
 International Journal of

Geo-Information

Article

A Smart Web-Based Geospatial Data Discovery
System with Oceanographic Data as an Example

Yongyao Jiang 1 ID , Yun Li 1 ID , Chaowei Yang 1,* ID , Fei Hu 1, Edward M. Armstrong 2,
Thomas Huang 2, David Moroni 2, Lewis J. McGibbney 2, Frank Greguska 2 and
Christopher J. Finch 2

1 NSF Spatiotemporal Innovation Center and Department of Geography and GeoInformation Science,
George Mason University, Fairfax, VA 22030, USA; yjiang8@gmu.edu (Y.J.); yli38@gmu.edu (Y.L.);
fhu@gmu.edu (F.H.)

2 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
Edward.M.Armstrong@jpl.nasa.gov (E.M.A.); Thomas.Huang@jpl.nasa.gov (T.H.);
David.F.Moroni@jpl.nasa.gov (D.M.); Lewis.J.Mcgibbney@jpl.nasa.gov (L.J.M.);
Francis.Greguska@jpl.nasa.gov (F.G.); Christopher.J.Finch@jpl.nasa.gov (C.J.F.)

* Correspondence: cyang3@gmu.edu; Tel.: +1-703-993-4742

Received: 15 January 2018; Accepted: 1 February 2018; Published: 11 February 2018

Abstract: Discovering and accessing geospatial data presents a significant challenge for the Earth
sciences community as massive amounts of data are being produced on a daily basis. In this article,
we report a smart web-based geospatial data discovery system that mines and utilizes data relevancy
from metadata user behavior. Specifically, (1) the system enables semantic query expansion and
suggestion to assist users in finding more relevant data; (2) machine-learned ranking is utilized
to provide the optimal search ranking based on a number of identified ranking features that can
reflect users’ search preferences; (3) a hybrid recommendation module is designed to allow users to
discover related data considering metadata attributes and user behavior; (4) an integrated graphic
user interface design is developed to quickly and intuitively guide data consumers to the appropriate
data resources. As a proof of concept, we focus on a well-defined domain-oceanography and use
oceanographic data discovery as an example. Experiments and a search example show that the
proposed system can improve the scientific community’s data search experience by providing query
expansion, suggestion, better search ranking, and data recommendation via a user-friendly interface.

Keywords: knowledge base; semantic search; user behavior; metadata; search ranking; recommendation;
big data

1. Introduction

The global ocean plays several critical roles in the physical climate system of the Earth. The oceans
receive more than half of the solar radiation entering the climate system, and evaporative cooling
balances much of the solar energy absorbed by the oceans, making them the primary source of water
vapor and heat for the atmosphere [1]. Currents in the oceans can move water over great distances
and carry heat and other ocean properties from one geographic area to another. The poleward energy
transport by the ocean is important in reducing the pole-to-equator temperature gradient. Horizontal
and vertical transport of energy by the ocean can also alter the nature of regional climates by controlling
the local sea surface temperature [2]. The recent extreme ocean-related weather events (e.g., Hurricanes
Harvey, Irma, and Maria) have led to multiple natural disasters in the United States and around
the world, resulting in catastrophic levels of damage to our society and environment. To accurately
track, predict and assess the consequences of these disasters and to enhance disaster preparedness
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and emergency response, near real-time and high spatiotemporal resolution satellite and in-situ
oceanographic data has become more important than ever.

However, discovering and accessing oceanographic data in a manner that precisely and
efficiently satisfies user demands presents a significant challenge for the ocean science community [3].
For example, the current difficulties that researchers face in discovering and accessing the most
applicable observational data at NASA has detrimental consequences for meeting the challenges
of climate and environmental change, identified in the 2011 NASA Strategic Plan [4]. At present,
the satellite observations needed by the scientific community to evaluate and improve model
simulations are under-utilized because the appropriate data are extremely difficult to find among the
petabytes of available data [5]. Since the volume of data is only increasing as a function of time, a new
paradigm of more open, user-friendly data access is needed [6].

