction capabilities for a variety of
structures [21–23].

In the existing 3D building reconstruction approaches, only a few approaches attempt to do it
fully automatically [24]. The reason can be traced back to the complexity of the methods and their
requirements/constraints, as well as the structural variety amongst structures. In multimodal methods,
the complexity lies in relating the different data sources accurately. The reconstruction methods rely on
special targets/key points measured from each scan position with a total station in a ground coordinate
system as a means of relating the two coordinate systems. In an automated approach these targets
can be found automatically using radiometric and geometric information. Other approaches use
key points extracted from the reflection data of the scans for the automatic marker-free registration
of terrestrial laser scans [25]. There is also an approach using image-based assistance to the total
stations to empower the surveying instrumentation [26]. In essence, laser-based approaches cannot be
considered ideal for reconstruction due to equipment cost and reconstruction limitations.

In addition, Structure from Motion is proposed to solve some of these problems. Structure from
Motion [27] extracts sparse depth point-clouds that are combined with laser sensor [28–30] or
georeferenced data [26,31,32] to construct the final 3D model of the structure. However, the performance
of Structure from Motion architectures depends highly on the viewing positions and the presence of a
sufficient number of common points between each view (large number) in order to be able to relate the
different views. Additionally, in Structure from Motion only the interior information of the sensors is
considered and, thus, the resulting depth maps are more susceptible to projection errors.

Our method proposes a solution using terrestrial surveying techniques and stereoscopic data of the
structure. For that purpose we use common total stations and low cost CCD cameras. We compensate
the low-cost, highly-available equipment with sophisticated post-processing. Specifically, in our
approach we initially create a point cloud which can be georeferenced using a set of control points
obtained by a total station. The point cloud is then enriched with morphological information
derived from the image data using image processing methods and a registration process between
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the two coordinate systems. Moreover, the use of two cameras on the same rig provides us with
an image-driven depth of the scene and a second image view of the structure. We only utilize the
image-driven depth maps of close range viewing cases where the depth information is accurate enough
to approximate structural information about the façade details of the structure/building.

In our approach, the multimodal information is combined into a reconstruction model suitable
to be imported in the Unity 3D game engine to create the final 3D model of the viewed structure.
Unity 3D is a game development platform, developed by Unity Technologies, that is widely used in
architectural visualization by introducing the necessary framework to realistically render 3D content.
The provided illumination effects, along with texture mapping, simulate real lighting conditions,
enhancing the photorealism of the scene. Our approach was tested in a highly-textured historical
building in Chania, Crete, as well as in a homogeneously-textured modern building on the campus of
the Technical University of Crete. As a remark we would like to mention that all prior data processing
and modeling stages were implemented in Matlab.

In Section 2 the proposed approach is presented in more detail with a special focus on the
methodology applied in order to extract meaningful and useful information from the multimodal
sensors. Section 3 presents the coordinate system registration process that enables the relation of
the multimodal datasets. Section 4 presents results and additional comments on the limitations and
constraints of the proposed approach. Finally, Section 5 offers conclusions and proposes future work
for addressing the limitations and constraints of the approach.

2. Proposed Method

The proposed method aims to reconcile data requirements and reconstruction accuracy for
accurate building façade 3D reconstruction by fusing multimodal information. Our approach combines
information from image sensors and ground control points with the goal of reducing the complexity
of the model reconstruction by discarding the dependency of depth information from laser-based
systems [15,16,28–30]. The presented approach is an extension to our previous work [31] on the
specific topic.

In the first stage of our approach the outer-skeleton of a mosaic building view, is extracted
using morphological image processing methods. Subsequently, in the second stage, the 2D skeleton
is transformed to a georeferenced 3D point cloud by relating the georeferenced point datasets of
the building. This stage will essentially produce the basis for an initial crude 3D building model.
Finally, the model is further refined through the addition of depth information for the building’s inner
façade features (e.g., windows or doors) that have been extracted from depth point clouds. The overall
process of our approach is depicted in Figure 1. As two examples we use an archeological monument
called “Neoria”, located in the old port of Chania and a building on the campus of the University
called “campus building”.

The key contributions of the presented scheme concern the introduction of a pre-processing stage
which extends the capabilities of our approach on wider structures, as well as the enrichment of the
building extraction and 2D building skeleton extraction stages. More specifically, the contributions
include (a) the incorporation of a multi-view approach, expanding the viewed structure scene, (b) a
more elaborate color segmentation approach, that results in accurate structure isolation/segmentation
from the background, and (c) a multi-stage contour extraction refinement scheme, compared to the
one introduced in [31], for the 2D building skeleton process. In the following sections, we will present
the components of our approach emphasizing the key features of the methodology, introducing the
new contributions and commenting on assumptions and constraints that were used.
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Figure 1. The 3D structure reconstruction scheme that is followed in the proposed method. The output
is a detailed realistic 3D reconstruction of the façade of a building. Reconstructing the entire 3D model
of the structure would require an additional 3D model stitching stage (a brief overview on this is
presented in Section 4), which exceeds the goal of this paper.

