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Abstract: Mobile Augmented Reality (MAR) systems are becoming ideal platforms for visualization,
permitting users to better comprehend and interact with spatial information. Subsequently, this technological
development, in turn, has prompted efforts to enhance mechanisms for registering virtual objects in real
world contexts. Most existing AR 3D Registration techniques lack the scene recognition capabilities
needed to describe accurately the positioning of virtual objects in scenes representing reality. Moreover,
the application of such registration methods in indoor AR-GIS systems is further impeded by the limited
capacity of these systems to detect the geometry and semantic information in indoor environments. In this
paper, we propose a novel method for fusing virtual objects and indoor scenes, based on indoor scene
recognition technology. To accomplish scene fusion in AR-GIS, we first detect key points in reference images.
Then, we perform interior layout extraction using a Fully Connected Networks (FCN) algorithm to acquire
layout coordinate points for the tracking targets. We detect and recognize the target scene in a video frame
image to track targets and estimate the camera pose. In this method, virtual 3D objects are fused precisely to
a real scene, according to the camera pose and the previously extracted layout coordinate points. Our results
demonstrate that this approach enables accurate fusion of virtual objects with representations of real world
indoor environments. Based on this fusion technique, users can better grasp virtual three-dimensional
representations on an AR-GIS platform.

Keywords: AR-GIS; FCN; mobile phone; pose tracking; scene fusing

1. Introduction

GIS technologies are becoming widely used in a growing number of application scenarios,
thus more attention has focused on the display and visualization of spatial information. Traditional
media for presenting spatial information, such as 2D or 3D maps, cannot meet growing user
requirements for dynamic displays. Flexibility and realism in GIS visualizations are becoming ever
more demanding, as the volume and complexity of this information expands; AR-GIS is a response
to these challenges. High quality AR representations can help users better comprehend and interact
with real world spatial information. In order to achieve realistic visual effects and coherent rendering,
camera pose tracking techniques are necessary for accurate understanding of spatial relationships in
AR-GIS. Precise tracking of the camera within an augmented environment is required to achieve proper
alignment of the virtual objects to their real-world counterparts and create a rich user experience [1].
The existing tracking methods obtain only a 6DOF camera pose. AR-GIS renderings, however, require
exact positions of objects appearing in target scenes, consistent with the real world; for example,
desks must be on the floor, or pictures must hang on the wall. Thus, the AR system must not only

ISPRS Int. J. Geo-Inf. 2018, 7, 112; doi:10.3390/ijgi7030112 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi7030112
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2018, 7, 112 2 of 15

consider the correspondence between two images, but also recognize where the floor is located,
and where a picture is superimposed on a wall. Therefore, the goal of this paper is to enable realistic
augmented user experiences in 3D scenes through 3D scene understanding and indoor scene tracking
that can properly integrate and deal with the limitations of AR-GIS visualization.

Considering the indoor limitations of GPS and other related positioning sensors, vision-based
tracking is preferable for indoor AR. However, scene fusion after vision-based tracking of the camera
pose has not received much attention. AR-GIS visualization considers proper scene fusion of spatial
information in the real world. Incorrect fusion may cause problems such as illogical rendering of
3D model to the real scene. Most of the existing indoor vision-based tracking methods focus on the
development of invariant and robust feature detectors, descriptors, and matching methods [2–7].
However, these tracking systems only consider the correspondence between two images, but cannot
provide exact proper position for virtual objects in the real world. On the other hand, when establishing
2D to 3D registration, some scholars have proposed 3D model based tracking techniques that rely on
Structure from Motion (SFM) approaches [8], Simultaneous Localization and Mapping (SLAM) [9,10],
or the textured CAD model [11]. These kinds of methods need either professional data acquisition
equipment or costly human intervention in order to bridge this crisis of representation between
a dynamic reality and the static representation of spatial information; in this instance, 3D scene
understanding technology [12] can be an effective solution for AR-GIS scene fusion.

