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Abstract: The spatial structures of cities have changed dramatically with rapid socio-economic
development in ways that are not well understood. To support urban structural analysis and
rational planning, we propose a framework to identify urban functional regions and quantitatively
explore the intensity of the interactions between them, thus increasing the understanding of urban
structures. A method for the identification of functional regions via spatial semantics is proposed,
which involves two steps: (1) the study area is classified into three types of functional regions using
taxi origin/destination (O/D) flows; and (2) the spatial semantics for the three types of functional
regions are demonstrated based on point-of-interest (POI) categories. To validate the existence of
urban functional regions, we explored the intensity of interactions quantitatively between them.
A case study using POI data and taxi trajectory data from Beijing validates the proposed framework.
The results show that the proposed framework can be used to identify urban functional regions and
promotes an enhanced understanding of urban structures.
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1. Introduction

Urban functional regions are closely related to the travel patterns of urban residents [1].
In China, urbanization is occurring at an unprecedented rate, which is similar to the majority of
the developing world. Internal urban spaces are gradually forming functional regions, such as
commercial districts, residential districts and industrial districts. Furthermore, identifying functional
regions and understanding their spatial interactions are fundamental for formulating scientific
urban planning and governmental management [2–4]. In urban studies, spatial interaction can
be represented by the connections between two functional regions and can be quantified using
flows of goods, people or capital. In general, accurate identification of the spatial distribution of
functional regions is a prerequisite for the analysis of interactions between functional regions. The
traditional way of identifying functional regions relies on urban land use maps or resident trip
information collected through travel surveys [1,5]. As a result, accuracy is limited by subjective
factors [6]. For example, Kwan [7] implemented a space-time prism concept in GIS to measure
individual accessibility using household travel survey data. Although these traditional travel survey
data have contributed significantly to classical urban structure studies, they are labor-intensive, time
consuming and error-prone, thus limiting the usefulness of related studies [8].

With the rapid development of location-aware devices, voluminous human mobility data, such
as taxi GPS trajectory data, are becoming readily available. Taxi trajectory data have been used to
understand urban structures and human movements, contributing to the body of research on the social
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functions of urban regions [9–12]. In terms of the identification of functional regions, Qi et al. [11]
established a relationship between taxi GPS data and the social function of regions after a qualitative
analysis. In recent years, spatial interaction patterns between functional regions have been examined
and analyzed. The quantity of taxi flows can be used to represent the interaction intensities between
functional regions [13]. Taking O/D flows (Origin/Destination pairs) into consideration, recent work
has incorporated both spatial structures and spatial interactions. A notable work was conducted by
Liu [4], which incorporated spatial interaction patterns into land use using an unsupervised method
and improved the land use classification. However, although taxi trajectory studies have made great
improvements over traditional methods for the identification of urban functional regions [14], the
lack of spatial semantics for the identification of functional regions and quantitative analysis of their
interactions has created a bottleneck for improvements in the accuracy of identifying functional regions.

In this paper, we present a framework to identify urban functional regions by incorporating
spatial semantics and interactions. The main contributions of this study include two aspects. First, a
method for the identification of functional regions is proposed, in which taxi O/D flows and POI data
are integrated and used for inferences related to spatial semantics. Second, the interaction intensities
between functional regions are explored quantitatively to reveal the underlying associations between
human activity and urban structure. The results show that the proposed framework can be used to
identify urban functional regions and promotes an enhanced understanding of urban structures.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces the method for identifying functional regions. Section 4 presents a case study to explore the
spatial distribution and interactions of functional regions. In Section 5, the paper concludes with a
brief summary and a discussion of limitations.

