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Abstract: Several geospatial studies and applications require comprehensive semantic information
from points-of-interest (POIs). However, this information is frequently dispersed across different
collaborative mapping platforms. Surprisingly, there is still a research gap on the conflation of POIs
from this type of geo-dataset. In this paper, we focus on the matching aspect of POI data conflation
by proposing two matching strategies based on a graph whose nodes represent POIs and edges
represent matching possibilities. We demonstrate how the graph is used for (1) dynamically defining
the weights of the different POI similarity measures we consider; (2) tackling the issue that POIs
should be left unmatched when they do not have a corresponding POI on the other dataset and
(3) detecting multiple POIs from the same place in the same dataset and jointly matching these to the
corresponding POI(s) from the other dataset. The strategies we propose do not require the collection
of training samples or extensive parameter tuning. They were statistically compared with a “naive”,
though commonly applied, matching approach considering POIs collected from OpenStreetMap and
Foursquare from the city of London (England). In our experiments, we sequentially included each
of our methodological suggestions in the matching procedure and each of them led to an increase
in the accuracy in comparison to the previous results. Our best matching result achieved an overall
accuracy of 91%, which is more than 10% higher than the accuracy achieved by the baseline method.

Keywords: point-of-interest; geo-data matching; user-generated geographic content; graph-theory;
combinatorial optimization

1. Introduction

Several geospatial studies and applications rely on geometrically accurate and semantically
detailed geo-data. Although authoritative and proprietary geo-datasets usually detain high levels
of data correctness and consistency, they frequently lack semantic information unrelated to the
specific administrative and commercial purposes they serve. Volunteered Geographic Information
(VGI) platforms, on the other hand, provide freely accessible information about urban features
to a considerable degree of geometric accuracy and semantic comprehensiveness [1,2]. However,
this information is not available in one specific VGI platform, but is instead dispersed across different
platforms, each of which with its purposes, strengths, limitations and community of volunteers.
Therefore, in order to improve the effectiveness of different studies and applications, approaches need
to be developed for the conflation of geo-information currently scattered in different VGI projects.

While data conflation generally aims at the enrichment and interoperability of geospatial datasets,
data quality assessment is concerned with the level of correctness, consistency and completeness of
the information from a certain dataset [3]. As is frequently the case, these two research areas intersect
when data matching is a step of the quality assessment workflow [1–5]. For example, finding the
same feature at different datasets increases the degree of trust that this feature exists in the real world,
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whereas comparing and merging their attributes serves respectively to evaluate and improve their
semantic accuracy and completeness.

The matching of street networks [6,7] and building footprints [8,9] from authoritative and
volunteered sources are already well-investigated topics. Linear and areal map features represent to a
great extent the physical structure of a city, however many of its socio-economic and cultural aspects
are frequently expressed by textual and numerical data associated to so-called points-of-interests
(POIs). Despite that, to the present date, only a handful of works have put effort into the conflation
of POIs, not to mention the conflation of POIs coming from VGI sources. The main reasons for
this are that (i) the matching of POIs cannot be based on any geometric attribute other than their
positions and topologies, which in VGI platforms are not always reliable [1]; (ii) point data frequently
lacks a gold-standard dataset that can be considered as an unquestionable reference; (iii) due to
the nature of volunteered data production, no single attribute is completely consistent for matching
POIs and (iv) VGI point data frequently contain duplicated and missing entries. The last two of
these topics require that any approach for matching POIs from VGI sources should consider different
similarity measures and must be able to perform not only one-to-one but also so-called one-to-none
and one-to-many matches. One-to-none and one-to-many matchings refer respectively to the common
cases when a POI from one dataset is not represented in a second dataset, which requires that it
remains unmatched, and cases when a real-world object is represented more than once in one or
both of the datasets. Frequently, the multiple representations of the same feature in the same dataset
contain complementary information and should therefore be matched to the one, or possibly multiple,
representation(s) of the same feature in the second dataset.

In this paper, we propose different measures and strategies for matching POIs from two different
VGI sources in an unsupervised way, i.e., without relying on training data, what makes them readily
applicable in the context of broader processing pipelines. The strategies operate based on a graph
whose nodes represent POIs and edges represent matching pair candidates. We demonstrate how
the graph is considered for performing one-to-none and one-to-many matchings, thus making them
proper for the matching of this kind of POI dataset.

The remainder of this paper is organized as follows. The next subsection gives an overview of the
tasks usually performed in the matching of POIs. The following subsection reviews the few previous
works dedicated to that goal. Section 2, the most important of this paper, presents our methods and
describes the experiment conducted with them. Section 3 presents and discusses the obtained results.
In Section 4 we provide a summary of the paper as well as a brief discussion of its contributions in
view of the present and future relevance of the conflation of user-generated geo-data.