In this paper, we propose a novel method for fusing virtual objects and a real indoor scene, based
on natural feature tracking and 3D indoor scene understanding technologies. During the first, offline
stage, features are extracted from the reference images. At the same time, we perform interior layout
extraction on a captured image using Fully Convolutional Networks (FCN) [13]. Then, the calibration
parameters and camera poses corresponding to image viewpoints are computed by Fast Retina Key
(FREAK) [14] feature matching. Finally, we render the virtual objects onto corresponding positions in
the real world, based on previously extracted scenes.

Our contribution can be summarized as follows:

(1) We combine the spatial layout estimation with pose tracking technology for rational and logical
AR visualization, breaking through rendering limitations.

(2) We present a novel automatic method for fusing AR scenes in an indoor environment, which does
not rely on the conventional depth detection or 3D modeling processes. No professional data
acquisition equipment is needed in this approach, as it is more resilient to spatial alterations and
more faithfully represents changing indoor scenes.

The organization if this paper is as follows. The related work is reviewed in Section 2. The main
methods are presented in Section 3. Section 4 describes the experimental setup and discusses the
experimental results. The conclusions and recommendations for future work are offered in Section 5.

2. Related Work

2.1. AR Tracking Technology

Pose tracking technology has made remarkable progress, but scene fusion, however, has not kept
up. On the one hand, current tracking methods always focus only on the capabilities and efficiency of
tracking camera poses, but ignore visual appearance [2–7]. On the other hand, natural feature tracking
approaches that only employ reference detail correspondences are not accurate enough when it comes
to rational expression of spatial information and seamless scene fusion in indoor environments.

A number of researchers have investigated the use of AR visualization with GIS data.
Gary R. et al. [15] built an AR platform to visualize 3D data outdoors, but they used a tripod-based
computer. Wei Huang et al. [16] developed an outdoor AR system that needs 3D GIS to improve the
efficiency and accuracy of registration in outdoor environment. Pei-Jung Lin et al. [17] integrated GIS,
LBS (location-based services), MAR (mobile augmented reality), and information related to corporate
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mobile marketing to create an app for tourists using Android and iPhone systems. These approaches,
however, only served for outdoor use, and specialized equipment was required.

In the related computer vision literature, geometric features are usually considered in the estimation of
camera pose. Ferrari et al. [18] recognized and textured by tracking of parallelogram-shaped and elliptical
image regions, which extracted in affinely invariant regions. Thierry et al. [19] proposed a technique
composed of cameras and projectors used to determine the pose of the object in the real world. The major
handicap of this technique is the necessity of system calibration using grids. Both of their methods
were limited to the presence of planar structures in an AR scene, thus restraining the applicability;
other approaches are based on the 3D model overcome this problem.

Instead of learning the appearances of the edge sample points from the images, a textured CAD
model was used in [11]. Skrypnyk and Lowe [20] developed a system which localizes object in the
context of AR based on Scale-Invariant Feature Transform (SIFT) descriptor [21], the recognition of their
method relies on the 3D model established by multi-view correspondences. Gabriele Bleser [22] argued
that solution relies on a 3D model of the scene that is used to predict the appearances of the features
by rendering the model based on data from the sensor fusion algorithm. Some recent visual–inertial
SLAM (simultaneous localization and mapping) systems provide experimental results on realistic
data, but within simple test environments [9,10]. Recently, a study investigated reaching and matching
tasks in near-field distances [23]. Other approaches allow computing both camera displacement and
the structure of the scene using on-the-fly techniques based on real-time structure from motion [8] or
Virtual Visual Servoing [24]. However, since such 3D information is not easily available on mobile
devices in certain circumstances, it is sometimes necessary to achieve the pose computation with less
constraining knowledge on the viewed scene.

As shown in Table 1, most of the available tracking techniques can be divided into four classes:
sensor-based, feature-based, marker-based, and model-based. Despite the great progress made in pose
tracking, reasonable and precise scene fusion remains core concern in AR visualization. Most of the
techniques developed to overcome those issues either ignore visual effect or require costly human or
material means for pre-building 3D models.