2. Related Work

In recent studies, urban structures have been examined using spatial interactions, which refer to
the link between two functional regions and can be quantified based on taxi O/D flows. Taxi O/D flows
contain geographical and temporal components and encode information about urban movements.
Thus, a trip is associated with O/D locations and times. Taxi O/D flows between functional regions,
such as business districts and residential areas, have been used to measure the interaction intensities
between functional regions within a city [4]. Due to the complexity of spatial interactions, studies
have been conducted on effectively visualizing spatial interactions between functional regions and
illustrating meaningful sub-regions [15,16]. Zhong et al. [17] explored network science methods
to identify the spatial structure of city hubs, centers and borders, which were key elements in
understanding the interactions between urban functional regions. In other studies, community
detection methods [18], such as non-negative matrix factorization (NMF), were widely adopted to
describe urban functional regions according to interaction intensities. NMF has been extensively used
in data mining to extract constructive representations over a set of extracted travel components from the
non-negative matrix [19,20]. For example, Mahrsi et al. [21] proposed an approach that used NMF to
aggregate individual trip chains into weekly passenger profiles, each containing the number of trips a
given passenger made over 1-h periods for each day of the week. By employing NMF and optimization
methods, Peng et al. [12] found that travel flows can be approximated by a linear combination of three
travel patterns. However, to the best of our knowledge, the quantitative analysis of spatial interactions
between functional regions have been rarely explored by the aforementioned studies.

In the era of Web 2.0, increasing amounts of data on point-of-interest (POI) are becoming available
online. The different types of POI can be located in urban functional regions to support human
activities. POI data provide information about urban functional zones, which is based on human
cognition with spatial, temporal and semantic granularity [22–25]. POI data often describe the physical
location and attribute information of places, such as residential buildings, leisure parks, commercial
points and public services. For instance, Long and Shen [26] established the Discovering Zones
of different Functions (DZoF) model based on smart card data (SCD) and used POIs to identify
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different functional zones and understand their spatial structures. Researchers were also interested
in discovering the spatial semantic characteristics of POI categories for identification of functional
regions. Yuan et al. [2] implemented a topic-based model with large functional blocks to reveal urban
functional regions in Beijing based on taxi trajectory and POI data. Hobel et al. [27] implemented a
semantic region growing algorithm based on the density of POIs to extract places, such as well-known
shopping areas. In their model, the shopping areas were identified and compared for similarity using
four features, including the number of restaurants, shops, banks and ATMs as well as tourist facilities.
In another study, McKenzie et al. [28] constructed thematic signatures for POI data through a topic
model, which revealed that these types of places vary regionally. Their findings showed that the
resolution of the thematic topics had an influence on the differentiation of place types. However, only a
few studies have investigated POI data as the judgment of urban functional regions with consideration
of spatial interaction.

In summary, POI data and taxi trajectory data can be applied in evaluating and analyzing
urban functional regions from the perspective of urban planning. The spatial distribution and
geographic knowledge of POI categories can be employed as spatial semantics to annotate functional
regions [24,29]. However, few studies have simultaneously considered both spatial semantics and
spatial interactions to identify urban functional regions. Moreover, spatial interactions should be
processed quantitatively to improve the identification of urban functional regions. In this study,
we present a framework to identify urban functional regions by incorporating spatial semantics
and interactions.

3. Methodology

The flowchart of the proposed framework is illustrated in Figure 1. The purpose of our study is
to use spatial semantics and interactions to identify functional regions based on POI data and taxi
trajectory data. In this study, we apply two steps to identify urban functional areas. First, a method
for the identification of functional regions via spatial semantics is proposed based on POI data and
taxi trajectory data. Second, to further reveal the urban functional regions from the perspective of
connections, we quantitatively explore the interaction intensity between functional regions using
spatiotemporal analysis.

Figure 1. Flowchart of the proposed framework.

3.1. Identification of Functional Regions

As shown in Figure 1, the functional regions identification method proceeded in two stages: (1)
the grids of the study area were classified to three types based on taxi O/D flows; and (2) the urban
functional regions, which consist of the grids, were identified by annotating their semantic functions
using POI categories.
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3.1.1. Inferring Types of Urban Functions

In general, people take taxis from the same location at different times with possibly different
purposes. We calculated the travel O/D flows based on passenger boarding information directly from
the taxi trajectory data. By constructing the O/D matrix, the grids of the study area were classified to
three types using NMF to indicate urban functional regions correlated with O/D flows.

Traditionally, 500 m or a walking time of less than 6 min is used in the travel activity of people [30].
As a result, a 1 × 1 km2 grid is adopted as the basic functional region unit. We selected a M ×M km2

region as the study area, with the area then discretized into M2 1 × 1 km2 grids. Travel flows are
extracted from the massive taxi trajectory data, with each trip simplified as a vector:

(xo, yo, to)→ (xd, yd, td), (1)

where x and y denote the location coordinates; to is the time of a pick-up event; and td is the time of a
drop-off event. Each trip is represented by an O/D flow. The total of N of O/D flows extracted from
the raw data is as follows:

So = {(x1, y1, to), (x2, y2, to), ..., (xN , yN , to)}, (2)

Sd = {(x1, y1, td), (x2, y2, td), ..., (xN , yN , td)}, (3)

where So is the origin point set and Sd is the destination point set, with one-to-one correspondence
between So and Sd. These O/D flows provide information about mobility and urban dynamics, which
forms a representative sample of intra-urban movement.