1.1. Steps in the Matching of POIs from Different Datasets

Semantic information from POIs has been used in a myriad of studies and applications,
such as mobile POI recommendation [10,11], spatial analyses of socio-economic processes [12,13],
land-use estimation from individual buildings [14,15], grid cells [16] and urban parcels [17,18],
neighbourhood vibrancy description [19], semantic enrichment of streets segments [19,20], urban
mobility modelling [21,22] and pedestrian navigation [23,24], to name a few. These and other studies
and applications can benefit a lot from the conflation of POI semantic information dispersed across
different VGI sources.

Generally, the matching of POI datasets typically involves the following six steps: pre-processing,
candidate selection, computation of similarity measures, aggregation of the similarity measures,
matching decision and evaluation.

In the pre-processing step, measures like the elimination of pronouns and apostrophes from
the POIs names as well as the mapping of the POIs categories to a common taxonomy [25] may be
adopted. Candidate selection refers to the restriction, usually based on a spatial distance threshold,
of the candidates with which a POI may be matched. Although surely certain POI categories (e.g.,
stadiums, theatres, industries etc.) require larger distance thresholds than others (e.g., cafés, bars,
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shops), the general practice seems to be to establish a universal threshold based on the Euclidean
distance of pairs of matching POIs from a training set. Threshold values ranging from 60 up to 1000 m
can be found in the literature [2,26–28].

Probably the most important step in the matching of POIs is the quantification of the relevance
of matching pair candidates. This process typically involves two tasks, namely, the computation of
similarity measures between the POIs matching candidates and the aggregation of these measures into
a final similarity value. The following types of similarity measures can be computed in the first step:
spatial similarity, name or string similarity and semantic similarity.

The spatial similarity refers to the distance in space between two POIs from different datasets.
It is expected that POIs representing the same venue are found close to each other. However,
different reasons may lead to an inaccurate position of POIs, namely, the GPS-inherent positional
inaccuracy, the possibility in different VGI platforms to geocode the POI at different levels of precision
(i.e., city level, city district, street, street and number) and the fact that sometimes the volunteers define
the POIs position by manually clicking on a screen map. In dense urban areas like avenues and
city centres, where the amount of POIs is large, these sources of positional inaccuracies may greatly
decrease the effectiveness of the spatial similarity as a criterion for matching POIs. As mentioned
above, previous works report that corresponding POIs are sometimes found hundreds of meters
from each other. This greatly limits the effectiveness of considering the topological similarity POIs,
as suggested by [2,29,30]. This type of similarity considers, for example, whether two POIs from
different sources are located inside the same building footprint or at the same side of the street.

String or name similarity is a very effective, and therefore widely used, measure for matching
POIs [13,26,28,31]. Most stores, restaurants, banks, cafés, gyms etc. are represented as POIs containing
a name attribute, which is an expressive attribute for finding their corresponding POIs in other
geo-datasets. However, chains of restaurants and shops, for example, may have establishments close
to each other and they may specialize in different products (e.g., ‘Gap’ and ’Gap Kids’). In addition,
venues close to monuments, historical buildings and tourist attractions as well as venues situated in
a distinguishable part of the city may have similar names. Another factor that makes it necessary to
combine the name similarity with other similarities is the lack of a standard for registering the names
of venues in different VGI platforms. In particular, abbreviations (i.e., shortenings, contractions and
acronyms), apostrophes and pronouns are known to cause problems. Different robust string similarity
measures can be used to mitigate these issues [32]. Alternatively, strings can be transformed into
phonetics and these can be compared as well [33], which is arguably a good practice when dealing
with Chinese names [27,34].

Semantic similarity measures can be used complementarily to other measures to consider the
semantic distance between the POIs categories (e.g. café, theatre, shop). Three different types of
semantic similarity measures can be found in the literature, namely, model-based, corpus-based and
hybrid measures [35]. Model-based measures rely on a semantic network and typically on the number
of nodes and types of edges from the shortest path in the network connecting two terms to be compared.
Corpus-based measures are based on a large group of texts and on co-occurrence measures of the
two terms in the corpus. Hybrid measures attempt to overcome the limitations of model-based and
corpus-based measures by considering both the co-occurrence of the terms in a corpus as well as
their relation and distance in a semantic network. A more objective way of comparing the semantics
of POIs is by text comparison approaches, which typically transform the textual description or the
group of words associated to the POIs into vectors of the same size and compare these vectors either
directly [31] or after reducing their size [26] by means of topic-modelling algorithms such as the Latent
Dirichlet Allocation [36].

The aggregation of these different similarity measures returns an overall value expressing the
relevance of matching two POIs. The simple unweighted sum [30,31] as well as decision-trees [37],
logistic regression [26], entropy-based [27] and belief theory [2,38] methods have been tried in the past.
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Supervised methods may perform better, however, the cost of collecting samples, the longer processing
time and the risk of overfitting are factors that maintain the relevance of unsupervised methods.

Although so far the matching step has been considered straightforward, naively matching each
POI from a dataset with the one in the other dataset with which it has the largest similarity is an
inappropriate approach. VGI datasets frequently have multiple POIs representing the same venue.
Furthermore, POIs from one dataset are frequently missing in other datasets. The procedure for
matching POIs from VGI sources must therefore be able to cope with these facts. In this work,
we present graph-based matching strategies that take these facts into consideration.

