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Abstract: Association rule (AR) mining represents a challenge in the field of data mining. Mining 

ARs using traditional algorithms generates a large number of candidate rules, and even if we use 

binding measures such as support, reliability, and lift, there are still several rules to keep, and 

domain experts are needed to extract the rules of interest from the remaining rules. The focus of this 

paper is on whether we can directly provide rule rankings and calculate the proportional 

relationship between the items in the rules. To address these two questions, this paper proposes a 

modified FP-Growth algorithm called FP-GCID (novel FP-Growth algorithm based on Cluster IDs) 

to generate ARs; in addition, a new method called Mean-Product of Probabilities (MPP) is proposed 

to rank rules and compute the proportion of items for one rule. The experiment is divided into three 

phases: the DBSCAN (Density-Based Scanning Algorithm with Noise) algorithm is used to cluster 

the geographic interest points and map the obtained clusters into corresponding transaction data; 

FP-GCID is used to generate ARs, which contain cluster information; and MPP is used to choose the 

best rule based on the rankings. Finally, a visualization of the rules is used to validate whether the 

two previously stated requirements were fulfilled. 

Keywords: data mining; association rules; DBSCAN; FP-GCID; Mean-Product of Probabilities 

(MPP) 

 

1. Introduction 

In the last two decades, association rule (AR) mining has become one of the most important tasks 

in the field of knowledge discovery. AR mining results have been applied in numerous fields such as 

urban bus networks [1], intrusion detection [2], recommendation [3], oral cancer [4], and product-

service systems [5]. AR mining can be described as follows: let 𝐼 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑚} be a set of items and 

let 𝐷  be the transactions of a database, where each transaction 𝑇 is a set of items in  𝐼. An AR can 

be defined as an implication of the form “𝑋 ⇒ 𝑌”, where  𝑋 ⊆ 𝐼,  𝑌 ⊆ 𝐼, and  𝑋 ∩ 𝑌 = ∅. 𝑋 is called 

the antecedent of the rule, and 𝑌 is called the consequent of the rule. The rule can be interpreted as 

“if itemset 𝑋 occurs in a transaction, then itemset 𝑌 will also likely occur in the same transaction”. 

The main algorithms for mining ARs are Apriori and FP-Growth. The Apriori-based algorithm 

first proposed by Agrawal et al. [6], which is the most popular AR mining algorithm, employs 

breadth-first search and tree structures to calculate candidate itemsets in two phases [7]. The first 

phase extracts frequent itemsets from transactional databases. These frequent itemsets are detected 

using user-defined parameters, for example, minimum support, or 𝑚𝑖𝑛 _𝑠𝑢𝑝. The second phase finds 

ARs among the frequent itemsets. Minimum confidence, or  𝑚𝑖𝑛 _𝑐𝑜𝑛𝑓, which is also a user-specified 

parameter, is employed for the discovery process. FP-Growth is a well-known and frequently used 
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itemset mining algorithm and was first introduced by Han et al. [8–10] for avoiding candidate 

generation to decrease memory requirements and to reduce the mining search space. The greatest 

advantage of this method is that it compresses all transactions of the database into a frequent pattern 

tree, which contains information associated with the itemsets. Frequent patterns are generated by 

recursively searching a conditional FP-tree. 

In general, mining algorithms produce a large number of ARs, but not all of them are useful to 

you, which requires us to discover the rules of interest. Interestingness has become increasingly 

important since the inception of the field of data mining [11]. Two types of interestingness factors 

have been developed: objective and subjective interestingness factors [12]. Subjective interestingness 

factors [13,14] are user driven in the sense that they require user domain knowledge, and objective 

interestingness factors [15,16] are said to be data driven and consider data cardinalities [17]. 

However, we want to determine not only the qualitative rules but also the quantitative rules, which 

could be used to determine the best rule from numerous rules and to obtain the proportion of items 

in one rule. This is the motivation behind this paper. 

The application of clustering algorithms to mining ARs is also a common method. This paper 

uses DBSCAN (Density-Based Scanning Algorithm with Noise) [18], which is widely known for 

finding clusters with arbitrary shapes. The algorithm is applied in various fields such as spatial travel 

pattern recognition [19], gene expression [20], and hotspot distribution [21]. DBSCAN has two input 

parameters, namely, 𝜖—the radius of the neighborhood and 𝜇—the density threshold, which is the 

minimum number of points required in the neighborhood of a core object. These two parameters 

assist users in finding acceptable clusters. 