In this context, many online portals have been built to improve the accessibility of oceanographic
data. For example, the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC)
serves physical oceanographic satellite data to the Earth science community. In reality, scientists are
still limited to the use of datasets that are familiar to them and they often have little knowledge of the
existence of datasets that could be a better fit for their model or application due to the inefficiency of
current geospatial search engines [7]. Specifically, finding appropriate geospatial data efficiently and
accurately is challenging in three aspects.

(1) Lack of semantic context. Keyword-based search is widely adopted in operational geospatial
data portals. Since keyword search uses string matching without considering the semantic
context, precision, and recall, the two important measurements for search relevance are hard
to be guaranteed [8]. For example, when querying “sea surface temperature” using a keyword
search, the query is interpreted as a Boolean query “sea AND surface AND temperature.” The
search results likely contain the terms “sea”, “surface” and “temperature” within their textual
content but may not result in documents containing its common abbreviation “sst”.

(2) Only single attribute based ranking. There are typically hundreds or even thousands of datasets
related to the given query. Current search engines in most geospatial data portals tend to induce
end users to focus on one single data attribute (e.g., spatial resolution) [9]. PO.DAAC provides
several features to rank the search results, including all-time popularity, monthly popularity, grid
spatial resolution, etc. This approach largely fails to take account of users’ multidimensional
preferences for geospatial data, which often results in less than optimal user experience [10].

(3) Lack of data relevancy. There exist hidden relationships among data hosted by a search engine.
For example, after a user clicks on a data, he or she should be informed of the latest version of
the clicked data which often has a better accuracy. In addition, Earth system scientists often need
to interconnect their research using multiple physical parameters because important discoveries
and the overall progress of science often transcend the domain of a single discipline [11].

To address the above challenges, we propose a smart web-based geospatial data discovery system
that mines and utilizes data relevancy from metadata, user behavior, and ontology. The contributions
of the proposed system are as follows: (1) the system enables semantic query expansion and suggestion
to assist users in finding more relevant data; (2) machine learned ranking is utilized to provide the
optimal search ranking based on a number of identified ranking features that can reflect users’ search
preferences; (3) a hybrid recommendation module is designed to allow users to discover related data
considering metadata attributes and user behavior; (4) an integrated graphic user interface design is
developed to quickly and intuitively data consumers to the appropriate data resources. As a proof of
concept, we focus on a well-defined domain-oceanography and use oceanographic data discovery as
an example.
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2. Related Work

Previous work has attempted to solve the semantic problem through manual creation of
ontologies [12]. The associations and concepts (e.g., polysemy and synonym) is often used to provide
semantic context for a given query. Geospatial ontologies such as the Semantic Web for Earth and
Environmental Terminology (SWEET) [13] capture concepts and relations in the geospatial domain.
European INSPIRE (Infrastructure for Spatial Information in the European Community) implemented
a semantic-based search approach based on ontology [14]. The problem with the manual creation of
ontologies is that it is very labor intensive and hard to maintain up-to-date. Another approach to this
challenge has been applied through document-clustering and dimension-reduction techniques such
as Latent Semantic Analysis (LSA) [15] and Latent Dirichlet allocation (LDA) [16]. Li, Goodchild [7]
developed a geospatial semantic search algorithm integrating LSA in the broad domain of Earth science,
and Hu, Janowicz [17] performed topic modeling using LDA in geospatial portals. The advantage
of these solutions lies in their automaticity and human and language independence. However,
this approach is prone to noise and hard for a human to understand or to interact directly. We, therefore,
propose an approach to discovering latent semantic relationships by mining user search logs.