1.2. Previous Works on POI Matching

As pointed out, many urban studies and applications rely on the correctness and completeness
of the POIs semantic information. Both of these data quality aspects can be significantly improved
through the conflation of POI datasets. Surprisingly though, only a handful of works have put
efforts to that aim, not to mention to the conflation of POIs from VGI datasets. Scheffer et al. [31]
proposed a simple approach for matching Qype and Facebook places to their OpenStreetMap (OSM)
counterparts. First, they reduce the number of matching candidates by setting a distance threshold.
Then, they measure the string similarity of the candidate matching pairs. If the similarity of all
matching candidates are below a certain threshold, they consider instead the cosine similarity between
the TF-IDF weighted term vectors representing the query POI and each of its matching candidates.
The match is then performed with the candidate of highest similarity. McKenzie et al. [26] proposed
a weighted regression model for matching POIs from the place review and recommendation social
media Foursquare [39] and Yelp [40] based on the POIs distances and string similarities. They also
considered the POIs topic similarity by means of a Latent Dirichlet Allocation model [36]. Li et al. [27]
focused on a strategy for defining the weights of different POIs similarity measures. They proposed
defining these weights based on the entropy of the respective similarity measure for matching Baidu
and Sina POIs. Jiang et al. [13] used a robust string similarity measure developed by [32] for matching
POIs from Yahoo! and proprietary sources with the ultimate goal of estimating spatially detailed
land-use information. Rodrigues et al. [37] proposed a rule-based (i.e., ’if, then’ decisions) algorithm
for matching POIs from commercial and collaborative sources based on their proximity as well as
their name and website similarities. These last two similarities were computed with the powerful
JaroWinklerTF-IDF measure [32], which is robust to misspellings errors and abbreviations. However,
the authors do not elaborate on how the rules were derived or how the parameter values were defined.
Touya et al. [2], as a quality assessment step, have matched subway stations and entrances POIs
from OSM and from an authoritative dataset from Paris (France). They relied on a geographic data
conflation method proposed by [38] which considers the POIs spatial distance as well as their name
similarity measured by the normalized Levenshtein distance [41].

In relation to these works, our contribution lies in that we approach the issues of one-to-none and
one-to-many matches, which are common in VGI datasets and cannot be handled by the matching
strategies proposed thus far. As mentioned, our approach is based on a graph whose nodes and edges
represent the POIs and their possible matches, respectively.

2. Methods

In this section, we present the methods applied for matching POIs from different VGI sources.
Firstly, the similarity measures based on which the matching is performed are presented. Next,
the strategy for aggregating these different measures and the graph-based matching strategies are
explained. Lastly, we present a simple procedure for taking into account the fact that venues are
sometimes represented by more than one POI in a VGI dataset. This procedure enables the matching
strategy to perform one-to-many matches.
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2.1. POI Similarity Measures

In this work, the evaluation of candidate matching pairs considered three different similarity
measures, namely, spatial, string (i.e., name) and semantic similarities. The measures were adapted so
that their range of values lie between 0 and 1, which facilitated their aggregation into a final single
value (see Section 2) considered in the matching. The spatial similarity of POIs pi and pj was computed
based on their Euclidean distance by the following equation:

Spt.Sim.(pi, pj) = 1−
[
d(pj, pj)/thr

]
(1)

where d(pi, pj) is the Euclidean distance between pi and pj and thr is the distance threshold under
which two POIs from the different datasets may be considered to be matched. The proportion between
d(pi, pj) and thr is subtracted from 1, so that closer POIs are assigned a spatial similarity closer to 1.

The string similarity between the POIs names was computed as the mean value of two measures
known as Token Sort Ratio and Token Set Ratio [42]. Both of them firstly tokenize the words in the
POIs names and order them alphabetically. The Token Sort Ratio simply computes the similarity of
the two re-ordered strings. The Token Set measure is less conservative, as it computes the similarity
between the intersection and the shorter of the two strings (i.e., the string with the least amount of
characters). The similarity of strings is in both cases computed by the Levenshtein distance. In previous
experiments, the average value of these two measures has led to better results than each of them
individually [28]. As Token Sort Ratio and Token Set Ratio output percentage values, the normalization
and computation of their average values was straightforward.

In order to evaluate the semantic similarity of POIs, the large English semantic network
WordNet [43] was utilized. In WordNet, each word is associated to one or a group of synsets,
which are synonyms or definitions from that word. Different measures are available for computing
the semantic similarity of synsets in WordNet [44]. These measures differ according to whether they
take into account only the semantic relation and distance of the compared terms in the network
or/and the information content (IC) [45] of the synsets. The performance of the different measures
has been evaluated and compared in different contexts by a significant number of works [35,46].
Their performances though are strongly dependent on the specific application and data at hand. In
this work, based on their complementariness, two of these measures were considered. One of them is
the measure known as Path Similarity:

PathSim.(si, sj) = 1/(distance + 1) (2)

in which distance is the number of nodes in the shortest network path between the nodes of synsets
si and sj. This measure is therefore based only on the structure of WordNet. The other measure
considered is the one proposed by Lin [47] and it takes into account the relative positions of the synsets
as well as their information content. The Lin measure is computed as follows:

LinSim.(si, sj) =
2 ∗ IC[LCS(si, sj)]

IC(si) + IC(sj)
(3)

where IC(LCS(si, sj)) is the IC of the lowest common subsumer (LCS) of si and sj. The LCS is the
most specific concept which is an ancestor of both si and sj concerning the “is a” semantic relations
from WordNet. For instance, the LCS of ‘mooset’ and ‘kangaroo’ would be ‘mammal’. Like the Path
Similarity measure, the values of this measure also vary between 1 and 0, as IC(LCS(si, sj)) <= IC(si)

and IC(LCS(si, sj)) <= IC(sj). In order to compute the information content of the synsets and their
LCS, the widely used SemCor corpus [48] was used.

The computation of the semantic similarity of the POIs using the measures described above took
into consideration the categories of use and function they belong to (e.g., bar, restaurant, shop etc.).
As is frequently the case, the words that describe these categories might have more than one meaning,
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each of which is represented by a different synset in WordNet. For example, a bar might mean an
establishment where drinks are served or a rigid piece of metal or wood. Because of that, when
computing the semantic similarity of any two POI categories, we iterated through all the synsets
belonging to these words and considered the combination of highest similarity. Furthermore, some of
these categories are composed of more than one word. For example, ‘Italian restaurant’ or ‘gift shop’.
In these cases, we computed the mean of all combinations (e.g., ‘Italian’ and ‘gift’, ‘Italian’ and ‘shop’,
‘restaurant’ and ‘gift’, ‘restaurant’ and ‘shop’). Lastly, we averaged the semantic similarities extracted
in this way with the Path Similarity and Lin methods and this value was considered the final semantic
similarity of the POI matching pairs.

2.2. Aggregation of Similarity Measures

In this work, two ways of aggregating the string (Str.S), spatial (Spt.S) and semantic (Sem.S)
similarities of matching candidates were evaluated. One being the simple unweighted sum of the
similarity measures and the other a weighted sum given by

Sim.(i, j) = Str.S(i, j) + Spt.S(i, j) ∗ Spt.W(i, j) + Sem.S(i, j) ∗ Sem.W(i, j), (4)

where i and j represent two POI from different datasets which are close enough to each other so
they can be considered matching candidates. The weight of the string similarity is always set to 1.
The weight of the spatial similarity is always lower than 1 and a function of (1) the string similarity
between i and j and (2) the strongest string similarity between i and its matching candidates:

Spt.W(i, j) = 1− [max{Str.S(i, j ∈ Ni)} − Str.S(i, j)]. (5)

Ni is the set of matching candidates from POI i. The weight of the spatial similarity is thus always
proportional to the string similarity between i and j and always lower than 1. The spatial similarity
will influence the matching but always to a lower extent than the string similarity. Similarly to the
spatial similarity weight, the weight of the semantic similarity is given by

Sem.W(i, j) = 1− [max{Str.Spt.S(i, j ∈ Ni)} − Str.Spt.S(i, j)], (6)

where
Str.Spt.S(i, j) = Str.S(i, j) + Spt.S(i, j) ∗ Spt.W(i, j). (7)

Thus, the weights of the spatial and semantic similarities are defined dynamically for each
matching pair candidate. Assumed to be always the most expressive measure, the string similarity
always has a larger weight than the other measures, namely, of 1. The weight of the spatial similarity
is proportional to the indecision or ambiguity with regard to which j ∈ Ni i should be matched based
on the string similarity. In the same way, the weight of the semantic similarity is proportional to the
ambiguity remaining after evaluating j ∈ Ni based on Equation (7). We compare the accuracy of
matchings performed with the following combinations of similarity measures: ‘string’, ‘string and
spatial’, ‘string and semantic’ and ‘string, spatial and semantic’. The final similarity value is given by
Equation (7) when considering only the string and spatial similarities. Likewise, we substituted Spt.S
for Sem.S in Equations (5) and (7) when computing the POIs final similarities based only on the string
and semantic similarity measures.

2.3. Graph-Based Matching Strategies

After the computation and aggregation of the similarity measures, the matching itself can be
performed. We investigate three different matching strategies implemented based on a graph. In this
graph, the nodes represent POI and their colours represent the dataset they belong to. The graph’s
edges represent the possibility that the linked nodes are matched. The graph is thus bipartite, i.e.,
every node is connected to a node of the different colour (i.e., different dataset). Each edge is associated
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with a weight, which is the output of the function that aggregates the similarity measures described
above. The edge weight represents the strength or relevance of the potential match.

Supported by the hypothetical graph depicted in Figure 1a, we now present the three different
matching strategies and discuss the disadvantages and advantages of each method.
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Figure 1. (a) A hypothetical graph. Nodes represent POI and edges matching pair candidates;
(b) Matching result obtained with the Naïve method; (c) Matching result obtained with the Best-best
method; (d) Matching result obtained with the Combinatorial method.