As mentioned above, Apriori and FP-Growth are the two primary methods used for mining 

association rules, and the result of using these two methods is the production of a large number of 

rules; even if we use a large number of constraints for filtering, such as support, confidence, and lift, 

considerable numbers of rules need to be retained. To determine which of these remaining rules is 

the most interesting requires that domain experts make subjective choices. The starting point of this 

paper is to determine whether we can directly provide the ranking of the associated rules and reduce 

human intervention by field experts. The Mean-Product of Probabilities (MPP) algorithm given 

below will attempt to solve this problem. 

The main work of this paper is to propose a method of mining ARs for geographical points of 

interest in order to find the relationship between geographic points of interest, including quantitative 

relationships. This method mainly includes three stages. The first stage uses the DBSCAN algorithm 

to cluster the geographical interest points and then maps the generated cluster to the transaction data; 

at the same time, each of the transaction data contains its corresponding cluster information. The 

second stage modifies the FP-Growth algorithm. The FP-Tree can contain the cluster information of 

the node item in the construction, and the FP-GCID algorithm is used to generate the association 

rules and uses the reliability and the rule type to filter the generated rules. The third stage constructs 

the MPP algorithm and uses the algorithm to determine the quantitative ranking of the remaining 

rules. Rules with higher ranks are of greater interest. At the same time, the MPP algorithm can also 

yield the proportions of the best rules.  

The remainder of this paper is organized as follows: a brief overview is given in Section 2; Section 

3 introduces two fundamental methods used to mine ARs; Section 4 discusses an AR mining 

experiment in detail; and a discussion and the conclusions are provided in Section 5.  

2. Literature Review 

This section briefly reviews related literature. Section 2.1 provides the development of the study 

of the FP-Growth algorithm. Section 2.2 reviews the various types of interestingness measures that 

are used to find the most useful rule pattern. 
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2.1. Analysis of FP-Growth Approaches 

Because of its advantage resulting from the use of two scans, FP-Growth has become especially 

popular, and numerous researchers have made various improvements to the method. Lin et al. [22] 

proposed the IFP-Growth algorithm, which improves the performance of the FP-Growth algorithm 

based on three factors: the introduction of a FP-tree with reduced complexity, less recursive 

conditional FP-tree building, and lower memory requirements. Liu et al. [23] and Hu and Chen [24] 

focused on mining ARs with multiple minimum supports. The latter work incorporated two 

improvements based on the former work. First, they proposed a novel frequent itemset mining 

algorithm called CFP-Growth. The algorithm is based on MIS-tree, which is similar to the FP-tree 

structure and stores crucial information about frequent patterns. Second, compared to conventional 

single-minimum support, which increases the difficulty for users when setting appropriate 

thresholds, each item can have its own minimum support. The advantage of this algorithm is that it 

scans the transactional database only once. Lin et al. [25] employed a utility mining [26,27] strategy 

called a high-utility pattern tree, or HUP-tree, to reconstruct the FP-tree by considering costs, profits, 

and other measures. In addition, the HUP-growth algorithm was proposed to generate high-utility 

patterns. Leung et al. [28] developed an FP-tree-based algorithm called FPS that buries the succinct 

constraints deep inside the mining process. Lin et al. [29] proposed an MCFP-tree based on the FP-

tree to discover rule patterns with multiple constraints.  

A compressed and arranged transaction sequence tree, or CATS-tree, was introduced by Cheung 

and Zaïane [30]. To construct the CATS-tree, the database is scanned once, and all the transaction 

information is compressed on the tree, therein generating frequent patterns with multi-support 

constraints. Koh and Shieh [31] developed the AFPIM algorithm, or Adjusting FP-tree for Incremental 

Mining algorithm. The algorithm swaps the FP-tree construction when the transaction database is 

updated. By combining the above two algorithms, Leung et al. [32] proposed a novel tree structure, 

called the canonical-order tree, or CanTree, that captures the content of the transaction database and 

orders tree nodes according to a canonical order. Tanbeer et al. [33] presented a novel tree structure 

called CP-tree (compact pattern tree) that scans a database only once and produces the same effect as 

the FP-tree. The CP-tree is constructed using a branch-by-branch method, called the branch sorting 

method, that dynamically produces a highly compact frequent-descending tree structure. Moreover, 

the CP-tree exhibits a superior performance in incremental mining and interactive mining tasks. 