2.1. Stereoscopic Camera Layout

We begin by presenting our image acquisition equipment, which is a non-convergent stereoscopic
layout consisting of two high-resolution CCD cameras (Prosilica GC1020) facing each side of the
structure. The role of the stereoscopic layout is that it allows the extraction of a depth-map estimate for
the examined structure.

The use of a stereoscopic camera layout enables the extraction of the depth map of the scene
through the relation of the 2D image planes with the 3D scene coordinate systems, a process
known as triangulation. The accuracy of the depth estimates depend upon many factors, such as
the camera parameters, the camera-object distance, as well as the morphology of the monitored scene
(i.e., structural complexity of objects being present) and the monitoring conditions (illumination effects
and weather conditions). In order to achieve the best depth estimation accuracy we follow a calibration
approach [33] that enables the estimation of the camera related parameters (interior and exterior).
These parameters enable the correction of distortions (lens distortion), up to similarity reconstructions,
that preserve line parallelism, angles, and ratios of volume and length. However, in long-range image
monitoring, a necessity for building with large dimensions, the reprojection errors increase as the
camera-object distance increases [33,34]. These reprojection errors lead to ambiguous depth estimates
that for the case of 3D building façade models tend to be more severe in the outer structure of the
building. The degrading depth information quality due to the increase of the camera-object distance
will lead to inaccuracies in the reconstructed model. Nevertheless, we can still retrieve information
about the inner building façade features, such as windows or doors, in the form of protrusion indices
which can be used in the reconstruction process, a process briefly presented in Section 2.5.

In the case of old buildings and structures, whose structure or shapes do not satisfy the necessary
constraints, we have difficulties in the accurate and meaningful depth estimation from the stereoscopic
layout. In such cases, we may fail on the estimation of the protrusion of inner façade structures, but we
are still able to produce a 3D approximate reconstruction of the façade, relying on the 2D image and the
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georeferenced datasets. The subsequent subsections illustrate the steps to extract relevant information
from these data sources.

2.2. Image Stitching and Building Extraction

2.2.1. Multiple View Relation and Image Stitching

In order to cope with wider structure cases, where the field of the camera is not able to capture
the entire façade, we have adopted a mosaic view reconstruction approach. The mosaic reconstruction
approach allows for multiple views of the structure to be stitched together to create a single 2D
image view of the entire structure [20]. We employ hierarchic image view pairs of the structure
using a Speeded Up Robust Features-based matching (SURF, [35]). The extracted feature vectors
(SURF features) that characterize each view (image) are compared with the goal of deriving a
projective transformation that enables the relation of the views into a single image. In order for
this method to produce accurate results a sufficient amount of common key points (i.e., portions of
a commonly-viewed object) must exist in the examined image pair. By relating adjacent views we
can produce a mosaic view of the entire building façade. Please note that this stage is unrelated
with the stereo-driven depth map estimation process. We do not attempt to stitch together 3D depth
point clouds. Our experiments showed that the results are extremely vulnerable to reprojection errors.
The mosaic image is just used to produce a uniform 2D skeleton for longer structures that cannot be
represented in total with a single image.

Moreover, in order to produce as accurate as possible mosaic representations of the view we
kept a constant viewing distance from the building, while covering the whole building. For example,
the Neoria building required a minimum distance of 8 m. The overall process is depicted in Figure 2,
for the case of the historical building of Neoria. Please note that the depicted view is on a grayscale
to fulfil the requirements of the contour extraction algorithm that is used in the subsequent stages
of the method. This process is still applied prior to the building segmentation stage. Only for better
visualization of the stitching results we provide a segmented grayscale view of the mosaic.

Figure 2. The mosaic view of the right side of Neoria, reconstructed for our case study, using a set
of four viewing positions for the stereoscopic layout at specific viewing conditions (non-convergent
layout, facing the building’s side) and a distance of approximately 8.5 m from the object/side of interest.
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Commenting on the specific test case, of the building Neoria, we can observe that, despite the fact
that image views were acquired from slightly different viewing distances from the building’s façade,
the resulting mosaic view preserves the structural alignment of the building’s façade. However, small
alignment errors still exist mainly on the rooftop of the building. Please note that these errors occur
due to (a) the uneven structure of the roads surrounding the building and, (b) that the building, itself,
is built in an uphill location. As a final remark, please note that the mosaic view, as well as the entire
skeleton extraction process, is applied on the restored (undistorted) view of the left camera, whose
color information is adjusted with respect to the view of the right camera.

2.2.2. Color-Based Building Extraction

The next stage involves preprocessing of the image data that results in the segmentation of
the image and the extraction of the building. For this task, as presented in our previous work [31],
we utilize a color-based segmentation scheme, applied on the transformed version of the image in the
LAB color space, that separates the 2D image into a background class (the sky) and a foreground class
(the structure). This is an effective yet simple approach whose success requires the structure to have
homogeneous color shades. This constraint, however, is easily violated in outdoor conditions due to
extreme illumination.