Subsequently, we defined (i, j) to index all the grids in the ith row and jth column, where
i = 1, . . . , M and j = 1, . . . , M. For the grid (i, j), the numbers of O/D points for every one-hour interval
of a day can be represented by a 1 × 24 vector Vij. We can define a set of 1 × 24 vectors containing
a normalized number of O/D points along time as H1, H2, H3, . . . , Hk, which represents one type
of urban function. For example, vector V11 represents the O/D points in grid (1, 1) and we obtain
the following:

V11 = W11


H1

H2

...
Hk

, (4)

where W11 is a row vector containing K coefficients for the linear combination. Taking all of the grids
into account, the patterns can be written as:

Vij = WijHk. (5)

Since the elements of V represent the number of O/D points, all the entries of W and H must be
non-negative. When K is determined, the NMF will identify the statistically significant regularities in
the data [12]. Based on the taxi O/D matrix, we can ascertain K types of urban functions for all the
grids, which indicates the urban functional regions that are correlated with the taxi O/D flows.

3.1.2. Spatial Semantics of Functional Regions

Previous researches indicated that POI data can be effectively applied to illustrate functional
regions [28]. We allocated the POI points of each category into grids, before aggregating the number of
POI points for the spatial semantics of functional regions.

Assuming that all of the POI categories are known and given by C1, C2, C3, . . . , CN, we can
calculate the point density of each category of POI for all M2 grids. For example, in Figure 2, H1,
H2 and H3 represent the three types of functional regions in the study area, while CW, CR, and CL

represent three POI categories: 19 Workspace POI, 17 Residence POI and 10 Leisure POI. Each grid is
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designated as a type of urban function, which results in five grids in H1, two grids in H2 and two grids
in H3. After this, we calculated the point density of the POI categories of CW, CR and CL for the H1,
H2 and H3.

Figure 2. Illustration of POI semantics for functional regions.

Taking POI CW as an example, the point densities of POI CW for the H1, H2 and H3 are 2.8
(14 points/5 km2), 1.0 (2 points/2 km2) and 1.5 (3 points/2 km2), respectively. This result indicates
that POI CW dominates H1. Thus, the spatial semantic for H1 is the workspace. In the same way, the
spatial semantics for H2 and H3 are residence and leisure, respectively (Table 1).

Table 1. POI point density for functional regions (points/km2).

POI Categories H1 H2 H3

CW 2.8 1.0 1.5
CR 1.0 5.0 1.0
CL 0.4 0.0 4.0

3.2. Interactions of Functional Regions

The distribution of functional regions within a city is not spatially independent. For instance,
a business region is usually located around a large residential region in order to meet people’s daily
needs [9]. People usually travel to business regions in the morning from their home. Thus, it is
reasonable to claim that the interaction dynamics between functional regions are different, with these
interactions able to reveal the urban functional regions from the perspective of connections. Based on
the identification of functional regions by spatial semantics, we explored the interaction intensities of
functional regions via spatiotemporal analysis using taxi O/D flows. The process involves two steps:

1. Temporal distribution of O/D flows in functional regions. After extracting the O/D points from
the taxi trajectory data, for each 1 × 1 km2 grid Gij, we introduce inpoint_Gij and outpoint_Gij to
represent the total amount of O/D points allocated to the grid Gij during a day:

inpoint_Gij =
(

IG
1 , IG

2 , IG
3 , ..., IG

24

)
, (6)

outpoint_Gij =
(

OG
1 , OG

2 , OG
3 , ..., OG

24

)
. (7)

As shown in Equations (6) and (7), inpoint_Gij and outpoint_Gij refer to the volume of O/D
points in each grid Gij during a particular time interval t (for example, i = 1 denotes a one-hour
interval of a day).
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2. Quantitative analysis of the interactions between functional regions. Figure 3 shows an illustration
of the interactions between functional regions based on taxi O/D flows. The direction of the arrow
indicates people’s different destinations. The length of the line indicates the distance between
the functional regions, while the line thickness suggests the number of O/D flows between two
functional regions.