2.2. Analysis of Approaches to Interestingness Measures 

Numerous ARs will be generated in frequent itemset mining. To determine which rules are 

interesting, various types of methods have been developed to measure interestingness. Lan et al. [34] 

developed a novel and effective associative classification approach by combining the intensity of 

implication and dilated chi-square with an existing associative classification algorithm. The former 

interestingness measure was proposed to find meaningful ARs, and the latter was used to reveal the 

interdependence between conditions and class variables. Malhas and Al Aghbari [35] presented an 

AR ranking approach called the sensitivity measure, which determines a sensitivity by evaluating 

the uncertainty-increasing potential based on Bayesian belief networks. Mutual information is used 

to measure such uncertainties. The drawback of this approach is that it requires background 

knowledge from the user. Vo and Le [36] proposed a new approach to mining interesting ARs by 

combining lattice and hash tables, therein providing increased effectiveness over methods using only 

hash tables. Shaharanee et al. [37] proposed a systematic framework for ascertaining generated ARs 

by incorporating a data mining algorithm with statistical measurement techniques such as 

redundancy analysis, sampling, and multivariate statistical analysis to discard non-significant rules. 

Ohsaki et al. [38] compared a total of 40 interestingness measures through experiments using clinical 

datasets. Using an f-measure and correlation coefficient, the experiments estimated a medical expert’s 

interest based on the performance of each interestingness measure. 
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2.3. Analysis of Mining Association Rules with Clustering 

Combining clustering and classic AR mining is another effective way to improve the efficiency 

of AR mining. These clustering algorithms include k-means [39], DBSCAN [40], hypergraph mapping 

[41,42], and bitmap mapping [43]. Zhao et al. [39] used partitioning clustering (k-means) to filter large 

ARs discovered using the Apriori algorithm, and most uninteresting rules were removed. Therefore, 

domain experts can make a decision from a small set of rules. Lee et al. [40] presented a framework 

for mining point of interest (PoI) associations. Density-based DBSCAN was used to cluster PoI 

patterns from massive geo-tagged photos with tourist city backgrounds and to generate three kinds 

of PoI patterns: global level, local level, and categorization. PoI associations were then found using 

the Apriori algorithm. Zaki et al. [42] presented a new and efficient algorithm to discover ARs. The 

algorithm partitions itemsets into equivalence classes and constructs the equivalence class graph 

without comparing generated candidates with the Apriori algorithm. Based on the graph, maximal 

uniform hypergraph clique clustering was proposed to find potential frequent itemsets. Three lattice 

traversal schemes were used to search the final ‘true’ frequent itemsets. Han et al. [41] mapped a large 

number of generated ARs onto hypergraphs and partitioned the hypergraphs with the hMETIS [44] 

algorithm to find the most frequent itemset clusters. Differing from hypergraph mapping, Lent et al. 

[43] mapped the set of two-attribute ARs onto a two-dimensional space grid. The grid was converted 

to a monochrome bitmap represented by 0s and 1s. Employing bitwise operations, the paper utilized 

the BitOp algorithm to enumerate clusters and to filter the clusters until no clusters remained. 

If the association rule mining is divided into four stages, transaction data preparation, frequent 

item mining, rule generation, and rule filtering, the paper [40]and [42] belong to the second stage, the 

paper [41] and [43] are in the third stage, and the paper [39] is in the fourth stage. The DBSCAN 

algorithm used in this paper is in the first stage, and its purpose is to generate the transaction data 

needed for association rule mining. 

3. Methodology 

This section introduces our preliminary works, which form the theoretical basis of the following 

experiments. The following sub-sections are organized as follows: A novel frequent itemset 

algorithm, called FP-GCID, is introduced in Section 3.1. Section 3.2 introduces the mean-product of 

probabilities, which is used to rank rules. 

3.1. FP-GCID 

Only the qualitative relationship between two rules can be obtained by traditional frequent 

pattern growth algorithms. Therefore, achieving quantitation relations based on qualitative relations 

represents an interesting real-world problem. Thus, this is our motivation for improving the FP-

Growth algorithm. 

FP-GCID is a novel FP-Growth algorithm based on Cluster IDs, as shown in Figure 1. In the table 

on the left side of Figure 1, we insert a new column between column 2 and column 3, namely, ‘Cluster 

IDs’. This column stores the IDs of clusters. Moreover, we rebuild the FP-Tree, as shown in the tree 

on the right-hand side of Figure 1. The red brackets contain cluster IDs corresponding to the nodes.  

“Why do we insert cluster IDs into nodes or leafs?” To answer this question, we refer back to our 

initial motivation for writing this paper: We provide a quantitative description while mining 

qualitative ARs. Therefore, how to rank ARs is a key aspect of our research. Saving the cluster IDs 

greatly facilitates the subsequent mining steps, which will be detailed in Section 4. Experiment. 
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Figure 1. FP-GCID—novel FP-Growth algorithm based on Cluster IDs. 

3.2. Mean-Product of Probabilities (MPP) 

This section will present a ranking algorithm for the rule mean-product of probabilities (MPP) 

(the MPP is interpreted as averaging and multiplying probability values derived from the calculation 

of 𝑃
𝐑𝑘

𝑓 in Equation (3)). Three definitions are proposed to calculate the rule generated by frequent 

patterns. Definition 1 is a basic definition of the concept. Definition 2 is used to calculate the 

percentage of itemsets in all clusters. Definition 3 reveals how to calculate the rank values for ARs.  