In order to solve this problem, we apply the mean shift color segmentation method [36] using a
six-class scheme. The mosaic view is decomposed into different regions based on the color distribution
characteristics of the pixels, under the assumption that the textural information of the building is
coherent within its structural limits.

The extraction of the building from the surrounding object classes is achieved by first merging
neighboring classes with similar color characteristics (thresholding on the difference of the mean color
values of two classes) and then selecting the class containing the largest amount of points. The only
assumption is that the components of the structure are coherent in texture, in order to ensure that the
building’s structural details and boundaries are retained. Figure 3 depicts the extraction process in one
of our case studies: the campus building.

Figure 3. Building extraction process: (a) initial mosaic of campus building; (b) mean shift color
segmentation result; (c) Segmented image after the merge of neighboring accepted classes; and (d) extraction
of the building structure. Transitioning from (c) to (d) is essentially the segmentation process that removes
the class that corresponds to the sky (blue value), as well as retaining the class with the largest number of
pixels being assigned to it (assuming that the building is the largest structure in the image).
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2.3. Building Skeleton Extraction

Following the preprocessing stage (mosaic view formation, building extraction), we proceed to
the extraction of the 2D structural skeleton of the building. This process involves the application of
morphological operations, as well as edge detection and ‘significant’ line extraction on the segmented
mosaic view of the building. The goal of this stage is two-fold, first to extract the 2D skeleton and,
second, to detect and extract the building’s inner structural details, such as windows, doors, or ledges.
The latter is achieved through the application of shape-based morphological filtering methods.

2.3.1. Building Façade Contour Extraction

The 2D skeleton extraction is essentially the process of extracting the building’s contour.
Following the method presented in our earliest work [31], we apply the Canny edge detector approach [37],
followed by an Active Contour process [38] that leads to the final contour of the building. The Canny
edge detector serves as a closed contour initialization process that produces an early form of the
building’s structural skeleton. In order to cope with unexpected effects on the captured image, such as
shadows and intensity deterioration along the building this contour estimate is refined with the use of
a more elaborate active contour tracing methods [38].

The Active Contour model is a curve fitting approach in which the curve properties are guided
by an energy minimization scheme that consists of two factors; the internal forces (smoothness term)
which control the model’s smoothness and generalization during the deformation process, and external
forces (data term) which describe the fitting of the curve in the data, i.e., the objects of the image.

The only requirement is that an initial contour H0 close to a valid contour of the image must be
provided (which in our case is provided by the Canny edge estimate) in order for the method to search
for possible deformations of the H0 that can lead to the actual contour of the structure.

Finally, in order to cope with large structures, as well as to ensure that the contour captures the
majority of the structural characteristics of the building, we sequentially apply the active contour
extraction process on several edge points in the image, iteratively examining the curve relaxation
condition, where we are looking for the next possible position of the curve. More specifically we
start with a closed curve and iteratively modify them by applying shrink or expansion operations
performed by the minimization of the energy function, which consist of internal forces (defined by
constraints upon the shape of the contour) and external forces (defined by gradient). In that way,
we can also ensure that structural and textural deformations do not randomly affect the guidance of a
single spline, leading to local convergence issues and thus, to erroneous estimates.

2.3.2. Building Skeleton Formulation

The next stage of our process is the generation of an initial 2D structural skeleton of the building
by fitting distinct line segments on the extracted edges through the application of the Hough line
transformation method [39,40]. As expected, the fitting accuracy depends on the accuracy of the
edge-based representation of the building’s contour and inner structural details (doors, windows, etc.).
This process, however, can be affected by various factors. In structures with non-homogeneous textures,
such as Neoria, shown in Figure 1, image mapping distortions, due to uneven illumination, can lead
to the detection of erroneous and unwanted edge segments. In such cases, noisy line segments are
produced that reduce the accuracy of the 2D structural skeleton.

Another factor that affects the overall accuracy is the parameterization of the edge detection
process. Depending on the threshold selected in the Canny edge detection stage, the number and
strength of the extracted line segments can vary significantly. In our earliest work [31], we argued
that the sequential application of the edge detection and line segment extraction processes, by varying
the values of their parameters, increases the line segment 2D skeleton description performance.
Higher thresholds preserve only the basic morphology of the structure, whereas smaller thresholds
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retain information about the inner structural details. However, using smaller thresholds can lead to
the preservation of erroneous edges that inaccurately describe the structure.

Furthermore, in cases of high structural information, the sequential application of edge and
line extraction processes will produce multiple “strong” line segments describing the same region,
as illustrated in Figure 4a. Our solution to these problems, presented in detail in [31], was the
formulation of a line segment strength evaluation scheme that selects the strongest line segment.
This is achieved through a weighting function that ranks the line segments considering positional
relations and length characteristics. Specifically, for each line “j”, its strength/rank is determined by
the following function:

LSj =
1
N

N

∑
i=1

(
w1 · DistStartij + w2 · DistFinij

)
+ w3 · lenj (1)

where N corresponds to the amount of line segments estimated in the interrogation window, which is
located at the Hough position of the examined line j, DistStart and DistFin correspond to the Euclidean
distances of the starting and finishing points of the line segments and, finally, len corresponds to the
length of the examined line j. The weights, w, denote the importance of each parameter on the overall
result. All weights sum to 1, with the first weight having the largest value, since the starting point
of each line segment plays an important role in the formulation of the interrogation window of the
examined line. This ranking scheme allows us to remove redundant line segments, which describe the
same region. In order to further strengthen the line-based representation, we introduce in this paper
two additional conditions that lead to (a) the merge of collinear line segments resulting in a better
description of the region and, (b) to the appropriate selection of parallel line segments.