Figure 3. Illustration of interactions between functional regions based on taxi O/D flows in a particular
time period.

We assumed that there are three functional regions: a residence region, a workplace region and a
leisure region. According to Equations (6) and (7), we can acquire O/D flows of these three regions:
inpoint_GR/outpoint_GR, inpoint_Gw/outpoint_Gw and inpoint_GL/outpoint_GL. For example,
when people take taxis in the residence region in a particular time period (e.g., t = 12), they have three
destinations to choose. In general, closer regions have stronger interactions [31]. As shown in Figure 3,
40% of people’s destinations are the workplace regions. A total of 25% of people travel to the leisure
region, while the rest travel within the residence region. As a result, the interaction intensities between
functional regions can be represented by taxi O/D flows.

4. Case Study

4.1. Data Description

4.1.1. Overview of Study Area

Taking Beijing as an example, we selected a 30 × 30 km2 rectangular region based on the urban
region of Beijing inside the 5th Ring Road. The study area was discretized into 725 1 × 1 km2 grids
(the other 175 grids, which are located outside the 5th Ring Road, were excluded) as the basic unit.

4.1.2. Taxi Trajectory Data

The taxi trajectory data included the ID, time, longitude, latitude, altitude, direction, speed and
other information, including the passenger boarding information. This research used a massive dataset
of approximately 4000 taxis tracked for thirty consecutive days (from 1 November to 30 November
2012) in Beijing, China. The raw taxi trajectory data recorded each taxi’s information at approximately
every 10 s with a positional accuracy of about ±10 m. We cleaned all of the trajectory data by removing
invalid points, which were due to data recording or transfer errors.

The passenger boarding information from the raw taxi trajectory data was coded as 0 and 1
that represented empty and occupied, respectively. We identified the locations where passengers
were picked up (origin) and dropped off (destination) by state transitions from 0 to 1 and from 1 to
0, forming a completed trip. Figure 4 demonstrated the spatial distribution of pick-up and drop-off
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points for all taxis over thirty days in the study area, where the trips by taxis were concentrated in the
urban region inside the 4th Ring Road of Beijing.

Figure 4. Spatial distribution of O/D points for all the taxis over thirty days in the study area of Beijing.

4.1.3. POI Data

The POI data used in this paper were obtained from the Gaode Map (http://www.gaode.com)
from 2012, which is one of the most popular online map service providers in China. Using coordinate
correction and address matching, we collected a total of 1,065,421 POIs in Beijing, with 641,984 POIs
falling within the study area. The POI data included the coordinates, address, tag, category and
administrative region.

The raw POI classifications included nineteen categories, which were confused and redundant.
According to the “Code for Urban Land Use Classes and Standards of Planning Construction
Land” [32], we reduced the raw POI data into six categories: residence; administrative and public
services; commercial facilities; industrial locations; roads and transportation; and green space and
squares. These new POI data categories were summarized in Table 2.

Table 2. Categories of POIs.

ID 1st Level Category 2nd Level Category

1 Residence Serviced apartment, Residential area, Villa, etc.

2 Administration and
public service

Culture & Education service, Talent market, Governmental
agency, Social organization, Sports & Leisure, Medical
insurance, Community facility, etc.

3 Commercial facilities
Catering service, Shopping service, Financial insurance,
Car service, Domestic service, Accommodation service,
Corporation, Logistics service, etc.

http://www.gaode.com
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Table 2. Cont.

ID 1st Level Category 2nd Level Category

4 Industrial Factory, Metallurgical enterprise, Mining company,
Industrial park, etc.

5 Road and transportation Road ancillary facility, Address information,
Transportation service, etc.

6 Green space and square Scenic spot, Park plaza, etc.

4.2. Identification Of Functional Regions

In this section, we applied the functional regions identification method to obtain the spatial
distribution of urban functional regions using spatial semantics based on taxi trajectory data and
POI data. According to the “Beijing main functional area planning” (See http://zhengwu.beijing.gov.
cn/ghxx/qtgh/t1240927.htm), the main urban functions of the study area included the following:
residential areas, science and education areas, commercial areas, financial areas, etc.