Definition 1. We define 𝑨 = {𝑎1,𝑎2, ⋯ , 𝑎𝑛}  as an itemset vector and 𝑻 = {𝑡1,𝑡2, ⋯ , 𝑡𝑚}  as a transaction 

dataset in a database, where transaction 𝑡𝑗 is included in itemset 𝑨, 𝑡𝑗 ⊆ 𝑨. Define 𝑪 = {𝑐1,𝑐2, ⋯ , 𝑐𝑚} as a 

cluster vector, where cluster 𝑐𝑗 contains kinds of items expressed as 𝑐𝑗
′, and 𝑐𝑗

′ is a subset of 𝑨,𝑐𝑗
′ ⊆ 𝑨. Thus, 

we have 𝑐𝑗
′ ≡ 𝑡𝑗 (here, the meaning of 𝑐𝑗

′ equivalent to 𝑡𝑗 is that a collection of the types of all items in a 

cluster represents the transaction data, the process of equivalence will be show in Section 4.1). Let |𝑎𝑖| denote 

the count of item 𝑎𝑖, then, |𝑐𝑗| is the total of items in cluster 𝑐𝑗. 

Definition 2. Let 𝑷 = [𝑷𝑎1
, 𝑷𝑎2

, ⋯ , 𝑷𝑎𝑛
]

𝑻
  be a probability vector of the itemset, where 𝑷𝒂𝒊

=

[𝑝𝑎𝑖𝑐1
, 𝑝𝑎𝑖𝑐2

, ⋯ 𝑝𝑎𝑖𝑐𝑚
] is the 𝑖-th item’s probability of all clusters. We can obtain the probability of the 𝑖-th 

item of the 𝑗-th cluster as 

𝑝𝑎𝑖𝑐𝑗
=

|𝑎𝑖|𝑐𝑗

|𝑐𝑗|
, (1) 

where |𝑎𝑖|𝑐𝑗
 is the quantity of the 𝑖-th item in the 𝑗-th cluster, and |𝑐𝑗| is the quantity of the 𝑗-th cluster.  

Example 1. Figure 2 illustrates clusters that have three items, i.e., 𝑨 = {𝐼𝑡𝑒𝑚1, 𝐼𝑡𝑒𝑚2, 𝐼𝑡𝑒𝑚3}, 𝑎𝑛𝑑 𝑪 =

{𝑐1} . We choose the cluster 𝑐1  as an example. The number of each item is {|𝐼𝑡𝑒𝑚1|, |𝐼𝑡𝑒𝑚2|, |𝐼𝑡𝑒𝑚3| =

{3,4,4} , and the total items in cluter 𝑐1  is |𝑐1| = 11 . Then, according to formula 1, we can obtain the 

probabilities of items in  𝐶𝑙𝑢𝑠𝑡𝑒𝑟1: 𝑷𝐶1
= [

3

11
,

4

11
,

4

11
]

𝑇

. 

According to Example 1, we can describe Definition 2 as computing the proportion of one item 

in one cluster. 

Definition 3. 𝑹: {𝑹1, 𝑹2, ⋯ , 𝑹ℎ} is the vector of ARs, 𝑹𝑘 is the 𝑘-th rule and is combined with 𝑹𝑘
𝑓, 𝑹𝑘

𝑏  

and 𝑪𝑘
′ , where 𝑘 ∈ [1, ⋯ , ℎ], 𝑹𝑘

𝑓
⊂ 𝑨, 𝑹𝑘

𝑏 ⊂ 𝑨, 𝑹𝑘
𝑓

∩ 𝑹𝑘
𝑏 = ∅, 𝑹𝑘

𝑓 is the antecedent, 𝑹𝑘
𝑏  is the consequent, 

and 𝑪𝑘
′  belongs to 𝑪. The corresponding details are as follows: 
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{

𝐑𝑘
𝑓

= {𝑎𝑠1
, ⋯ , 𝑎𝑠𝑞

} , ∀𝑠𝑞 ∈ [1, ⋯ , 𝑛]

𝐑𝑘
𝑏 = {𝑎𝑡}, ∀𝑡 ∈ [1, ⋯ , 𝑛]

𝐂𝑘
′ = {𝑐𝑤1

, ⋯ , 𝑐𝑤𝑢
}, ∀𝑤𝑢  ∈ [1, ⋯ , 𝑚]

, where  𝑠𝑞 ≠ 𝑡. (2) 