Figure 4. Building skeleton extraction process, campus building: (a) single application of edge
detection—Hough line segment procedure; (b) sequential application of the edge detection—Hough
line segment procedure, using a different set of parameter values, as in [31]; and (c) refined 2D
skeleton of the building by applying the line strength evaluation function and the collinear and line
parallelism conditions.
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Line Segment Co-Linearity Condition: Given an examined line defined by its starting point P1 and
its ending point P2 and P3 the starting point of a neighboring line segment define the distance d as:

d =
|(P2 − P1)× (P3 − P1)|

|P2 − P1|
(2)

In the case of co-linear line segments, the distance is zero. When such a condition is fulfilled these line
segments are merged producing a single line segment that has the longest possible length (based on
the starting and ending points of the two co-linear segments).

Line Segment Parallelism Condition: two line segments will be considered parallel if and only if
(a) they have the same slope or (b) their angle-based orientation difference is contained within an
accepted range (set up to 20 degrees). In this case we do not merge the lines; we simply select the
longest one.

These two constraints are in accordance with the line strength evaluation and selection criterion,
which lead to the derivation of an accurate line-based description of the building’s 2D structural
skeleton. Figure 4 depicts the accuracy increase in the case of the campus building façade due to
the application of the sequential edge—line segment—line strength evaluation scheme, as well as
the addition of the two Skeleton refinement conditions. We can observe a significant decrease of the
overlaid line-segments on each region (indicated by red and yellow dots). However, the performance
of this process depends on the size of the examined region, an effect that can be observed in Figure 4b,c.
In our approach we have selected a block size of 17 × 17 pixels.

2.3.3. Inner Feature Extraction and Description

The next stage of the skeleton extraction process is the identification of the inner building façade
structures, such as windows or doors. The stereoscopic-driven depth map allows the estimation of
the protrusion of these inner features [31]. This process involves the detection and description of
these features and the relation of these features with their corresponding depth information. We take
advantage of the shape characteristics of the structures. Under the assumption of rectangular-shaped
structures, we initially identify candidate object regions in the derived building contour and then a
rectangle fitting methodology is applied based on the shape properties of each region. In order to
exclude erroneous detections we introduce a threshold-based scheme that considers the amount of
non-zero points contained in the identified region. A low number of non-zero points (threshold set
experimentally to 30%) indicates a successful identification. Moreover, an additional constraint
regarding the windows was included which is based on the size of the rectangle, indicating candidate
window regions, and the dimensions of the image. Candidate rectangles that are larger than the 1/4 of
the image’s size (total number of pixels) are suppressed, since it is unlikely to correspond to a feasible
window. Figure 5 illustrates the application of the proposed inner façade structure detection approach
on the campus building. As can be seen in Figure 5a prior to the application of the threshold, we end
up with erroneous identifications, which are eliminated when the pixel value condition is applied
(blue marked rectangular regions).

Another source of erroneous detections, as well as non-detection cases, is the perspective
projection that is introduced during the image acquisition process. Projecting into a lower dimension
introduces deformations on both the shape and the size of the structure. The severity of these
deformations depends upon the camera’s position, orientation, and field of view. This means that
rectangular windows may not appear rectangular at all. To overcome such projection-related problems
we exploit additional information about the acquisition layout and monitoring process (interior and
exterior parameters) and correct the deformations (by removing lens distortion). Alternatively, we can
take advantage of some additional knowledge about the dimensions of the structure acquired from
other sources, such as geodetic measurements. The additional information provides the necessary
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data to correct the deformations via orthorectification [34]. In our test cases the camera layout faces
the structure leading to minimum deformation on the shape of the inner structures (e.g., windows)
and, thus, the detection is not largely affected by the projection as shown in Figure 5. Moreover, as we
mentioned in the previous section, a stage without distortion precedes the morphological operations
(i.e., segmentation, skeleton extraction). Future work will focus on resolving projection-related
structure shape deformations due to extreme viewing angles that can undermine the detection accuracy.

Figure 5. Window identification results, campus building: (a) identified rectangular formations in
the building through the application of Hough transform; and (b) rectangular shapes selected via the
rectangular elimination condition as in [31]. All the formations correspond to the building’s windows.