Table 1. Augmented reality (AR) tracking techniques.

Tracking Technique Advantage Limitation

Sensor-based No maintenance required and no range limit Hard to apply in indoor environments

Feature-based Flexible and without pre-building 3D model No exact position

Marker-based Simple to operate and easy to realize Needs regular maintenance and suffers
from limited range

Model-based Provides exact position Requires costly model processing

2.2. 3D Indoor Scene Understanding

Single image based spatial layout extraction is one of the most fundamental tasks in computer
vision and image understanding. Recently, machine-learning algorithms have shown outstanding
performance in fulfilling this task. These approaches can be divided into two major classes. In the first
class, researchers employ only geometry-oriented techniques to estimate objects and layout candidates,
determining the best matches using Structure Learning. With the advent of deep learning came the
second type of layout extraction approaches that introduced FCN to add features to the process and
enhance the extraction results.

Representative of the first type is the work in 2009 by Hedau et al. [12], who generated candidate
box layouts based on vanishing points and line segments. The best layout is chosen by the structured
learning framework [25]. In the same context, Lee et al. [26] improves the results by adding one
more feature to the extraction process, an orientation map that labels three orthogonal surface
directions based on line segments. In addition, Hedau et al. [27] advanced their earlier work by
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extending the cuboid detector to a more general class of boxy objects and incorporated the spatial
constraints. Similarly, Fouhey et al. [28] incorporated human pose estimation into indoor scene layout
understanding. Choi, W. et al. [29] presented a 3D geometric phrase model that captures the semantic
and geometric relationships between objects.

Some research has also been dedicated to improving efficiency when generating layout hypothesis.
Wang et al. [30] proposed a discriminative learning method using latent variables and the prior
knowledge to infer mutually 3D scenes and clutter. Schwing et al. [31] derived a branch and bound
method that splits the label space according to 3D layout candidates, and bound the potentials in these
sets, thus detecting objects in 3D boxes based on integral geometry.

With the rise of deep learning, more scholars are applying neural networks to solve indoor layout
estimation problems. The second type of spatial layout estimation combines neural networks and
structured learning. For instance, Mallya and Lazebnik [32] applied a FCN to learn the informative
edge and geometric context jointly from an RGB image. The results of FCN training were used as
new features in a maximum margin structured classifier to select the best-fitting layout. Ren et al. [33]
proposed a Coarse-to-Fine Indoor Layout Estimation (CFILE) method; they adopted FCN to obtain
a coarse-scale room layout estimation, which combines layout contour properties and surface properties.
Then, they formulated an optimization framework that enforces several constraints for layout detail
refinement. Instead of learning edges, Dasgupta et al. [34] employed a FCN to learn the semantic surface
labels and optimized the spatial layout using vanishing lines.

3. Methods

3.1. Overview

In this study, our goal is to fuse, in real time, a virtual 3D geometric model onto a suitable section
of the real world using a monocular image. The AR system consists of two parts, as illustrated in
Figure 1, the client side and the server side.
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Figure 1. The process of indoor 3D scene fusion for AR-GIS visualization.

As shown in the top left half of Figure 1, we first capture a reference image of the indoor environment
that we want to track using a mobile phone. On the sever side, as shown on the right side of the figure,
features are extracted, and the spatial layout structure estimated based on a FCN. The spatial layout
divides an indoor scene into three separate parts: walls, ceilings, and floors. As shown in the down left
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half of figure, the client side grabs a key frame from a real-time smartphone video stream. A set of input
relevant configuration files are obtained from server-side. These include the feature descriptors (.iset)
used for camera pose tracking, and corresponding spatial layout coordinates (.txt) for exact positioning
virtual object. Camera-pose tracking is based on feature matching between reference and video frame
image. After applying a coordinate transformation to the layout structure, the world coordinates of the
indoor scene layout are calculated. Fusion visualization is achieved by rendering the 3D model onto the
corresponding position of the real world based on the camera pose and the transformed layout coordinates.