Notice that there is only one item in consequent  R𝑘
𝑏 . This will be explained in the experimental 

section. 𝐕𝐑 = [𝑉𝐑1
, … , 𝑉𝐑ℎ

] represents the rank values of ARs, and the value of the 𝑘-th rule is  

𝑉𝐑𝑘
=

𝑃
𝐑

𝑘
𝑓

𝑃
𝐑𝑘

𝑏
=

∏
1

𝑣𝑘
∑ 𝑝𝑎𝑖𝑐𝑗

𝑤𝑢
𝑗=𝑤1

𝑠𝑞
𝑖=𝑠1

1

𝑣𝑘
𝑝𝑎𝑡𝑐𝑗

, ∀𝑘 ∈ [1, ⋯ , ℎ] (3) 

where  v𝑘 = 𝑐𝑜𝑢𝑛𝑡(𝐂𝐤
′ ), 𝑃

𝐑𝑘
𝑓   is the probability of the antecedent, and  𝑃

𝐑𝑘
𝑏   is the probability of the 

consequent. 

Example 2. Let us assume that there exists a rule  𝑹1 , or  𝑹1
𝑓

⇒ 𝑹1
𝑏 , where  𝑹1

𝑓
= {𝐼𝑡𝑒𝑚1, 𝐼𝑡𝑒𝑚2} , and 

 𝑹1
𝑏 = {𝐼𝑡𝑒𝑚3}; here, 𝐼𝑡𝑒𝑚1, 𝐼𝑡𝑒𝑚2, 𝐼𝑡𝑒𝑚3 are also represented by  𝑎1, 𝑎2, 𝑎3, respectively. We can obtain the 

following: 

• For the count for 𝑪𝒌
′ , there is only one cluster; therefore, 𝑣1 = 1; 

• For the probability of the antecedent, 𝑃
𝑹1

𝑓 =
1

𝑣1
𝑝𝑎1𝑐1

×
1

𝑣1
𝑝𝑎2𝑐1

=
3

11
×

4

11
; 

• For the probability of the consequent,  𝑃𝑹1
𝑏 =

1

𝑣1
𝑝𝑎3𝑐1

=
4

11
; 

• For the rank value of the first rule, 𝑉𝑹1
=

𝑃
𝑹1

𝑓

 𝑃
𝑹1

𝑏
=

3

11
×

4

11
4

11

=
3

11
. 

According to Example 2, we can describe Definition 3. as computing the quantitative order of ARs. 

 

Figure 2. Illustration of clusters. 

4. Experiment and Analysis 

All our experiments were implemented on a Lenovo IdeaPad Y400 (Intel Core i7-3630QM 2.4 

GHz, 8 GB RAM) made by Lenovo Group in Beijing, China, with Windows 8 China Home Edition, 

Matlab 2012b (64bit) and ArcGIS 10.2 installed. 

The experiment is divided into three phases (Figure 3). The first phase is used to generate the 

transactional dataset, which forms the basis for the experiment. This phase includes two sub-phases: 

preprocessing and spatial clustering. ARs are generated in the second phase by the FP-GCID 

algorithm, which is an improved version of the FP-Growth algorithm. Minimum confidence is used 

to filter uninteresting rules. The third phase is used to measure interestingness rules via the MPP 

approach.  
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Figure 3. Experimental procedure. MPP: Mean-Product of Probabilities; DBSCAN: Density-Based 

Scanning Algorithm with Noise. 

4.1. Generating Transactional Datasets with DBSCAN 

4.1.1. Data Preparation 

The experimental object is the urban shops in Luoyang, China. All the data were provided by 

the Urban Planning Bureau of Luoyang. There are eight types of items, as shown in  

Table 1: Catering, Bank, Entertainment, Store, Educational Institution, Hotel, Government, and 

Medical Institution. In addition, there are over ten thousand shops.  

Figure 4 shows all the data objects for Luoyang City. 

 

Figure 4. The data objects of Luoyang. 
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Table 1. Items of urban shops in Luoyang City. 

Item ID Item Name Quantities 

1 Catering 8094 

2 Bank 1014 

3 Entertainment 4299 

4 Store 17,888 

5 Educational Institution 784 

6 Hotel 786 

7 Government 469 

8 Medical Institution 1332 

sum All 34,666 

4.1.2. Spatial Clustering with DBSCAN 

If we want to mine frequent patterns, a large number of itemsets should be used. The purpose 

of this section is to generate the itemsets in preparation for the latter section and phases. 

As stated above, the target data contain coordinate information. Therefore, we can use the spatial 

similarity of data points to generate the clusters. Each cluster contains many data points, which 

belong to different items. In addition, the items in one cluster are regarded as one item of transaction 

data; therefore, the number of clusters is the number of transactional data sets. 