Although various ranking algorithms are adopted by the existing geospatial data portals, such as
term frequency-inverse document frequency (TF-IDF) and Okapi BM25 [18], all of them only focus
on measuring the overlap between user query and metadata content. Attempts have been made to
improve the keyword based ranking by performing semantic analysis, but other aspects of the data
that can be related to users’ search interest are overlooked such as when the data was released [7,17].
Martins and Calado [19] apply machine learning to rank newspaper documents of geographic query.
Shaw, Shea [20] from Foursquare proposed a spatial search algorithm using machine learning to infer
users’ location. Considering the unique needs of geospatial data discovery, we therefore propose a few
ranking related features and apply a machine learning approach to automatically learn a function to
weight the ranking features.

With the advancement of semantic technologies, an emerging approach to connecting data is to
publish data as “Linked Data” [21]. A good example in geospatial domains is the GeoLink EarthCube
project [22]. GeoLink allows users to browse the data by clicking on a metadata attribute (e.g.,
instrument) to view the related data that share the same attribute value. One issue is that it requires
the data to be published using the semantic standards such as Resource Description Framework
(RDF). Moreover, there could be many data related to the clicked data which can be overwhelming.
Recommender system has achieved remarkable success in many commercial products (e.g., Netflix).
It typically produces a list of recommendations in one of two ways—through collaborative and
content-based filtering [23]. Vockner et al. [24] proposed a recommendation system based on LSA.
As an early attempt in the geospatial domains, we therefore propose a hybrid recommendation method
of measuring the relatedness of data with a few identified metadata attribute combined with users’
browsing behavior.

This paper also discusses how to integrate the above three functionalities into a data discovery
system and how each of them is supported by different system components. The overarching objective
is to increase the efficiency of data exploration and enable emerging user communities to readily
discover and access data appropriate to their endeavors.

3. System Framework

3.1. Architecture

The system consists of three major components: Web graphic user interface (GUI)/services,
knowledge base, and smart engine (Figure 1). Users interact with the system through the
Web GUI while generating web logs. The knowledge base stores metadata, user behavior data,
and machine-learned models. The smart engine includes four subcomponents: profile analyzer,
ranker, semantic similarity calculator, and recommender. The profile analyzer extracts user behavior
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data from raw Web logs on a regular basis and stores it into the knowledge base. The semantic
calculator calculates the semantic similarity between different user search queries based on the user
access pattern, which supports both the ranker and recommender. The ranker searches the metadata
index and produces an optimal list of ranked results based on a few predefined ranking features,
a pre-trained machine-learned ranking model, and the semantic similarity results. The recommender
generates a list of related datasets based on the data that is currently being viewed according to a few
pre-defined recommendation features, a pre-trained collaborative filtering recommendation model,
and the semantic similarity results as well.
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3.2. System Components

3.2.1. System Web GUI

The system Web GUI adopts the user-centered design and provide the interface for user
interactions with: (a) search constraints input; (b) ranked results; (c) data exploration based on
recommendations; and (d) navigation through query suggestion to find relevant datasets.

Three panels are added to assist users with better data discovery and access: (a) “related queries”
panel is provided to display the semantically similar user queries; (b) “machine learning based ranking”
panel is developed to provide more relevant results for end users; (c) “related dataset” panel is added
once user selected a specific dataset. Domain scientists would be able to use the three functionalities to
quickly nail down available datasets and be directed to the data downloading service. Web services of
these three components are also developed to support communication with other applications.

3.2.2. Knowledge Base

The knowledge base includes three parts: metadata, user behavior, and machine-learned models.
The metadata is the description of data and is indexed in a full-text search engine. The user
behavior is the log mining results of the profile analyzer, which lays the groundwork for the ranker,
semantic similarity calculator, and recommender. The machine-learned models include the pre-trained
ranking model, the co-occurrence matrix of user search history and clickstream, and the pre-trained
collaborative filtering recommendation model.
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3.2.3. Smart Engine

As the most crucial component of the system, the smart engine consists of four subcomponents:
profile analyzer, ranker, semantic similarity calculator, and recommender. The profile analyzer
performs log mining and updates user access pattern in the knowledge base periodically. At query
time, the smart engine takes the search input and coordinate the search against the metadata index.
The search return of the metadata index is then re-ranked by the ranker. Given a user query,
the similarity calculator can produce a list of highly related user queries. Once users select a data in
the ranked results, the recommender would provide a list related data.