The first investigated strategy was named Naïve matching. It considers one of the POI datasets as
the reference (depicted in blue) and the other as the target dataset (depicted in orange). The Naive
strategy matches each node from the reference dataset to the node from the target dataset with whom
it shares the edge with the highest weight. Thus, node mi from the graph in Figure 1a is matched
with node qj. Probably because it is very simple to implement and effective for merging two similar
datasets, this method has been widely applied for matching POI datasets [26,27,31,37]. However,
it has two major drawbacks when applied to the matching of POI from VGI sources. The first is
that it might produce ambiguous matches, i.e., cases when two nodes from the reference dataset are
matched to the same node from the target dataset. For example, nodes mj and ml from the graph in
Figure 1a would both be matched to node ql, as shown in Figure 1b. Although it is certainly possible in
the VGI context that both mj and ml represent the same real-world feature, ambiguous matches are
frequently the result of a mistaken match. They also occur, due to the second drawback of this strategy,
namely, the assumption that every node from the reference dataset has one corresponding node at
the target dataset. This assumption implies that every node of the reference dataset will be matched,
regardless of whether the respective venue is also represented in the target dataset or not. Furthermore,
this assumption makes the Naïve strategy unable to cope with one-to-none matching cases. Figure 1b
shows the matching result obtained with the Naïve strategy for the graph on Figure 1a.

The second matching strategy we explored is named Best-best matching. The only difference to
the Naïve strategy is that it will only match a node from the reference dataset with a node from the
target dataset if the latter is the best match from the former and the former is the best match from
the latter. This is a crucial difference, for it eliminates the risk of ambiguous matches and enables
one-to-none matches. For example, it will only match node mi with qi if among the edges from mi the
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one it shares with qj has the highest weight and if among the edges from qj the one it shares with mi has
also the highest weight. This is a conservative method in the sense that it only matches nodes when
there is mutual evidence for the match. It thus decreases, theoretically, the risk of false-positive errors.
On the other hand, it may leave many nodes from the reference dataset unmatched, thus producing
more false-positive one-to-none matching errors, i.e., cases when the algorithm should have matched
the node from the reference dataset, but it did not. Figure 1c shows the matching result obtained with
the Best-best strategy for the graph on Figure 1a.

The third strategy we explored, named Combinatorial matching, performs matching in the
graph-theory sense of the word. A matching solution is defined as a subset of the graph’s edges
without common vertices. In our context, this means a matching solution without ambiguous matches.
A graph may have many valid matching solutions. However, the Combinatorial matching strategy
extracts the subset of edges with the highest sum of edge weights. This algorithm, developed by [49],
when applied to bipartite graphs is also known as the weighted Hungarian combinatorial optimization
algorithm [50]. The combinatorial matching solution for the graph in Figure 1a is depicted in Figure 1d.
Despite ruling out ambiguous matches, this method has two drawbacks, namely, the best matching
solution may discard strong edges (i.e., with large weights) depending on the graph’s structure and
edge weights and it is not proper for detecting one-to-none matches. Despite that, in certain situations
this method may perform better than the other two, as the example in Figure 2 demonstrates. The figure
depicts a graph with nodes representing real POIs from OSM and Foursquare. The lower part of
Figure 2 shows which nodes would be matched by the three strategies we explored if the edge weights
were computed by the name similarity measure presented above. The Naïve strategy would produce
an ambiguous match, whereas the Best-best strategy would match one of the POIs correctly while
leaving the other incorrectly unmatched. The combinatorial approach, on the other hand, correctly
matches both POIs by looking at the best subset of edges.
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Figure 2. Graph representing four existing POIs from OSM and Foursquare. (a–c) Matching results
obtained with the three different strategies investigated in this work. Edge weights were computed
with the name similarity measure presented in Section 2.1.

In order to overcome the drawback of the Combinatorial method that it may discard strong edges
from the best subset of edges, the following transformation of the edge weights was undertaken. Firstly,
the mean value of the edges connected to each node was computed. Because each edge connects two
nodes, each edge has at this point two new values associated to it, namely, the mean values of the
edges connected to each of its two nodes. Next, these two mean values were subtracted from the
original weight of each edge. Lastly, the resulting numbers were summed. Figure 3 demonstrates these
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three steps based on a hypothetical graph whose combinatorial matching solution would not include
the strongest edge of the graph. The effect of this edge weight transformation is that it increases the
relative weight of originally strong edges while turning the weight of originally weak edges negative.
This increases the chance that strong edges will belong to the best subset of edges and it will also
exclude relatively weak edges from the subset, thus making this method able to perform one-to-none
matchings as well. Another positive effect of this transformation of the edge weights is that it strongly
mitigates performance issues. The Hungarian algorithm’s original time complexity is of O(number of
nodes3), what practically made our experiments impossible to be performed on a regular computer.
However, after the edge weight transformation, which, as demonstrated in Figure 3, transforms some
of the edge weights to negative values and thus enables the elimination of such edges from the graph,
the time taken for each experiment was in the order of 1 to 2 h.
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Figure 3. Transformation applied to the graph’s edges weights before applying the Combinatorial
matching strategy. (a) The graph and its original edge weights; (b) Mean values of the edges connected
to each node; (c) Original edge weights minus the mean values computed in the previous step; (d) New
edge weights resulting from the summation of the values obtained in the previous step.