3.2. Camera-Pose Tracking Based on Natural Features

In a camera-imaging model, the imaging process can be described as a process transforming
the real-world coordinates in sequence to the camera, image, and pixel coordinates. As is shown in
Equation (1), f is the camera focal length, and K is known as the camera intrinsic matrix.
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where R and t of matrix Tcw are the position and pose of the camera, known as the camera extrinsic
matrix. XwYwZw is world coordinate, XcYcZc is camera coordinate, and uv is pixel coordinate.

A tracking camera pose for a target scene is essential to establish a relationship between reference
and video frame image. Consider two images of a plane shown in Figure 2.
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Figure 2. Two images of a 2D plane are related by a homography.

We captured two images from different perspective. The red dot represents the same physical
point in the two images. With the homography matrix between two images, we can easily figure out
the point b value according to point a.

Looking at points Pa in a plane, passing from the projection Pb = (ub, vb, 1) of p in b to the
projection Pa = (ua, va, 1) of p in a:

pa =
za

zb
Ka ∗ Hba ∗ K−1

b ∗ pb

where za and zb are the z coordinates of P in each camera frame and homography matrix Hba is
Hba = R − tnT

d . R is the rotation matrix by which b is rotated in relation to a; t is the translation vector
from a to b; n and d are the normal vector of the plane and the distance to the plane, respectively.
Ka and Kb are the cameras’ intrinsic parameter matrices. The homography matrix is a transformation
(a 3 × 3 matrix) that maps the points in one image to the corresponding points in the other image.
It has eight degrees of freedom.
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We set the target plane Z = 0, the Equation (1) can be described as
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where λ = 1/Zw.
For calculating a homography between two images, we need to know at least four point

correspondences between the two images. If there are more than four corresponding points,
the Random Sample Consensus (RANSAC) approach can be used to iteratively calculate and obtain
the most inliers as the optimal result. Iterative calculation counteracts the effect of noise, and thus
can achieve a better result than using only four point correspondences. Thus, 3D registration based
on natural planar features using homography is composed of the dot product of the camera intrinsic
matrix and the camera extrinsic matrix. The former can be acquired by camera calibration, and the
latter acquired by matrix decomposition, and an object can be easily rendered onto the position
recognized and extracted from a reference image, according the homographic relationship.

Feature matching solves 3D registration based on planar natural features; this process can be
divided into feature detection, feature description, and descriptor matching. There has been a lot
research on this particular topic [14,35–37]; thus, we will not detail feature matching techniques. In AR
fusion visualization, before drawing a 3D model into indoor environment, the real scene must be
recognized, as homography only provides corresponding relationships between two images.

3.3. Spatial Layout Estimation

Achieving seamless scene fusion requires an exact position for a 3D model in a dynamic camera
image. To solve this problem, we employ spatial layout estimation in a way similar to the method
described by Mallya et al. [32]. The pipeline of spatial layout prediction is divided into two steps: learning
to predict rough layout (Figure 3c,d) and ranking box layouts (Figure 3e). In the first step, we apply
a FCN to learn the rough layout and geometric context from a RGB image captured by a smartphone
(Figure 3c,d). In the second step, the straight lines and three mutually orthogonal vanishing points are
estimated from the realistic image (Figure 3b). Then, the layout candidates (Figure 3e) are generated based
on direction information of the vanishing points [12]. At this stage, the candidates of a room define the
3D parametric representation of the layout major surfaces in the scene. The best-fit layout is selected by
ranking these layout candidates based on the FCN results. Layout estimation divides an indoor scene
into three separate parts as walls, ceilings, and floors. Based on these results, we set the 3D model into
a suitable position in a real-world scene as represented in a dynamic mobile phone device.
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3.3.1. Learning to Predict Rough Layout

For estimating the layout structure, a rough layout is defined as the edges of the projected 3D box
that fits the room. There are three types of such edges: those between two wall faces, between walls and
the ceiling, and between walls and the floor. Ground truth edge maps are generated from the original
ground truth format of [12], which consists of polygons corresponding to the different room faces.
All of the pixels in the resulting mask are considered positive examples of a rough layout, even when
the actual edges are occluded by clutter, such as furniture, and all other pixels are considered as part of
the background or negative class.