3.2.4. Profile Analyzer

Profile analyzer extracts user access pattern from raw web logs. The log processing workflow has
four steps: user identification, crawler detection, session identification, and structure reconstruction
(Figure 2). The user identification step identifies each individual user through IP address and web
browser. The crawler detection step detects and removes web logs generated by the robotic activities.
The session identification splits a sequence of web logs of each user into sessions representing single
visits of that user. The session reconstruction step connects user actions according to the previous page
information of the web log. More details can be found at Jiang, Li [25].
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There are two types of output from the profile analyzer: user search history, and clickstream.
User search history refers to the query searched by a given user in a certain pre-defined time period.
Clickstream stands for a series of mouse clicks made while visiting a website. This information is kept
in the knowledge base to support other components of the smart engine.

3.2.5. Semantic Similarity Calculator

The similarity calculator computes the semantic similarity between user queries. The assumption
is that if two queries are similar, (1) the more frequent they would co-occur in distinct users’ search
histories; (2) the clicked data would be also similar in the context of large-scale user behaviors.
Based on this assumption, the LSA is applied to the query co-occurrence matrix of user search
history and clickstream to uncover the latent links between semantically-related terms (Figure 3).
The results from both sides are independently scored and intersected to remove noise unique to each
side. The resulting similarity values range from 0 (i.e., no relation) to 1 (i.e., identical). The similarity
results are stored in the knowledge base and updated periodically. More details can be found at Jiang,
Li [26]. The highly-related terms along with their associated similarity values can be used for query
expansion and suggestion.
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3.2.6. Ranker

The ranking module is designed to improve the ranking of the search results (Figure 4). When
a user submits a query, it is then converted into a semantic query based on the returned results of
semantic similarity calculator. For example, query “sea surface temperature” would be converted to
“sea surface temperature OR sst”. The search index would then return the top K results for the semantic
query. After that, feature extractor would extract the ranking features for each of the search results.
The ranking features include text-based relevance score, spatial similarity, version number, processing
level, release date, spatial resolution, temporal resolution, all-time popularity, monthly-popularity,
and user popularity. Once all the features are prepared, the top K results would then be put into a
pre-trained RankSVM ranking model, which would finally re-rank the top K retrieval.
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3.2.7. Recommender

The recommendation module is developed to predict data that users might be interested in.
Recommendations are made based on two types criteria: metadata content and user behavior. The goal
is to identify the most similar data based on the data that is being viewed. Figure 5 describes the
workflow of the recommendation algorithm. In the metadata content based calculation, after being
weighted, metadata attributes (e.g., topic, processing level, spatial resolution) are divided into three
categories: spatiotemporal, ordinal and categorical. Corresponding similarity algorithms are designed
for each category. In the user behavior based method, data co-occurrence matrix with respect to
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user sessions is constructed from user behavior data and then the LSA is applied to calculating the
similarity. The intuition is that two data are more likely to be similar if they co-occur in distinct users’
web sessions more frequently. Finally, the weighted average of these two methods is used to rank the
recommendation results.
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3.3. Implementation

3.3.1. Data

Our experimental metadata come from all publicly available collection-level metadata from
PO.DAAC. PO.DAAC distributes hundreds of unique datasets relevant to the world’s oceans including
those in the areas of ocean wind, topography, temperature, circulation, salinity and sea ice. The breadth
and number of datasets in each domain is a key challenge to search relevance from the perspective of a
user. For example, as shown in Table 1, the sea surface temperature (SST) catalog contains 205 datasets
covering multiple disciplines.