2.4. Georeference, Depth, and Building Skeleton Relation

Relying only on image-based data for 3D reconstruction requires specific monitoring constraints,
here meaning front-facing viewing images, parallel (non-convergent) camera layout and careful
planning that will minimize the reprojection errors and reconstruction uncertainty. Even then, the data
do not suffice for accurate 3D model reconstructions. The majority of existing methods enrich these
sparse 3D point clouds with auxiliary data from other sources, such as laser scanning devices or
geodetic stations. In our approach we combine image data with georeferenced data acquired using
tacheometry. A total station was employed for the digital recording of the surveyed points. The data
consist of three dimensional coordinates x, y, z, or easting, northing, and elevation, which are computed
taking as input the initial on site measurements using trigonometry and triangulation. A distance
accuracy of ±2 mm to ±5 mm was inherent for each point (total station error). The surveying of the
Neoria building was also used in previous work [41]. The final obtained raw data are in the form
of Greek Geodetic Reference System 87 (GGRS87) coordinates. The GGRS87 is a geodetic system
commonly used in Greece. The system specifies a local geodetic datum and a projection system [42].

In order to combine the two information sources (image and geodetic datasets) we define
a mapping scheme that relates the 2D image point coordinates and the 3D coordinates of the
georeferenced dataset. The mapping initially involves the creation of a fictitious 3D space xim-f,
in which the 2D coordinates are augmented and interpolated into a 3D coordinate space using a
variable z0 as a fixed third dimension. By a manual or feature-based selection of point correspondences
between 2D image points and its georeferenced coordinates, we can define a mapping transformation
function that provides the relation between the 2D image plane coordinates (the 2D building skeleton)
and the 3D georeferenced point dataset. More details will be presented in the following sections.

The last step of our 3D model reconstruction framework involves the extraction of information
concerning the structural details of the structure’s façade thus assisting the refinement of the resulting
3D object.
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2.5. Image-Based Depth Information

The georeferenced data contain information about general dimensions and position of the
structure. Thus, we can only recover a crude 3D reconstruction of the basic shape of the structure.
In order to further refine the 3D model, we can utilize additional information that can be extracted
from an image-driven depth map.

In our approach we utilize a calibrated stereoscopic layout, with known interior and exterior
layout parameters, to extract the depth map of the scene, using the method of triangulation [34].
From this depth map we then extract depth-related information about the inner façade structures of
the building, such as windows or doors, which, in our case, is their protrusion information. This task
requires us to associate the depth information with the inner façade structures. In order to achieve
that we first detect those inner structures in the image plane domain, by applying a rectangle fitting
methodology, based on each image region properties, and then associate the corresponding pixels with
their depth information. Finally, as presented in our previous work, we can compute the protrusion,
of the rectangular inner structure (e.g., door, window or ledge), by simply computing the difference of
the average depth of the pixels belonging to inner structure and the pixels belonging in the foreground
wall region that surrounds this inner structure.

3. Model Reconstruction

The 3D model reconstruction process utilizes the aforementioned extraction of a line-shaped
skeleton of the building, and combines it with georeferenced data and depth information.
Furthermore, image-based texture information is used to provide a realistic result. In the following
paragraphs we will elaborate on the fusion process between the various data sources.

3.1. 2D Building Skeleton and Image-Based Depth Point Clouds

A binary form of the strongest line segments creating the building skeleton provide the spatial
data for the features and shapes of the building in 2D. The image coordinate system is used to define
the position of the skeleton data resulting in a representation in the 2D space, where points are
associated with x, y positions representing the line segments (corresponding with the image pixel
positions). The depth point cloud, based on image data, associates the 2D image points with their 3D
world coordinates (having, again, as a reference the 3D world system of the camera, i.e., the z-axis
corresponds to the distance of any object from the camera using a projection transformation):

 x
y
1

 = K · [R|T] ·


xworld
yworld
zworld

1
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 x
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1

 =

 f xo

f yo
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 ·
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 ·
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⇒ xim = P · Xworld

(3)

with K: matrix containing the interior characteristics of the camera, required for the relation between
the camera and the image plane coordinate systems, [R|T]: matrix denoting the exterior parameters
of the system, i.e., the rotation (3 × 3 matrix) and translation (3 × 1 vector) required to match the
world and camera coordinate systems and P: the projection matrix, defining the geometric mapping of
points from one plane to another. For the estimation of the protrusion we are only interested in depth
information, i.e., the z-axis value.

In order to establish correspondences between the image coordinate system and the Earth
coordinate system we estimate the interior parameters, as well as the exterior parameters of the
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camera to world relation by exploiting the camera calibration process proposed by Zhang et al. [33].
Our estimation follows the implementation employed in Bouquet’s camera calibration toolbox from
Caltech [43] which requires the use of a targeted pattern to derive correspondences. In our case
the targeted pattern is a chessboard (most commonly used pattern), that was placed in front of the
structure, and which was moved at different heights and positions, in order to act as a reference
coordinate system.