Taxi O/D flows interact with urban functional regions, which can reflect the urban structures [33].
For example, Gong et al. [9] revealed that taxi trip purposes are closely associated with various urban
functional regions: business and commercial areas, residential areas and transportation. According
to our methodology, the taxi O/D flows can be expressed as K travel patterns in terms of the time
series based on the NMF method. Therefore, the final step is to determine K, which is the number of
the urban functions. According to Lee’s algorithm [34], NMF begins with random initial conditions.
In our experiments, we found that when K = 2, the study area cannot be divided into functional
regions. When K > 3, the parts of divisions were too fragmented. When K = 3, the results were more
stable and the divisions of regions were approximately consistent with the actual distribution of urban
functional regions.

When K = 3 in Equation (5), we ascertained the three types of functional regions. As shown in
Figure 5, there were 370 (51%) H1 grids, 23 (3%) H2 grids and 332 (46%) H3 grids. The point densities
for different POI categories are shown in Table 3.

Figure 5. Spatial distribution for three types of functional regions. Using NMF, the 725 1 × 1 km2 grids
were classified into 370 H1 grids, 23 H2 grids and 332 H3 grids.

http://zhengwu.beijing.gov.cn/ghxx/qtgh/t1240927.htm
http://zhengwu.beijing.gov.cn/ghxx/qtgh/t1240927.htm
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Table 3. POI point density for H1, H2 and H3 (points/km2).

ID POI Categories H1 H2 H3

1 Residence 165 (41.4%) 56 (14%) 180 (44.9%)
2 Administration and public service 116 (53.2%) 27 (12.4%) 75 (33.4%)
3 Commercial facilities 421 (50.3%) 190 (22.7%) 226 (27%)
4 Industrial 123 (55.7%) 17 (7.7%) 81 (36.6%)
5 Transportation 46 (49.5%) 15 (16.1%) 32 (34.4%)
6 Green space and square 6 (26.1%) 11 (47.8%) 6 (26.1%)

Based on the point densities of POI categories, the spatial semantics of H1, H2 and H3 can be
obtained. As shown in Table 4, the workplace POI (51.6%, including industrial, administration and
public service, commercial facilities and transportation) dominated H1; green space and square POI
(47.8%) dominated H2; and residence (44.9%) dominated H3. Consequently, the urban regions that
consist of H1, H2 and H3 grids are mixed functional regions dominated by Workplace, Leisure and
Residence functions, respectively.

Table 4. Spatial semantics of H1, H2, and H3 based on POI categories.

1st Level Category 2nd Level Category H1 H2 H3

Residence Residential area 41.4% 14% 44.9%
Leisure Green space and square 26.1% 47.8% 26.1%

Workplace Commercial facilities, Industrial, Transportation and
Administration and public service 51.6% 18.2% 30.2%

After identifying functional regions using spatial semantics, we visualized the spatial distribution
of functional regions by applying head/tail breaks [27]. As shown in Figure 6, the Workspace POI
characterized four commercial centre districts of Beijing: ZhongGuanCun (ZGC), XiDan (XD), DongDan
(DD) and GuoMao (GM). Additionally, five residential areas, including AnHuiLi (AHL), WangJing (WJ),
YanDongYuan (YDY), SiHui (SH) and TongRenYuan (TRY), were characterized by residential POIs. The
three famous scenic spots of Beijing, which are the Summer Palace (SP), the Palace Museum (PM) and
Beijing World Park (BWP), can be identified by Leisure POIs. As a result, we identified the functional
regions by inferring the spatial distribution of H1 (Workplace), H2 (Leisure) and H3 (Residence).

Figure 6. The spatial distribution of functional regions according to spatial semantics based on POI
point density: (a) Workspace POI; (b) Residence POI; and (c) Leisure POI represent the functional
regions for H1 (Workplace POI), H2 (Residence POI) and H3 (Leisure POI), respectively.

4.3. Exploiting Functional Regions’ Interactions

In this section, we quantitatively explored the interaction intensities between functional regions
using spatiotemporal analyses. Spatial interactions between functional regions can help us to
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understand the spatial structure of a city and plan an efficient spatial configuration [2]. Considering
this fact, we selected the workplace districts of ZGC, XD and GM as well as the Residence district WJ of
Beijing as typical functional regions in the study area. Subsequently, we analysed the spatiotemporal
patterns of interaction intensities among the four typical functional regions using taxi O/D flows.