Table 1. List of number of domain specific datasets available via the PO.DAAC and their community
applications (Parameter abbreviations are defined as follows: Chl-A = Chlorophyll-A Concentration,
G = Gravity, OSC = Ocean Surface Currents, OST= Ocean Surface Topography, OSW = Ocean Surface
Wind Speed, OSWV = Ocean Surface Wind Vectors, SIAC = Sea Ice Age Classification, SSS = Sea Surface
Salinity, SST = Sea Surface Temperature. Discipline abbreviations are defined as follows: ASI = Air Sea
Interaction, Met = Meteorology, OB = Ocean Biology, PO = Physical Oceanography.).

Dataset Family Example Source(s) Number of Datasets Parameter(s) Discipline(s)

Ocean Wind QuikSCAT,
ASCAT, OSCAT

94 OSWV PO, Met, ASI,
Climate, OB

Ocean Radar QuikSCAT,
ASCAT, OSCAT

50 OSWV PO, Met, ASI,
Climate, OB

Ocean Temperature AVHRR, MODIS,
AMSR-E, TMI

205 SST PO, Met, ASI,
Climate, OB

Ocean Circulation Multi-Sensor 5 OSC PO, ASI, Climate, OB

Ocean Salinity Aquarius 147 SSS, OSW, OST PO, ASI, Climate

Ocean Topography T/P, Jason -1, -2,
Envisat

29 OST PO, Met, ASI,
Climate, OB

Gravity Grace 70 G PO, Climate
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SST datasets are an essential resource for monitoring and understanding climate variability and
climate change. Historically, SST measurements have been made from ships. Ship data have been
compiled into databases like International Comprehensive Ocean-Atmosphere Data Set (ICOADS),
which in turn form the main input into long-term climate datasets. Moored and drifting buoys are
another primary source of in-situ SST data, especially in remote regions like the Southern Ocean,
where ARGO floats offer much-improved coverage. Over the tropical Pacific, the dense Tropical
Atmosphere Ocean (TAO) project-Triangle Trans-Ocean Buoy Network (TAO-TRITON) array provides
key measurements for monitoring the emergence and evolution of El Niño events [27]. In-situ data are
also the primary reference for calibrating satellite-based SST estimates [28]. Satellite-based estimates
utilize measurements from infrared (IR) and microwave wavelengths. Microwave observations are
less sensitive to clouds than IR measurements, but are more sensitive to scattering by rain, and have
lower spatial resolution. For climate research, the longest satellite-based dataset is NOAA’s OI SSTv2,
extending from 1981 to present, with the Advanced Very-High Resolution Radiometer (AVHRR)
IR measurements as the primary source data. The Group for High-Resolution SST (GHRSST) is an
umbrella mission coordinating the development of multi-spectral SST data products for both the
operational and climate communities. Currently, one of the longest global GHRSST products is the
Multi-Scale Ultra-High-Resolution (MUR) SST analysis, a 0.01 degree gridded dataset developed by
JPL, NASA, covering 2002-present [29].

Our experiments were run using one year of search records from PO.DAAC data search engine,
which is nearly 120 million records in 30 gigabytes. These Web logs are in the Apache Common
Log Format, the most widely used log format maintained by W3C. Each Web log has several fields
including client IP address, request date/time, page requested, HTTP code, and bytes served.

3.3.2. System Implementation

The system is developed using Java 8, JavaScript, HTML 5, and CSS. The Angular JS JavaScript
framework is used in the frontend development, which has a data-binding function that updates
the view whenever the model changes, as well as updates the model whenever the view changes.
The communication between the backend and frontend uses standard RESTful web-service interfaces
enabled by Apache CXF and Tomcat. Elasticsearch is used as the full-text search index. The LSA
algorithm in the semantic similarity calculator and the RankSVM algorithm in the ranker are
implemented with Spark MLlib.