3.2. Georeferenced Data Registration and Interpolation

The materialization of the 3D surface begins with the relation of the previously created point
cloud with the georeferenced data. The registration of the two datasets should provide a merged
point cloud referenced by a consistent coordinate system. The available georeferenced dataset
consists of multiple points distributed across the façade. In order to achieve the extraction of useful
information, an appropriate point set should be selected. The data should focus on areas with depth
variation, represent structural features, and be consistent with the strongest line segments extracted
in the previous stages. Therefore, the final selected georeferenced dataset consists of the geographic
coordinates of the corners of the features extracted morphologically and points of interest referring to
depth differentiation. Only a small quantity of the georeferenced data is used, excluding georeferenced
points with no morphological interest, such as those on plane walls. The point set obtained in the
previous step is registered with the georeferenced data via a spatial transformation. Pairs of equivalent
points are selected in the two entities. This pairing enables the production of a [4 × 4] transformation
matrix, as in Equation (4):

XGW = λ · [Router|Touter] · xim− f (4)

where XGW is in homogeneous coordinates representing the new geographic coordinate system, xim-f
represents the formerly-mentioned fictitious 3D space (Section 2.4), λ is the scale factor, and Router

and Touter are the rotation matrix and translation vector respectively, relating the point set to the
georeferenced data. The transformation is then applied to the skeleton point cloud, aligning the
skeleton data with the GGRS87 geographic coordinate system.

In order to extend the information provided by the georeferenced data across the façade, the small
subset of geographic coordinates is used as a basis for the formation of an interpolation surface.
Based on the association of the each georeferenced point’s position with its neighboring points,
this surface provides a means of predicting values at unmeasured locations between the known
georeferenced points, enhancing the depth information. By utilizing the spatial property of the surface,
it is easier to assign depth on the image data and place them accordingly. Therefore, exploiting the
point correlation, an interpolated version of the georeferenced data (i.e., new georeferenced points
generated based on the existing dataset) was created by linear interpolation as follows:

xGWinter = x1 + a ∗ (x2 − x1) + b ∗ (x3 − x1),
yGWinter = y1 + a ∗ (y2 − y1) + b ∗ (y3 − y1),
zGWinter = z1 + a ∗ (z2 − z1) + b ∗ (z3 − z1)

(5)

where
(

xGWinter , yGWinter , zGWinter

)
denotes the newly-created interpolated point, whereas

[(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)] are the three nearest georeferenced points from the existing
dataset. These points compose an interpolant f which is used solely to provide the skeleton point set
data with the updated zGW value. The xGW and yGW values remain the same and were computed in
the previous step (Equation (4)). For each skeleton point the interpolation was evaluated by:

zGW = f (xGW , yGW) (6)

where f is the constructed interpolant. This new interpolation surface is not included, nor is visible,
in the final result and is used exclusively as a source for the computation of the third dimensional
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value. It is employed as a way of compensating for the quantity of georeferenced data, thus aiding
the decrease in data volume. The 3D point cloud that is generated by this approach contains all the
beneficial geometric information and thus provides the basis for the reconstruction of the façade.

3.3. Surface Reconstruction

The conversion of the newly-formed point cloud to a defined surface is achieved via appropriate
connections between 3D points. The range of surface reconstruction algorithms covers a vast variety
of cases based on the input data. In order to retain the spatial information provided by the point cloud,
the reconstructed mesh should include the 3D points as vertices. Computational geometry algorithms
constitute a category that fits the mesh on the existing points and, thus, a simple Delaunay triangulation
was selected for the implementation [40]. The addition of the georeferenced data, adopting the above
procedure recalibrates the point coordinates to add the depth information to the mesh, as well as
georeferencing the model. As a final remark, to reconstruct the 3D model of the entire building we can
stitch each reconstructed 3D façade model of each side, based on low- and mid-level image features
(e.g., SIFT descriptors) that relate the corresponding 2D images and use the 3D coordinate information
to resolve volumetric related issues [31].

4. Results

4.1. Test Cases

We will now examine the results of each stage, further commenting on the implementation issues
and reconstruction accuracy. The initial stage of the method involves the registration of the 2D skeleton
of the building with the georeferenced point dataset, producing an initial 3D point cloud. Figure 6
depicts the 2D skeleton of the Neoria building front façade (Figure 6a,b), as well as the right side
façade (Figure 6c,d).

Figure 6. Initial 3D point cloud of the Neoria building, front façade: (a) point cloud formed by the
points of line segments; (b) enhanced point cloud with the georeferenced points from the tacheometric
measurements. The purple dots indicate 3D points augmented with depth information. Right façade:
(c,d) enriched point cloud including the points of line segments, the georeferenced coordinates along
with the interpolated points used for demonstrative purposes.
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The registration of the georeferenced data using the Equation (4) and the employment of
the interpolant expressed in Equation (6) recalculates the third coordinate (z0) to add the depth
information. Therefore, the skeleton point cloud is enriched with the depth attribute. Then, Delaunay
triangulation [40] constructs an initial mesh based on the augmented point set as shown in Figure 7
for the Neoria front and right façades. Stereo image data specify the structural basis of the façade
(by providing the original skeleton) and, thus, refinement of the 3D model is achieved with a limited
amount of georeferenced data.