2.4. Considering Multiple Entries from the Same Venue

As mentioned, frequently the same venue is represented by more than one POI in one or both of
the datasets. Multiple entries from the same venue occur in VGI datasets when a user inattentively
creates an already existing POI. When the same venue is represented as a building polygon and as
a POI in the same VGI platform, a duplicated also entry occurs. We propose a simple yet effective
rule-based strategy for finding hypothesis of redundant entries and considering them in the final
matching result. The strategy consists of simple ’if, then’ queries that make a decision whether or not
to include edges in the subset selected by the Best-best method. As an example, consider the two POI
datasets distinguished by their colours in the figures above. The procedure starts by applying the
Naïve matching method twice, namely once considering the blue dataset as the reference one and once
considering the orange dataset as the reference one. Regarding the ambiguous edges from the first
matching, the queries and decision depicted on Figure 4a are made. Likewise, the queries and decision
depicted on Figure 4b are made regarding the outcome of the second naïve matching.

String similarity of and is > 0.9?

Include both edges.

yes

yes

ib jb

(a)

ib

jb

io

io

jo

ib

(b)

String similarity of and is > 0.9?

Include both edges.

The Best-best matching has the

edge - or edge - ?
i ib o

yes

yes

io jo

i jb o

Example:

Example:

The Best-best matching has the

edge - or edge - ?
i ib o j ib o

Figure 4. Cont.
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Figure 4. Queries applied for including edges in the subset of edges extracted by the Best-best method.
(a) Queries and decision applied to the ambiguous edges obtained by applying the Naïve method
taking the blue dataset as the reference one; (b) Queries and decision applied to the ambiguous edges
obtained by applying the Naïve method taking the orange dataset as the reference one.

2.5. Experiment Design

For testing the matching strategies we proposed, a bounding-box of approximately 20 km2 located
in the central area of London (England) was defined as test-area. The bounding box is circumscribed by
the latitudes of 51◦29′44′′ N and 51◦31′18′′ N and the longitudes of 0◦3′54′′ E and 0◦10′12′′ E. This area
is one of the most vibrant from London and contains a large variety of commercial and leisure-related
venues, like pubs, restaurants, cafés, shops, movies and museums. From this area, POI from the VGI
platform OSM and the place review location-based social media Foursquare were collected. These
two datasets have complementary strengths, as OSM is to most standards reliable regarding the
position of POIs, whereas Foursquare contains mostly detailed semantic information about them.
POI from OSM were extracted as node features with a name and at least one of the following tag
keys: ‘amenity’, ’shop’, ’cuisine’, ’tourism’, ’office’, ’land-use’, ’leisure’, ’food’, ’sport’, ’use’, ’memorial’,
’type’ and ’brewery’. As not all POI are represented as points, OSM polygons (i.e. way features) with
a name as well as with one of these tags and the ‘building:yes’ key/value pair were also collected.
These OSM ways were transformed into points by associating its semantic data and position to the
ways centres-of-mass. POIs from Foursquare were collected when their most detailed use category
(see https://developer.foursquare.com/categorytree) was included in the set of categories from our
test-samples. In total, 8238 POIs from OSM and 13,548 from Foursquare were collected.

For evaluating the performance of the different matching strategies, three types of test-samples
were collected, as elucidated by Table 1. The one-to-one test-samples were built by randomly collecting
200 from the 8238 OSM POIs and finding their corresponding POIs in Foursquare. Five of these POIs
had no corresponding ones in Foursquare and were thus considered as one-to-none test-samples.
The remaining one-to-none as well as all one-to-many test-samples were collected by an exhaustive
search in the OSM and Foursquare datasets from our test-area. Based on the parameters used in the t
statistical test (explained below) for comparing the performance of the different matching strategies,
calculations of the minimum sample size assuming a power of the test of 0.95 were performed. It is
found that all three samples sizes are sufficiently large for all performance comparisons we conducted
(see Section 3).

https://developer.foursquare.com/categorytree
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Table 1. The different types and respective amounts of test-samples considered in the performance
analysis of the different matching strategies.

Sample Types Purpose Is to Evaluate the Models Performance in Detecting . . . Amount

One-to-one Cases when a POI from OSM should be matched with only one POI from
Foursquare and vice-versa. 195

One-to-none Cases when a POI from OSM does not have any match in Foursquare
and should therefore be left unmatched. 42

One-to-many Cases when more than one POI from OSM should be matched to the same
Foursquare POI and cases when more than one POI from Foursquare
should be matched to the same POI from OSM.