We used a Hadoop cluster with 5 data nodes each having a 2.4 GHZ AMD Opteron Processor
with 4 to 8 cores and 8 to 16 GB RAM. It took about 1.5 h to index, query the one-year of Web
logs, and build the required models (i.e., the co-occurrence matrices of user search history and
clickstream). The database and models are updated monthly. The technologies used to implement
the proposed system for PO.DAAC’s dataset are: HDFS, Map/Reduce jobs, Spark, Elasticsearch,
and DC2 [30,31]. The experiment was conducted on the NASA AIST cloud platform, a hybrid cloud
computing environment provided for scientific research. The source code of the system has been
published along with this paper as an open source software (https://github.com/mudrod/mudrod)
under the MUDROD project [32].

3.4. User Scenario

After users log into the system, they type a query (e.g., ocean temperature) into the search box
(Figure 6). The auto-completion function helps during typing by predicting the rest of words users
intend to enter. When users hit the search button, a list of results is retrieved which has the default
ranking of machine learning based ranking. Users can also choose to sort the list by other metrics such
as popularity and spatial resolution. On the right-hand side, a list of related searches is displayed
(Figure 7). In this particular case, the similar queries of “ocean temperature” are “sst”, “sea surface
temperature”, “ghrsst”, etc. Next to each related search is a number in parenthesis representing the
semantic similarity value. Users can choose to click on any of these related searches to explore other

https://github.com/mudrod/mudrod
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datasets. If users would like to know more details of a particular dataset in the search list, they can
click on the “name” attribute (e.g., VIIRS_NPP-NAVO-L2P-v2.0) and more information such as version,
processing level, coverage will be displayed. According to the recommendation algorithm behind the
scene, the top related datasets are listed on the right (Figure 8). In this case, the most related dataset is
the version 1.0 of collection “VIIRS_NPP-NAVO-L2P” as the dataset that is being viewed is the version
2.0 of it. An online demo system has been made available at https://mudrod.jpl.nasa.gov/#/.
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3.5. Use Cases

Sea surface temperature data discovery is used as an example to demonstrate how the proposed
system can improve the scientific community’s data search experience by providing query expansion,
suggestion, better search ranking, and recommendation via a user-friendly interface. Common
considerations for utilizing SST datasets in climate research and model evaluation include (1) spatial
and temporal resolutions—are features like the Gulf Stream and its fronts are eddies resolved?
(2) quantity being measured—is it a “skin” temperature of a very thin surface layer or a bulk
temperature of the upper meter or more? (3) processing level—do we need level 2 ungridded data that
contains ancillary data fields as well as complete error characteristics for each pixel? (4) latency—is
near real-time data needed? (5) spatial and temporal coverage—is the study area and period covered?
(6) spatial interpolation—have the data been statistically interpolated in some manner, and what effect
does this have on the spatial and temporal variance of climate signals?

3.5.1. Query Suggestion

Figure 9 shows the query suggestion results of the query “sea surface temperature”. “sst” and
“ocean temperature” are the first two queries in the “related searches” list, which have the similarity
values of one. “sst” is a common abbreviation in the ocean science community. In the context of
oceanographic satellite data which the experiment is designing around, “ocean temperature” and
“sea surface temperature” are nearly synonymous because there are few sub-surface/deep datasets
at PO.DAAC. This fact has been verified by data engineers of PO.DAAC. Given that the goal is to
improve data discovery, this result is therefore reasonable. In fact, if more sub-surface/deep datasets
are made available on PO.DAAC, the proposed method can automatically update the similarity
according to the user access pattern. The search recall and precision can be improved by query
expansion based on these synonymous queries, which has been systematically evaluated at Jiang,
Li [26]. The third query is “ghrsst” with the similarity value of 0.83. “ghrsst” is the shorthand for
The Group for High-Resolution Sea Surface Temperature (GHRSST) which is aimed to develop a new
generation of global, multi-sensor, high-resolution near real-time SST products. Due to the quality
ghrsst provides, it has become one of the most popular sea surface temperature data collections.
Other SST oriented missions include AQUA, AVHRR-Pathfinder, Moderate Resolution Imaging
Spectroradiometer (MODIS), Suomi National Polar-orbiting Partnership (S-NPP), TERRA, which can
be found in the remaining related searches.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 15 
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3.5.2. Search Ranking