The following step involves the refinement of the inner building feature details with protrusion
addition for the windows, doors or ledges, as it has been estimated based on the stereo-driven
depth map. In the final stage of the reconstruction process, the realistic fidelity of the model was
enhanced by texture mapping and illumination effects. The texture addition, i.e., the surface’s main
color, was implemented by a process called diffuse mapping which wraps image samples onto
the surface and displays the pixel color. The procedure involves the assignment of image pixels
in particular surface places and was implemented via Autodesk 3ds Max software (Autodesk Inc).
Additionally, the model was imported into the Unity 3D graphic software, which provides the tools to
implement illumination and shading techniques. The realism of the scene was particularly increased
by normal mapping, a photorealistic technique) that simulates the lighting process by taking the dot
product between the unit vector of the model’s surface and the unit vector of a simulated light source.
Figures 8–10 depict the 3D model achieved using the aforementioned process, for the test cases of the
Neoria building front and right face façades, as well as the campus building.

The depth information generated by the stereoscopic layout is only used for the protrusion
estimation process of the inner features of the building. This is due to the fact that the reprojection
distortions are more severe in the outer skeleton of the building and increase exponentially as the
monitoring range and building size increases. To reduce the reconstruction distortions and reprojection
errors we can potentially exploit auxiliary information about the scene/structure and impose additional
scene constraints, such as 3D line parallelism, as well as utilize prior hypotheses about the structural
characteristics of the entire building or for specific parts (e.g., trying to find a skeleton that fits a specific
set of shape patterns, for example, a rectangle, or a triangle (when rooftops are present)).

Figure 7. The 3D model reconstruction for the Neoria building using the georeferenced data points:
(a) front façade; and (b) right façade.
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Figure 8. The final 3D model stages for the Neoria building front façade: (a) initial building image;
(b) the 3D model with the addition of inner building protrusion information; (c) enriched model via
normal mapping; and (d) the final 3D reconstruction after texture addition through image sampling.

Figure 9. The final 3D model stages for the Neoria building right side façade: (a) initial building image;
(b) after the addition of inner building protrusion information; (c) enriched model via normal mapping;
and (d) the final 3D reconstruction after texture addition through image sampling.
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Figure 10. The final 3D model stages for the campus building: (a) initial building image; (b) after the
addition of inner building protrusion information; (c) enriched model via normal mapping; and (d) the
final 3D reconstruction after texture addition through image sampling.

The case of the campus building presents difficulties related to the topography of the area,
which does not allow for clear front-facing viewing positions, and the height of the building.
Non-facing viewing angles introduce projective deformations due to perspective effects. The eventual
deformations, although not severe, are passed on to the 3D reconstruction process. Less depth
information can be extracted, since the larger and taller structure augments the viewing distance.
As the viewing distance grows the projective ambiguities and errors increase, leading to erroneous
depth estimates.

In such viewing cases, we only rely on the extracted 2D structural skeleton of the building the
interpolation accuracy between the 2D image data and the georeferenced data based on specific key
points that have been detected. This interpolation suffices to extract the depth attribute of structure
(reconstruction of the inner façade structures cannot be performed since we lack the stereoscopic depth
driven protrusion information). Additionally, the obscure viewing angle for the specific viewing case
(Figure 10a) leads to the elimination of two façade walls in the images. Taking this into consideration,
along with the purpose of illustrating the skeleton extraction process in the first stage of our approach,
the features of both façades (walls) were detected. However, the georeferenced based interpolation
surface that is employed during the reconstruction process is characterized by a consistent orientation,
which means that it can be utilized for a single-sided structure (façade). This condition results in only
one wall of the structure being adequately reconstructed. A correction of the perspective distortion in
the future will further extend the variety of cases covered with our approach.

4.2. Quality Evaluation of the 3D Model

In order to validate the methodology, proper quality assessment is necessary [44]. The results
along with the effectiveness of the proposed method for each façade are evaluated in two stages.
First, an accuracy assessment is carried out through the employment of ground control points.
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Secondly, a geometric evaluation of the final façade 3D object is implemented in order to quantify
the effects of the methodology on the data. A quantitative analysis of the accuracy of the results
requires an independent reference dataset. To that end, ground control points (GCP) were appointed
across the façades in easily identifiable areas. GCP-based analysis and evaluation of the resulting 3D
model quantifies the effect of the methodology on the quality of the final result [45,46]. In our study,
GCP were measured using a total station and expressed in GGRS87 for consistency. The distribution of
the GCP in each façade is shown in Figure 11a, Figure 12a, and Figure 13a. The distribution of the GCP
was even on the façade Figures 11a and 12a. However, in Figure 13a we had GCP only at the upper
part of the building.