Our data sets concern urban shops; position information depends on, for example, road 

distributions and building structures. In other words, the distribution of urban shops is arbitrary; 

therefore, we can take full advantage of this characteristic of rural data and adopt the DBSCAN 

algorithm to construct the transactional data sets. 

We conducted the experiments with different input parameters. The results are listed in Table 2, 

which lists the quantities of clusters generated by the DBSCAN algorithm. Figure 5 provides a direct 

representation of the varieties of the clustering as a function of 𝜖 -radius and 𝜇 -density. Two 

tendencies can be seen in Table 2 and Figure 5:  

• Fixing 𝜖-radius, the quantity of clusters decreases with increasing density;  

• Fixing 𝜇-density, the quantity of clusters is represented as a single wave shape with increasing 

radius. 

Table 2. DBSCAN clustering. 

    𝝁 

𝝐 (m) 
10 20 30 40 50 60 70 80 90 100 110 120 

10 3 0 0 0 0 0 0 0 0 0 0 0 

20 248 6 0 0 0 0 0 0 0 0 0 0 

30 618 66 6 1 0 0 0 0 0 0 0 0 

40 610 167 51 8 2 0 0 0 0 0 0 0 

50 495 269 92 39 10 4 2 0 0 0 0 0 

60 356 283 155 68 33 12 5 3 1 0 0 0 

70 272 253 171 106 46 26 12 9 4 2 1 1 

80 214 205 182 125 70 33 20 14 9 6 3 3 

90 182 161 168 134 89 49 28 19 14 11 6 3 

100 150 132 147 130 104 70 32 24 19 15 11 6 

110 128 121 119 130 108 82 58 32 23 17 14 13 

120 113 102 90 106 93 88 66 45 29 21 16 16 
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Figure 5. The clustering as a function of 𝜖-radius and 𝜇-density 

Figure 6 shows the 32 clusters clustered using the DBSCAN algorithm with two parameters: 𝜖 =

110 and  𝜇 = 80. Figure 6a provides a global overview of the 32 clusters, and Figure 6b shows the 

details of the area bounded in red in Figure 6a. 

  
(a) (b) 

Figure 6. Spatial Data Clustering. (a) Clusters (radius = 110, density = 80); (b) Detailed view of area in 

red in the left panel. 

4.1.3. Conversion to Transactional Data 

Definition 1 tells us that the collection of the types of all items in a cluster represents one 

transaction, and one item id contained by the cluster represents one item; therefore, based on the 

above clustering results, we know that 32 clusters showed in Table3 were generated, which means 

that data on 32 transactions were generated.  

Table 3. Transactional data. 

Trans. ID List of Item’s ID Trans. ID List of Item’s ID 

1 1,3,4,5,7,8 17 1,2,3,4,5,6,7,8 

2 1,2,3,4,5,6,7,8 18 1,3,4,5,6,8 

3 1,3,4,5,6,8 19 1,2,3,4,5,6,7,8 

4 1,3,4,5,6 20 1,3,4,6,7,8 

5 1,2,3,4,6 21 1,2,3,4,5,7,8 

6 1,2,3,4,5,6,8 22 1,2,3,4,5,6,8 
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7 1,3,4,7 23 1,2,3,4,5,6,7,8 

8 1,2,3,4,8 24 1,2,3,4,5,6,7,8 

9 1,2,3,4,5,6,8 25 1,2,3,4,6,7 

10 1,3,4,5,6,8 26 1,2,3,4,5,6,7,8 

11 1,2,3,4,6,8 27 1,2,3,4,5,6,7,8 

12 1,2,3,4,7 28 1,2,3,4,5,6,7,8 

13 1,3,4,6,8 29 1,2,3,4,5,6,8 

14 1,2,3,4,5,6,8 30 1,2,3,4,6,8 

15 1,2,3,4,6,8 31 1,2,3,4,5,6,7,8 

16 1,2,3,4,5,6,8 32 1,2,3,4,6,8 

4.2. Generating Association Rules with FP-GCID 

4.2.1. Generating Frequent Itemsets 

After clustering via the DBSCAN algorithm, we obtain 32 transactional data items, which is our 

starting point for subsequent mining tasks. Mining frequent itemsets is the second phase of our 

experiment. This phase can provide different results using the FP-Growth algorithm because of the 

inserted cluster IDs. To provide a clear description of this phase, we partition it into three steps, and 

every step should consider the influence of the inserted cluster IDs. 