34

From the 21,786 POIs collected from OSM and Foursquare, a graph was created by setting an
edge between nodes belonging to different datasets and located closer than 100 m from each other.
The resulting graph, with a total of 339,974 edges, was used in the application of the graph-based
matching strategies we propose in this paper. The distance threshold of 100 m was defined after
analyzing the histogram of the distances between the 229 pairs of one-to-one and one-to-many matches
from our test-samples set (Table 1). This histogram is depicted in Figure 5. The construction of the
graph took about 15 min in a conventional computer, which indicates that scaling our graph-based
matching strategies to larger test-areas is not expected to cause computational issues.

Figure 5. Histogram of the distances between the pairs of matching POI from OSM and Foursquare
comprising our test-sample set.

In order to evaluate the statistical difference in the performance of the different matching strategies,
the following t statistic was computed as suggested by [51] for the comparison of accuracy percentages:

t =
|p1− p2|√

pq(2/n)
, (8)

where p1 and p2 are the percentages of correctly matched pairs from two different matching
experiments (computed based on the test-samples), p is the average between p1 and p2, q is the
difference between 1 and p and n is the number of test-samples. The two compared matching accuracies
will be different if t > tα/2, where α is the test’s significance level. The critical value of tα/2 is computed
from a t distribution of n− 1 degrees of freedom. In the next section, we compare the p-values from
different pairs of matching accuracies with α/2 = 0.025 and 0.05.



ISPRS Int. J. Geo-Inf. 2018, 7, 117 12 of 17

3. Results

The performances of the POI matching strategies were evaluated in three different analyses.
In the first, we considered 229 matching pairs from which 195 are perfect one-to-one matches and
34 are matches containing at least one of its POI in another one of these 34 pairs. These 34 pairs were
included in order to evaluate our strategy for detecting one-to-many matches, i.e. cases in which
a POI should be matched with more than one POI from the other dataset. In the second analysis,
we evaluated based on 42 POIs from OSM the strategies performance in correctly leaving POIs from
OSM unmatched when these have no corresponding ones in Foursquare. The third analysis considered
all test-samples together. Each of these three analyses was carried out with different combinations of
similarity measures aggregated by their unweighted and weighted sum.

Figure 6a,b show the percentage of the 229 one-to-one test-sample pairs correctly matched by each
of the three matching strategies applied with different combinations of similarity measures aggregated
by their unweighted (Figure 6a) and weighted sums (Figure 6b). It can be seen that the accuracy
achieved by the Naïve method is the highest in all cases, followed mostly by the Combinatorial
method. Regarding Figure 6a and the Naive method, the matching accuracies achieved with different
combinations of similarity measures are not statistically different (i.e., p-values well above 0.05) from
the accuracy of the matching performed only with the string similarity (of 93%). The matching
accuracies achieved with the Combinatorial method based on different combinations of similarity
measures are also not statistically different from the accuracy achieved with the string similarity alone.
In the case of the Best-Best method, the matching accuracy decreased significantly (p-value < 0.025)
when the semantic and spatial similarities were also considered, as opposed to when the matching
was performed only based on the string similarity. Comparing Figures 6a,b, it is noticeable that all
three methods achieved higher accuracy levels when the similarity measures were aggregated by their
weighted sum. This holds for all three measure combinations. However, the increase in the accuracy is
in all nine cases not statistically significant. It should be stressed though that the Naive method applied
based on the spatial and string similarities has experienced an increase of 5% in the performance (from
89% to 94%) when these measures were aggregated by their weighted sum. The statistical comparison
of this difference in the performance yielded a p-value of 0.056. The Combinatorial method applied
with the string and semantic similarities also experienced an increase of 5% in the accuracy (from 77%
to 82%). However, the large p-value of 0.18 for the significance of this increase does not allow the
claiming of a statistical improvement.

Figure 6c,d depict the one-to-none accuracies evaluated based on 42 POIs from OSM with no
corresponding POI in Foursquare. The better performance of the Best-best method is statistically
significant when considering the string and semantic similarities aggregated by their unweighted
sum (p-value of 0.038) as well as in all three cases when the similarity measures are aggregated by
their weighted sum (Figure 6d) (p-values < 0.021). It is also noticeable that the weighted sum of the
similarity measures has led to a decrease in this type of accuracy, which is however in none of the
cases significant.

Figure 6e,f depict the accuracy levels obtained with the one-to-one and one-to-many samples (229)
together with the one-to-none samples (42). It can be observed that the Naïve method is mostly the one
that performed the worst, as it is incapable of detecting one-to-none matches. The Best-best method in
the other hand is the one that achieved the highest accuracy levels in all comparisons from Figure 6e,f.
This superior performance is however statistically significant only regarding the matchings conducted
with the string similarity (p-value of 0.032). It is also worth noticing that, although statistically not
significant, the weighted sum aggregation of the similarity measures led to better accuracies than
the unweighted sum aggregation. The overall best accuracy however was achieved by the Best-best
method based only on the POIs string similarity (86%).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Evaluation of the different matching strategies applied with different similarity measures
aggregated by their unweighted and weighted sum. (a,b) One-to-one and one-to-many matching
accuracies obtained with the three different strategies and similarity measures aggregated by their
unweighted (a) and weighted sum (b). (c,d) One-to-none matching accuracies obtained with the
Best-best and Combinatorial strategies and similarity measures aggregated by their unweighted (c) and
weighted sum (d). (e,f) Overall accuracies with similarity measures aggregated by their unweighted (e)
and weighted sums (f).