Figure 10 is the comparison of the top search results of “sea surface temperature” between
PO.DAAC search engine and the proposed system. According to the data topic in orange on PO.DAAC
website and green on the system’s user interface, the topics of the first two data on PO.DAAC are “ocean
waves, sea surface topography”, “radar, sea ice”, while that of the proposed system are “sea surface
temperature” and “temperature profiles”. This is because of the different rankings used by these two
systems. PO.DAAC uses all-time popularity by default to rank the search results. Just because the
“ocean waves” data has more downloads than “sea surface temperature” data, those data of little
relevance is ranked to the top. The weakness of only considering one data characteristics has been
overcome by the machine learning based ranking of the proposed system. This was a substantial
precision improvement in ranking problems since the ultimate goal was to put the most desired data
to the top of the search results.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 15 
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Another example is the order of dataset “AVHRR Pathfinder Level 3 Daily Nighttime SST Version
5” and “AVHRR Pathfinder Level 3 Daily Nighttime SST Version 5.1”. These two datasets are the
same AVHRR Pathfinder Level 3 Nighttime SST data of different versions. The second one is the
newer version with better quality. Just because the former has been downloaded more historically,
it outranks its replacement. A systematic evaluation based on precision at K and normalized discounted
cumulative gain suggests that the machine learning approach outperforms other methods such as
monthly popularity [9].

3.5.3. Recommendation

Figure 11 shows the recommendation results of a selected dataset—“AVHRR_SST_METOP_
B-OSISAF-L2P-v1.0”, which is the GHRSST Level 2P sub-skin Sea Surface Temperature from the
Advanced Very High-Resolution Radiometer (AVHRR) on Metop-B satellites produced by OSI SAF.
The first three datasets are AVHRR SST datasets of different satellite platforms, processing levels,
and versions. The fourth and fifth ones are the AVHRR sensor data produced by the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and the US Naval
Oceanographic Office (NAVO), respectively. The recommendation function allows users to explore
relevant data more easily, which in turn helps find the most desired data in a more timely manner.
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4. Conclusions and Discussion

This article introduces the architecture and methodologies of MUDROD, a smart web-based
geospatial data search engine aiming to improve data discovery by mining and utilizing data relevancy
from metadata and user behavior. To assist users in finding and exploring more relevant data,
a semantic similarity calculator is designed to support query expansion and suggestion. To help users
find the most relevant data, a machine learning-based ranker is developed to provide the optimal
search ranking based on a few identified ranking features. Additionally, a hybrid recommender is
utilized to allow users to discover related data considering metadata attributes and user behavior.
To improve users’ search experience, an integrated graphic user interface design is developed to
quickly and intuitively guide data consumers to the appropriate data resources.

There are several limitations with the current system. One is that the system can only process
web logs in a batch mode, which means the users’ search interest cannot be learned by the system in
real time. We plan to integrate the real-time log ingesting function as it is crucial in many cases [33].
For example, during the course of a hurricane, the most relevant data should be changing as a hurricane
region proceeds. Another limitation is that the ranking model is pre-trained using expert relevance
judgments, which is both time- and labor-intensive. We are exploring methods of using user behavior
to automatically create the training data for the machine learning ranking algorithm [34]. The last
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concern is about the ranking feature identification. While the attributes reflect our intuition and
discussion with domain experts, these are very likely not optimal. We plan to add more features (e.g.,
temporal similarity) in the future work. Additionally, a query understanding algorithm which can
parse multi-phrase query to enable better semantic search is being actively developed.
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