Step 1: Constructing CFP-Tree (Conditional Frequent Pattern Tree). We modify the traditional 

FP-Growth algorithm as in Figure 7. The nodes contain items (inside the circle). Each node contains 

the number of this item and the cluster IDs, shown to the right of the nodes. For example, the first 

node behind the root node represents item 1, and there are 32 transactional data items containing 

item 1. Specifically, every transactional data item includes item 1. Additionally, the node contains 32 

cluster IDs, corresponding to 32 transactional data items. The other nodes are identical. 

1
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Figure 7. Constructing the CFP-Tree. 

Step 2: Combining the repeated frequent itemsets. Note that the combining step is also different 

than that in the FP-Growth algorithm; this step will determine the quality and accuracy of the 

frequent itemset mining process. Figure 8 provides a sketch of the combination process. Let us 

suppose that itemset X = {2, 5, 7} is frequent and that there are two frequent itemsets in the CFP-Tree. 

Therefore, we should combine these repeated itemsets. Taking the second itemset (dotted oval 

denoted as red 2) as an example, the contained cluster IDs are {12, 25} and {12}, with {12} 
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corresponding to itemset X. We choose item 7’s cluster IDs {12} as the itemset’s cluster IDs as a result 

of it being the largest minimum number of cluster IDs in this itemset. In other words, we select the 

bottom item’s cluster IDs in the CFP-Tree as its itemset’s cluster IDs. After this choosing operation, 

we combine these three itemsets with some complex operations, such as adding the count of the 

itemsets together, adding the cluster IDs of the itemsets together, and deleting the same cluster IDs 

in the last itemset.  

1{}
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Figure 8. Combining the repeated frequent itemsets. 

According to the quantity of transactional data items and the CFP-Tree, we set the minimum 

support as equal to 15 so that more than 50 percent of the frequent itemsets can be filtered out. 

Step 3: Checking the frequent itemsets. 

“How do we ensure the quality of the combination?” The checking step is used to ensure the quality 

of the combinations. Following Step 2, after combining three itemsets, we obtain the terminal itemset 

{2, 5, 7}, with 10 cluster IDs: {2, 17, 19, 21, 23, 24, 26, 27, 28, 31}. Based on the cluster IDs, we can find 

the corresponding clusters and verify if they contain this itemset. Table 4 lists the IDs of the items 

contained in these clusters. 

Table 4. List of item IDs contained in the clusters. 

Cluster IDs List of Item IDs 

2 1,2,3,4,5,6,7,8 

17 1,2,3,4,5,6,7,8 

19 1,2,3,4,5,6,7,8 

21 1,2,3,4,5,7,8 

23 1,2,3,4,5,6,7,8 

24 1,2,3,4,5,6,7,8 

26 1,2,3,4,5,6,7,8 

27 1,2,3,4,5,6,7,8 

28 1,2,3,4,5,6,7,8 

31 1,2,3,4,5,6,7,8 
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4.2.2. Association Rule Filtering 

The objective of filtering is to remove redundant ARs, which we do not want. The filtering 

process can be divided into two steps: 

• Confidence filtering: Because of the excessive number of frequent itemsets, we choose the 

maximum possible minimum confidence (0.99), that is, only rules with a confidence of greater 

than 0.99 will be reserved. When no confidence settings are used, there are 1960 ARs. After 

minimum confidence filtering, there are 360 association rules reserved, occupying only 18.4%. 

• Type filtering: There are three types of rules: One-to-Multi, Multi-to-Multi, and Multi-to-One. 

However, only Multi-to-One is of interest because of its real meaning. After type filtering, only 

193 ARs have been reserved. 

4.3. Finding Interesting Rules with MPP 

The ARs were generated in the previous two sections; they will be ranked in this section using 

the MPP algorithms. Ranking is the main difference between our algorithm and other AR mining 

algorithms. 

After AR filtering, only 193 rules are reserved. According to Definition 3.3, we cannot rank all 

the ARs at one time with a single law. Therefore, two laws must be defined before the ranking rules 

are used: 

• The quantities of the antecedent must be the same: According to the numerator of Equation (3), 

the probability of the antecedent 𝑃
𝐑𝑘

𝑓   monotonically decreases with the quantity of the 

antecedent  𝑠𝑞. Therefore, if we want to compare two rules, they must have the same quantities. 

• The consequent must be the same: Noting the denominator of Equation (3), the probability of 

the consequent  𝑃
𝐑𝑘

𝑏  will make Equation (3) monotonically decrease. Therefore, if we want to 

compare two rules, they must have the same consequent. 

According to the above two laws, we rank the rules with fixed quantities of the antecedent and 

fixed consequents. Here, we fix the consequent as 1 and the quantity of the antecedent as 2. The 

results of the rule ranking are shown in Table 5. From Table 5, we find that the probability of the rule 

‘2,3-1’ receives the top ranking, and the disparities between the first rule and the other rules are quite 

obvious. 