In summary, from Figure 6 the following conclusions can be made. Concerning the one-to-one
matchings, the Naive method performed best. For detecting one-to-none cases, the Best-best method
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is by far superior to the Combinatorial method. When all three different types of test-samples
are considered, the Best-best method emerged as the most effective, followed in general by the
Combinatorial method. Aggregating the similarity measures by their weighted sum led in general to
slight increases in the performance, which are however not statistically significant. It can be claimed
that the overall best matching accuracies were achieved with the Best-best method based on the string
similarity alone (accuracy of 86%, as mentioned) and based on the string and spatial similarities
aggregated by their weighted sum (accuracy of 84%).

In Section 2.4, we presented a simple procedure for dealing with cases when a place is represented
by more than one POI in one or both of the datasets. Figure 7 depicts the increase in the accuracy
levels achieved when applying this procedure over the matches obtained with the Best-best method
considering three different combinations of similarity measures aggregated by their weighted sum.
These combinations were selected due to their better performances (see Figure 6e,f). It can be
seen that for the three different similarity combinations, an improvement of accuracy was achieved.
This improvement is of 7% (i.e., from 84% to 91%) and statistically significant (p-value of 0.014) when
the string and spatial similarities are considered, thus giving evidence that the proposed procedure
is effective. This also indicates that considering the spatial and string similarities, as opposed to just
the string similarity, is advantageous, although the accuracy difference between these two matching
strategies (of 91% and 88%, respectively) is not statistically significant.

Figure 7. Matching accuracies obtained before and after applying the procedure for tackling the
existence of multiple POIs representing the same place.

4. Summary and Discussion

In this paper, we focused on the matching aspect of the conflation of POI from VGI platforms.
The strategies we proposed are based on a graph whose nodes represent the POI from two different
platforms and the edges their matching possibilities. We showed how the graph can be used for
dynamically defining the weights of the similarity measures which are then summed up to a final edge
weight based on which the matching is performed. The results attest that the weighted sum of the
similarity measures leads in general to better, although mostly not statistically significant, matching
accuracies in comparison to when the similarities are summed with equal weights. Furthermore,
we demonstrated how the graph enabled us to perform one-to-none as well as one-to-many and
many-to-one matches. These types of matches must absolutely be considered if the semantic
information from POI from different collaborative sources is to be properly conflated. Surprisingly
though, to the best of our knowledge, methods for accounting in the matching for the very current
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situations of duplicated and absent POI in datasets with different purposes but complementary
geographic information were still lacking.

It is important to point out that neither the edges final weight computation nor the matching
strategies we proposed require time-costly collection of training samples. Because of that, our methods
can be more easily integrated into broader workflows with goals beyond the POI conflation step.
Furthermore, unsupervised POI matching methods tend to be more transferable than supervised
methods, which, although possibly more effective in a specific area, involve the risk of over-fitting and
therefore of poor transferability.

The perspective seems reasonable that many geographic studies and geospatial applications will
continue to rely more and more on up-to-date and semantically detailed user-generated information
from urban features. As this information will unlikely be stored in a single platform, but rather in a
growing number of collaborative geo-data platforms with different purposes and limitations (but of
complementatry strengths), POI conflation methods able to deal with the inherent characteristics of
user-generated geo-data will increasingly be required. It is therefore imperative that the different
technical challenges for achieving this increasingly complex interoperability of geo-datasets be one
of the main objects of current research in geoinformatics. This paper is inserted in this very context
as it proposes POI matching methods that account for two typical characteristics of collaborative
POI datasets, namely, incompleteness and redundancy. Our main motivation was to contribute
effective and transferable POI matching methods that are more general than purpose, case and-data-
specific solutions.

From our perspective, future research possibilities in this area include the development of
higher-order matching methods, i.e., the simultaneous matching of POIs from more than two datasets,
as a way of possibly achieving better performance than pairwise matching methods. The principles
from our two graph-based matching strategies (i.e., collective and combinatorial matching and mutual
agreement) can maybe be explored for higher-order POIs matching as well. Although we made the
argument that one of the main advantages of the matching strategies we propose is that they do
not require training, it would be pertinent to explore supervised methods for computing the edges
weights. The final edges weights might, by the way, be a function of other similarity measures like
topic, topological, geocoding (i.e., address) and temporal activity similarities as well. Obviously, this
will depend on the geo-datasets being conflated and on the degree of completeness they have for these
different types of information. The exploration of more comprehensive POIs similarity measures might
also benefit strategies for matching VGI POIs with social media posts related (to different degrees of
relevance) to a specific place. These methods need to be continuously adapted as novelties appear on
social media types and activities as well as on the possibilities of relating (explicitly and implicitly) a
post to a place.
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