The FCN is based on VGG-16 structure using Caffe [38]. It is trained with 32-pixel prediction
stride to accomplish two tasks simultaneously: rough layout extraction and geometric context labeling.
The FCN structure is illustrated in Figure 4.
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We perform joint training by sharing all layers of the FCN except for the de-convolutional layers that
produce the softmax probability maps for the respective types of output. The total loss of the network
is the sum of the two cross-entropy classification losses: one for rough layout prediction, and one for
geometric context label prediction. Joint loss optimization helps to improve the accuracy of the edge maps.

3.3.2. Ranking Box Layouts

Given an input image, we use the approach presented in [12] to estimate the vanishing points
of the scene. This approach exploits edge-based votes for vanishing points using the Canny edge
detector [39]. Once the vanishing points are acquired, layout candidates are generated by combining
the rays of vanishing points from two directions.

For selecting the best-fit layout, we train a function, f (x, y; w), to assign a score to the automatically
generated candidate layouts for an image. The mapping gives a higher value for the correct
combinations of input images and layouts. Given a set of training images {x1, x2, . . . xn} and their
layouts {y1, y2, . . . yn} , for an image xn with a best-fit box yn, the function f will assign a higher score
to layout y, as it is most similar to yn. We give a new test image to the function, then the best-fit layout
is chosen by

y∗ = arg maxy f (x, y; w) (3)

This structured regression problem is solved by using a max-margin framework [25], in which the
function f (x, y) = wTΨ(x, y), where Ψ(x, y) is the set of features [12]. In our experiments, we use two
types of input features: rough layout and geometric context; both are FCN results.
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3.4. Fusion of Real Indoor Scene and Virtual 3D Object

For fusing a virtual 3D model and a real scene, the key operation is correcting the projection in
a reference image until it appears suitably rendered. We render the 3D model onto reference images
based on previous feature matching results. At the same time, the exact position of wall, ceiling,
and floors in indoor scene is determined according to the spatial layout estimation result. The spatial
layout coordinate points and the feature points in reference images are saved together. The complete
fusion workflow on the client-side is illustrated in Figure 5.
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Figure 5. The complete fusion workflow in client-side.

As shown in Figure 5, the fusion procedure in client-side begins with a key frame from a real
time smartphone video stream. The homography matrix was calculated based on the feature matching
between reference and video frame image, while the RANSAC was used to remove outliers to improve
the matching accuracy of feature points. The world coordinates of the indoor scene layout were
calculated by applying a coordinate transformation to the layout structure coordinates extracted
previously. Fusion visualization is achieved by rendering the 3D model onto the corresponding
position of the real world based on the camera pose and the transformed layout coordinates.

(a) Feature extraction

Freak features are extracted from the current frame of the video sequence

(b) Feature matching

Feature matching occurs between a loaded dataset and a set of key points extracted from an input
image. The new features are matched to the reference image features using the ICP algorithm, resulting
in a set of 2D-to-2D correspondences.

(c) Spatial layout coordinate-points transformation

The geometric relationships between the real world, virtual objects, and the camera are defined
in the same generic units. However, the spatial layout is based on pixel coordinates. To overcome
this issue, we transform the spatial layout coordinates to the world coordinates according to the pixel
dimensions and dots per inch (DPI) of the reference image.