4.3.1. Spatial Distribution of Functional Regions’ Interactions

The spatial distribution of functional regions’ interactions can be reflected by trip length
distributions. The taxi O/D points within the four typical functional regions of ZGC, XD, GM and WJ
were calculated, before the hotspot maps were generated using kernel density estimation (KDE). For
example, the taxi O/D points of ZGC include both O points (the origin points of people, who get off at
ZGC) and D points (the destinations of people, who get on at ZGC). Figure 7 shows the intensities and
ranges of interactions among the four functional regions based on taxi O/D point density.

Figure 7. Hotspot maps for the intensities and ranges of interactions among the four functional regions.

In general, the interactions of the four functional regions exhibited spatial differences. WJ was a
residential-oriented district and the attraction of the taxi O/D points was weak on its own. GM and
ZGC had strong attractions to WJ. The two business-oriented districts, XD and GM, attracted taxi O/D
points between each other. The hotspots distributions of XD and GM were similar and concentrated in
the commercial centre within the 3rd Ring Road. GM attracted more taxi O/D points than XD, with
highest value of the KDE for XD being about half that of GM.

To further explore the trip length distributions in the functional regions, we used the four
functional regions as the centre, before 500-m intervals were designed to generate concentric circular
buffers within the study area. The calculation of the number of taxi O/D points located in each buffer
area revealed the spatial distribution of the traffic attraction of the four functional regions. As shown
in Figure 8, the curve of the taxi O/D point density, created by the attraction of three business-oriented
functional regions, gradually decays within a 15-km distance. This finding is consistent with people’s
psychologically affordable travel time and the spatial distance when they take taxi trips.

Figure 8. Cont.
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Figure 8. Spatial distribution of the traffic attraction of the four functional regions: (a) Taxi O/D points’
attraction for ZGC; (b) taxi O/D points’ attraction of WJ. The O/D point density curve of WJ shows
three peaks at 4 km, 9.5 km and 12.5 km, which coincide with the distances between WJ and the other
three functional regions; (c) Taxi O/D points’ attraction for XD. The O/D point density curve of XD
gradually decreases to zero at 10 km, indicating that the residents’ average trip distance by taxi is 10
km and generally not more than 20 km; (d) Taxi O/D points’ attraction for GM.

4.3.2. Temporal Features of Functional Regions’ Interactions

To quantitatively analyse the interactions between functional regions, we explored the temporal
features of these interactions based on the method described in Section 3.2. We first divided 30 days
into 720 h by one-hour intervals and counted the number of O/D points per hour to analyse the time
variations of taxi O/D points in functional regions. We found that the distribution curves of the O/D
points display reproducible temporal patterns and clearly follow a daily cycle for 30 one-day periods
(Figure 9).

Figure 9. Curves of O points and P points representing the temporal variations of the taxi O/D flows
over the entire study area. There are large numbers of O/D points that exhibit 24-h cycles.

The taxi O/D points that showed the four functional regions attracting each other were counted
within 24-h periods due to the periodic taxi O/D trends. Figure 10 shows that the four functional
regions attracted taxi O/D points from each other over time.
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Figure 10. Temporal variations of the four functional regions’ interactions based on O/D points. The
left/right map of (a) demonstrates that when people take taxis to/from in ZGC, the taxi O/D flows
between ZGC and the other three functional regions occur at different time periods daily. Similarly,
(b–d) represent the temporal variations for WJ, XD and GM, respectively.

Subsequently, we used four time periods of 06:00–08:00, 11:00–13:00, 17:00–19:00 and 21:00–23:00
as examples to explore the interaction intensities among the four functional regions. The percentage
of taxi O/D points obtained for the functional regions that attracted each other were calculated for
the four time periods (Table 5). The average value for the ZGC attracted by itself in the four time
periods was 0.227 (i.e., when residents in ZGC take a taxi, there is a 22.7% probability that their
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destination is still within ZGC). Similarly, the average values for WJ, XD and GM were 0.294, 0.180 and
0.349, respectively.

Table 5. Temporal variations of functional regions’ interactions based on O/D points.