Table 5. Rule ranking with two antecedent and fixed consequents of 1. 

Ranking Rules Probability Ranking Rules Probability 

1 ‘2,3-1’ 0.509 9 ‘6,4-1’ 0.007 

2 ‘2,4-1’ 0.148 10 ‘8,3-1’ 0.007 

3 ‘2,6-1’ 0.114 11 ‘5,6-1’ 0.006 

4 ‘5,2-1’ 0.096 12 ‘5,4-1’ 0.006 

5 ‘2,8-1’ 0.037 13 ‘7,4-1’ 0.004 

6 ‘6,3-1’ 0.026 14 ‘8,4-1’ 0.002 

7 ‘5,3-1’ 0.019 15 ‘8,6-1’ 0.002 

8 ‘7,3-1’ 0.015 16 ‘5,8-1’ 0.001 

Similar to Table 5, we can find all the best rules corresponding to different quantities of the 

antecedent with a fixed consequent of 1. Note that the first four rules constitute 77.1 percent of the 

total probability in Table 5; thus, the other rules can be ignored. Additionally, to provide a better 

representation, we combine rules that have rank values of less than 0.09, as shown in Figure 9. 
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Figure 9. Fixing the consequent as 1. 

Taking 𝑛 = 2 (‘n’ represents the number of the antecedent in an association rule) (top-left part 

of Figure 9) as an example, the first four rules are listed in the legend, and the rule  {2,3} ⇒ 1 

constitutes the largest proportion of rule type { 𝑎1, 𝑎2} ⇒ 1 , where  𝑎1, 𝑎2 ∈ {2,3,4,5,6,7,8} . 

Specifically, {𝐵𝑎𝑛𝑘, 𝐸𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡} ⇒ 𝐶𝑎𝑡𝑒𝑟𝑖𝑛𝑔  is the most important rule in 𝑛 = 2  with the 

consequent equaling 1. This indicates that one should be more considerate of nearby banks and 

entertainment when deploying a restaurant at a point of interest. In addition, following the change 

of  𝑛 , {2,3} ⇒ 1 {2,3,4} ⇒ 1 ,  {2,3,4,6} ⇒ 1.  and  {5,3,4,6,2} ⇒ 1  are our best rules with a fixed 

consequent of 1. 

Figure 10 provides another perspective of rules with fixed antecedent quantities. Here, we can 

determine the most effective rule with the corresponding consequent or determine which items have 

the closest relation when we choose the point of interest. 

 

Figure 10. The quantity of the antecedent fixed as 3. 

Sometimes, we not only determine the most useful rule but also obtain greater interestingness 

in the proportion between items in the rule. That is, we discuss the second meaning of quantitation. 

We take {2,3} ⇒ 1 as an example, as previously mentioned. According to Equation (3), the mean 

probability of items of this rule is  {0.5395,0.1025} ⇒ 0.2663 . After normalization, this can be 
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expressed as  {5.3,1} ⇒ 2.7. Specifically, if we have 5.3 banks and 1 entertainment establishments, 

there would be approximately 2.7 catering establishments nearby. Note that the number of items 

cannot actually be a decimal. Figure 11 shows the distribution for the rule  {2,3} ⇒ 1. 

 

Figure 11. The distribution for the rule {2,3} ⇒ 1. 

5. Conclusions 

Traditional mining methods for association rules, such as Apriori and FP-Growth, produce a 

large number of alternative rules, and even if we use a variety of constraint methods, some rules still 

need to wait for domain experts to make a choice. However, in many cases, we need to get the rules 

quickly and avoid human intervention. One way to solve this problem is to use the MPP method 

presented in this paper to rank all the rules, with the top rule as the desired result. These rules are 

generated using an improved FP-Growth algorithm, FP-GCID, which not only has the information 

of the antecedent and the consequent, but also contains the cluster information of each transaction 

item in the rule. The transaction data is mapped by the clustering result: we first use the DBSCAN 

algorithm to cluster the Luoyang shop data, then treat the type of the store contained in each cluster 

as a transaction data. It should be pointed out that this paper uses the DBSCAN algorithm only to 

map transaction data, which is different from other clustering methods for mining association rules. 

This paper has solved a substantial challenge of data mining, namely, mining ARs; however, the 

final purpose of data mining is to provide knowledge and advice for decision makers. Our AR mining 

results will be used in association with urbanization, which remains the main tendency of city 

development in China. Expansion and reform are the only methods of achieving urbanization. 

However, a plan designed by the Urban Planning Bureau for expansion and reform must be provided. 

Therefore, in the future, our work will attempt to assist planners in developing urban plans. 
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