(d) Position and orient object

For positioning and orienting the 3D model, we create a matrix suitable for passing to OpenGL to
set the viewing transformation of the virtual camera. A matrix is formed so that the origin point of the
reference image is registered to a corresponding point in the world coordinate system, with the image
lying in the x-y plane. The positive x axis points to the right of the reference image, the positive y axis
to the top of the image, and the positive z axis out of the image. This is a right-hand coordinate system
in the common standard for OpenGL graphics.
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(e) Render 3D objects in video frame

After the coordinate and viewing transformation, we can easily define the object coordinate
values in AR viewport. Based on the perception of the indoor scene, the exact 3D model position
was given according to the logical relationship between object and real scene, such as a desk on the
floor, or picture on the wall. Finally, AR scene fusion is implemented by rendering the virtual object
using OpenGL.

4. Experiments

In order to verify the proposed AR indoor 3D scene fusion method, several experiments were
conducted to collect a target scene using smartphones in the State Key Laboratory of Information
Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) of Wuhan University. In our
experiment, a 3D tracking method based on the structural features of indoor scenes and scene
recognition based on 3D indoor scene understanding is used, to investigate appropriate ways of
combining them in AR.

4.1. Experiments Setup

Our prototype was operated on a PC server and a client mobile device. The server configuration
included a 2.60 GHz Intel(R)Core(TM) i7-6700HQ CPU and 8 GB RAM. The client consisted of
an android system mobile phone of Lenovo PB2-690N (operation system: Android 6.0.1, CPU: MSM8976,
CPU frequency: 4 × 1.8 GHz + 4 × 1.4 GHz, RAM capacity: 4 GB).

The quickest way to develop an AR application is to use the AR Development Kit. Currently,
the common AR Development Kit on the Android platform includes metaio AR, Vuforia, EasyAR and
ARToolKit [40]. In our experiments, we established an AR fusion system using the ARToolKit5 in Visual
studio 2013. In contrast to other widely used development kits, ARToolKit is open source, making it
more suitable for theoretical research on 3D registration algorithms, improvements, and development
of depth customization in AR applications.

4.2. Experimental Process

4.2.1. Offline Training Stage

During this stage, we trained the reference images and estimated spatial layout structure on the
server side.

(a) Image training

In the first step, we decided on the image set resolutions. The source image was resampled
at multiple resolutions, generating an image set (.iset) file. This file contained the raw image data
loaded into the application at runtime for tracking. Features are extracted at three or more resolutions,
since dots will appear in the image at different resolutions depending on how close or far away the
camera is from the image. We subsequently extract the FREAK feature and generate a feature dataset
from the reference images. The dataset is rendered in Figure 6, and the counts of feature points in each
image are illustrated in caption.

(b) Estimating spatial layout

The indoor scene images were captured in different rooms at LIESMARS. Like in previous work [12],
the structured regressor is trained on the Hedau train set that has 308 images. For training the FCN,
the training dataset used in our method is Hedau+ [32], in which the number of training images are 284.
We augmented the training set by 16 times using standard transformations such as cropping, mild rotation
and scaling. The models were tested on a recently introduced LSUN dataset, including 1000 test images.
The prediction error on the LSUN test set was 16.71%. This result demonstrates that the model generalizes
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effectively, despite not being retrained. As shown in Figure 7, the scenes contain floors, walls, and ceilings.
The extraction results are shown in Figure 7. As shown, the spatial layout divides an indoor scene into
five parts: left wall, center wall, right wall, ceiling, and floor.
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Figure 6. The pixel size of each reference image is 650 × 500 and the DPI value of each is 100. The features
used in continuous tracking are outlined by red boxes, and the features used for identifying the pages and
initializing tracking are marked by green crosses. (a) 24 feature points; (b) 53 feature points; (c) 70 feature
points; (d) 37 feature points.
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4.2.2. Online Fusion Stage

In this implementation, we calculated the camera pose, and rendered the 3D object in the indoor
scene based on the result of spatial layout estimation.

(a) Camera pose computing

ARToolKit5 provides the FREAK feature matching and iterative closest point (ICP) method to
calculate the real camera position and orientation relative to square shapes or flat textured surfaces.

(b) Virtual object rendering

As discussed in Section 3.4, before rendering object in AR scene, we transform the spatial layout
points to the world coordinate system. This relates to the required resolution, commonly expressed as
pixels or Dots Per Inch (DPI).