The GCP were manually selected amongst the vertices of the final 3D model of each façade and
their measured coordinates were compared to the known GCP coordinates from the tacheometric
survey. The known GCP coordinates were employed as independent reference. The assessment
focuses on the computation of the 3D deviation between corresponding point pairs in the two data sets.
The spatial deviations of each GCP are presented analytically in Figure 11b, Figure 12b, and Figure 13b.
The mean 3D deviation for each façade was also computed. The discrepancy between the Neoria
façades and the campus building façades is to be expected. A mean deviation of about 27 cm on
the campus building was calculated. That discrepancy is generated by the displacement of the final
surface points, a consequence of the initial image perspective distortion. The Neoria façade models
are more accurate. The mean deviation of the front side façade is estimated at ~8 cm, while the west
side façade has achieved a mean deviation of ~3.7 cm. The quantity of the initial GCP data used in the
reconstruction process is considered a factor for that differentiation, as the amount of georeferenced
data fused in the point cloud representing the skeleton of the west side was higher than those used for
the front side.

Figure 11. Accuracy assessment via GCP of Neoria front side façade: (a) GCP distribution along the
façade; and (b) deviations of the GCP along with their mean value.

Figure 12. Accuracy assessment via GCP of Neoria west side façade: (a) GCP distribution along the
façade; and (b) deviations of the GCP along with their mean value.
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Figure 13. Accuracy assessment via GCP of the campus building: (a) GCP distribution; and, (b) deviations
of the GCP along with their mean value.

Additionally, errors could appear through the workflow, potentially affecting the reliability
of the 3D model. The procedure of the surface creation, the exchange between software, and the
post-processing of the 3D model can affect the quality of the final result. In regard to that,
a geometric evaluation is carried out based on tacheometry measurements of the same type used
in the methodology and acquired with the same total station. Although there is a possibility of the
newly-acquired raw data being almost identical to the first measurements, we consider them a sufficient
means to provide an assessment regarding the quality of the reconstruction. If anything, we can gain
an interesting insight with respect to the relation of the input data and the output 3D model.

The goal of this evaluation method is to determine whether the positioning of points in the
resulting 3D reconstruction has deviated from the geographic raw data originally measured on site.
In this manner, an error calculation can be relevant to the georeferencing of the building reconstruction.

In this case the geometric evaluation of the model is analyzed by computing its deviation from the
geometric raw data. A ‘nearest neighbor distance’ method was applied. The raw data measurements
were considered the reference entity. The essence of this method is that for each point of the 3D model’s
triangular mesh, the nearest point in the reference data is located and their Euclidean distance was
computed. The process was executed in CloudCompare (GPL software). The point deviations are
depicted on the model by a scalar field color scale. They are in absolute distances and in meters.
The respective histogram portrays the distribution of the points according to their deviation from the
reference data.

Analyzing the deviation of surface points of the west side part, as shown in Figure 14a,
the predominant set is the one with a distance difference less than 10 cm from the reference data.
The green surface areas with medium deviation ranging from 40 cm to around 1 m represent
the parts not containing raw reference data information nearby. This issue is most notable at the
inwardly-protruded door surface (red color), providing the largest deviation due to the complete lack
of that section’s geographic information. Regarding the front side part of Neoria (Figure 14c), the key
façade features have minimum deviation, around 10 cm. In this case the raw data were sparse and
pertaining to the points of interest, leading to the occurrence of higher deviations in regions with an
absence of them.

The evaluation of the campus building case (Figure 15a) is expected to include deviations due to
the geometry deformations caused by the initial projection distortion. The major deformations are
detected around the window, whose rectangular shape makes the distortion more apparent.
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Figure 14. The comparison of the 3D model with the reference data: (a) the model of the west side
part of Neoria with a color scalar field depicting the data deviation (blue < green < yellow < red);
(b) the distribution of the aforementioned surface points according to their deviation from the reference
data; (c) the corresponding color scalar depiction of the front side part of Neoria; and (d) the matching
histogram of the relation of surface data and their deviation.

Figure 15. Accuracy assessment of the campus building: (a) color scalar field of the model depicting
the significant deviations from the reference data; and (b) the corresponding histogram. The prevailing
part of the points deviates around 1 m from the data.

5. Conclusions and Future Work

This paper presents an extension on our previous work [31] tackling the problem of fusing
multimodal sensor data for constructing a 3D model of a structure/building. The proposed
methodology requires low-cost data acquisition equipment, mainly, an image acquisition device
and a georeferenced dataset obtained with the use of a total station. The combination of imaging
datasets and image-driven depth maps with the georeferenced point dataset allows the accurate
reconstruction for the structures. The main point of the paper is that even with highly available
and inexpensive equipment we can produce 3D models of structures, emphasizing in this paper the
building façade reconstruction accuracy, provided that we use sophisticated data processing techniques
and multimodal data sources.
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Concerning the image dataset specifications, both stereoscopic and single camera images are
used, acquired through a setup of CCD cameras. The stereo setup and the produced depth map has
limitations due to reprojection errors that restrict the contribution of GCP data in the final model.

The presented approach is subject to improvement concerning the amount of information that
can be derived from the image and image-based depth map dataset. By reducing the reprojection
distortions and introducing scene and structural constraints and assumptions, we hope to enrich
the depth-map accuracy and increase its contribution to the reconstruction process. The goal is to
eventually use the image-based depth point cloud as a first crude 3D model basis, rather than the
extraction of the protrusion estimates, with the additional gain of further reducing the amount of
georeferenced data points used in the reconstruction process.
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