Time Periods
ZGC WJ

WJ XD GM ZGC Total ZGC XD GM WJ Total

06:00–08:00 0.294 0.189 0.274 0.243 1 0.198 0.187 0.263 0.352 1
11:00–13:00 0.206 0.197 0.372 0.226 1 0.217 0.189 0.368 0.226 1
17:00–19:00 0.288 0.161 0.317 0.234 1 0.199 0.158 0.311 0.333 1
21:00–23:00 0.242 0.15 0.402 0.206 1 0.185 0.138 0.412 0.264 1

Time Periods
XD GM

ZGC WJ GM XD Total ZGC WJ XD GM Total

06:00–08:00 0.235 0.313 0.278 0.174 1 0.223 0.306 0.175 0.295 1
11:00–13:00 0.217 0.224 0.367 0.192 1 0.254 0.21 0.175 0.361 1
17:00–19:00 0.212 0.307 0.293 0.188 1 0.200 0.316 0.151 0.333 1
21:00–23:00 0.183 0.263 0.389 0.165 1 0.187 0.255 0.15 0.408 1

Furthermore, we set the average values of the functional regions as the threshold value. A greater
than average value indicates that one functional region has a strong attraction to another functional
region. In general, XD has a strong attraction to the other three functional regions, while GM has a
strong attraction to itself. When residents took taxis in ZGC during the period of 08:00–16:00, GM was
the main destination. From 06:00 to 09:00, WJ attracted more taxi O/D points from ZGC, XD and GM.
In the period of 17:00 to 23:00, WJ was the main destination for the residents, who took a taxi from
ZGC, XD and GM, which reflects the daily commute of residents in WJ to some extent. Meanwhile,
the interaction intensity between WJ and GM was greater than the interaction intensity between WJ
and the other functional regions, which is consistent with the pattern of distance decay in the spatial
interactions. There were strongly interconnected activities linking the two business-oriented districts,
XD and GM. In general, the total taxi O/D points of the two business-oriented districts increased
during 08:00 to 14:00 and reached their highest peak at 12:00. After 18:00, the attracting O/D points of
the two business-oriented districts continued to rise, reaching a new peak at 22:00. This is consistent
with the spatiotemporal behaviours of residents when shopping and engaging in other activities at
business centres.

By quantitatively analysing the spatial distributions and interaction intensities of functional
regions, we conclude that (1) GM is a business-oriented district with a strong attraction to
itself; (2) GM and XD are two core business districts with strong traffic exchange activities; and
(3) government planning developed WJ to be a large-scale residential commuter community. As a
result, the three business-oriented districts are attractive to WJ, while the nearest district GM has the
strongest attraction.

5. Discussion and Conclusions

Urban functional regions are a hot research topic. The identification of urban functional regions
can enable a diversity of valuable applications. First, residents can expand their knowledge about the
city in which they live by identifying functional regions. Second, the urban planning of a city can be
calibrated by identifying functional regions. In this paper, we propose a practical framework using
spatial semantics and interactions to identify urban functional regions. The framework involves two
steps: identifying functional regions and revealing their interactions. A case study using POI data
and taxi trajectory data from Beijing validated the proposed framework. The case study found that:
(1) incorporating spatial semantics and interaction patterns helps to improve the identification of urban
functional regions; and (2) the interaction intensities between functional regions reveals the underlying
association between human activity patterns and urban structure. The proposed framework can be
used to identify urban functional regions and promote an enhanced understanding of urban structures.
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There are still some limitations within this study. First, the precision of functional regions
identification highly depends on the quantity of taxi O/D flows data. The taxi dataset was collected
from approximately 4000 taxis during thirty consecutive days. Consequently, to a large extent, taxi
O/D flows can reflect the activities of real people and reasonably represent functional regions’ spatial
interactions. However, taxi O/D flows are able to represent part of urban travel due to people taking
taxi trips within a certain distance range. Further studies may expand the data source to the trace
data of personal cars, metro trips and bus trips, before taking advantage of each type of data. This
combination of diverse data can be more applicable in identifying urban functional regions and
detecting changes in urban spatial structure. Second, it is clear that more detailed POI information
might lead to more reliable results. For example, by taking the popularity of POI into consideration,
we can study the co-occurrence patterns of POI types, which indicate the associated human activities.
In future work, POIs will be assigned corresponding weights according to the building area and public
awareness in order to classify functional regions more accurately.
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