According to the transformed spatial layout, we input the object position where we wanted and
rendered it in the real world.

4.3. Experimental Results and Discussion

Our experiment required only reference images, and not manual initialization of the tracker.
We took photos at different positions in LIESMARS using a mobile phone. For fusing the indoor AR
scene, we run the system on a Lenovo smartphone and set the camera image size is 640 × 360.

We selected four indoor scenes and trained their reference images in the server side. The AR-GIS
visualization results are illustrated in Figure 8. In our example, we tracked the target scene and rendered it
as a 3D model using two AR systems. The first column figures only use the ARToolKit system, which lacks
3D indoor scene understanding (Figure 8a). Unlike Figure 8a, the second column 3D models in Figure 8b
were rendered in more rational positions, using the proposed AR system that does incorporate 3D indoor
scene understanding.
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Figure 8. Experiment results. (a) A 3D model rendered by an AR system only using ARToolKit; (b) A 3D
model rendered by an AR system based on 3D indoor scene understanding.

To demonstrate the real time capability of the proposed system, we have recorded its average
computation time on a variety of scenes in Figure 8. As shown in Table 2, the average computation
times were generally less than 20 ms.

Table 2. Average computation times.

Average Computation Time

Test 1 17 ms
Test 2 18 ms
Test 3 21 ms
Test 4 17 ms

In this work, errors stem from the imprecise estimation of the spatial layout from a given image.
The prediction error on LSUN test set and Hedau test set was 16.71%, and 12.83%, respectively.
These results demonstrate that the layout estimation satisfies the requirements for AR visualization,
in most cases. Errors may occur under conditions of extreme occlusion, when the edges of the predicted
structural layout are largely occluded by indoor objects. As shown in Figure 9, in this indoor scene,
for example, the wall–floor line is almost completely blocked by computer tables.
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Figure 9. (a) Spatial layout estimation failure; (b) AR fusion visualization failure.

From these experimental results, we clearly perceive that our AR visualization exhibits a close
relationship with spatial information. The outcome presented in Figure 8 returns high quality fusion
between virtual object objects and real indoor scenes. In fact, the fusion content manifests continuous
and homogenous graphical and geometric details. Furthermore, these rendering and accuracy results
conform to our claims about the relevance of our method not only for drawing bare 3D models, but also
when detecting spatial information to fulfill GIS requirements in indoor environments.

5. Conclusions and Future Work

The work described in this paper aims to integrate an indoor scene recognition technique and
3D registration method in order to optimize the visual quality of AR-GIS in an indoor environment.
We presented an innovative automatic approach to enhance the AR seamlessly alignment. The goal
of this paper is to promote the AR expression rationally and logically in a way that enhances the user
experience and solves rendering limitations stemming from imprecise positioning expression in AR-GIS
visualization. We generate the correspondent relationship between reference images and 3D indoor scenes,
without rebuilding the geometric construction. Before performing AR-GIS system, we consider the planar
surfaces in an indoor environment and reference images obtained with a mobile phone. Then, the interior
layout extraction performed on a captured image using Fully Connected Networks (FCN). One advantage
of our system is that it efficiently allows the fusion of virtual objects and real-world visualization without
any professional data acquisition equipment, such as a depth camera. This makes the AR-GIS technology
easily accessible to a much broader audience. The fusion experiments with virtual objects in different sites
found at LIESMARS at Wuhan University demonstrate that the proposed method can preserve a high
accuracy fit between the virtual objects and real-scenes.

Regarding application fields, the proposed registration mechanism is not only advantageous for
AR-GIS visualization, but it is also promising method for 3D navigation and environment monitoring.
In the future work, we are expecting to introduce functionalities that will support varied GIS information
and analysis result display, based on flexible and realistic AR scenes generated using the novel approach
presented in this paper. As it is the case with any engineered system, we can also enhance the process,
especially during the scene recognizing, using a more sophisticated and adaptable FCN.
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