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Abstract: This article aims to develop a Web-GIS based landslide early warning system (EWS) for
the Chittagong Metropolitan Area (CMA), Bangladesh, where, in recent years, rainfall-induced
landslides have caused great losses of lives and property. A method for combining static landslide
susceptibility maps and rainfall thresholds is proposed by introducing a purposely-build hazard
matrix. To begin with, eleven factor maps: soil permeability; surface geology; landcover; altitude;
slope; aspect; distance to stream; fault line; hill cut; road cut; and drainage network along with
a detailed landslide inventory map were produced. These maps were used, and four methods
were applied: artificial neural network (ANN); multiple regressions; principal component analysis;
and support vector machine to produce landslide susceptibility maps. After model validation,
the ANN map was found best fitting and was classified into never warning, low, medium, and high
susceptibility zones. Rainfall threshold analysis (1960–2017) revealed consecutive 5-day periods
of rainfall of 71–282 mm could initiate landslides in CMA. Later, the threshold was classified into
three rainfall rates: low rainfall (70–160 mm), medium rainfall (161–250 mm), and high rainfall
(>250 mm). Each landslide was associated with a hazard class (no warning vs. warning state) based
on the assumption that the higher the susceptibility, the lower the rainfall. Finally, the EWS was
developed using various libraries and frameworks that is connected with a reliable online-based
weather application programming interface. The system is publicly available, dynamic, and replicable
to similar contexts and is able to disseminate alerts five days in advance via email notifications.
The proposed EWS is novel and the first of its kind in Bangladesh, and can be applied to mitigate
landslide disaster risks.

Keywords: landslides; early warning system; remote sensing; GIS; susceptibility mapping;
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1. Introduction

Disasters resulting from natural hazards account for casualties, human displacement, and property
damage on a catastrophic scale around the world. Around 1388 disasters were reported worldwide
from 2013–2016, and about 45% of all those disasters occurred in Asia [1]. Landslides are recognized as
the third type of most important natural hazard induced disaster worldwide [2]. Asia, in particular
India, Nepal, China, and Japan, are most vulnerable to rainfall-induced landslide disasters [3–7].
For example, at least 200 people were killed and six million were evacuated due to landslides and
flooding triggered by historic levels of torrential rainfall in Japan in July 2018 [8]. Landslide disasters
were infrequent in densely populated Bangladesh in the past, but in recent years, increasing human
activities such as indiscriminate hill cutting for slum and residential housing development has resulted
in many landslides [9]. Rainfall-induced landslides now pose a severe threat in the Chittagong Hill
Districts (CHD) of Bangladesh (Figure 1a). Devastating and fatal landslides have repeatedly hit
CHD (see Appendix A, Table A1). People particularly those living on the steep slopes are highly
vulnerable to landslide disasters [10–12]. On June 2017, a series of rainfall-triggered landslides caused
168 deaths and damaged 40 thousand houses in the Rangamati, Chittagong, and Bandarban districts
leading to thousands of families needing refuge in different shelters. Up until now, this is considered
as the biggest landslide disaster in Bangladesh. Another catastrophic landslide event in Chittagong
Metropolitan Area (CMA) occurred on 11 June 2007, killing 128 people. These landslides were triggered
by heavy rainfall (610 mm) over eight consecutive days [13].
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Early warning systems (EWS) are necessary when standard structural mitigation measures fail or
are absent [14–16]. EWSs are considered as essential tools for landslide disaster risk reduction [17] and
can be operational at global, regional, and local scales [18,19]. EWSs for rainfall-induced landslides
are contextual and the modeling phase depends on the correlation between landslide occurrences in
the area of interest and rainfall events triggering the disasters [20,21]. Recently, the NASA Goddard
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Space Flight Center introduced a global satellite-based rainfall-induced landslide nowcasting system
that is updated every 30 min and uses data from the Global Precipitation Measurement (GPM)
mission [22]. An operational Web-GIS based landslide EWS for Tuscany, Italy, was developed at the
regional scale by analyzing space-time variable rainfall thresholds [23]. There are many examples
of rainfall intensity-duration and probabilistic antecedent rainfall threshold analyses for landslide
EWSs [24–27]. However, rainfall is not the only contributor to landslides; other factors such as hill
cutting and deforestation [10,12], soil’s hydrological parameters [28], and antecedent soil moisture [29]
contribute. At the city or local scales, warnings are typically disseminated zone-wise considering
the spatial and temporal distribution of rainfall, landslides, and alert phases [20]. For warning
zonation purpose landslide susceptibility mapping techniques have been effectively used [29–31].
In Bangladesh, the Ministry of Disaster Management and Relief under the Comprehensive Disaster
Management Programme-II (CDMP-II) developed a community-based landslide EWS for the Cox’s
Bazar district in 2012 [32]. They conducted detailed landslide inventory surveying, rainfall threshold
analysis (96 mm rainfall during 24 h or 185 mm rainfall in 48 h could initiate landslides), a series of
community-based participatory activities and arranged training workshops with local people and
stakeholders [33]. However, this EWS is no longer active, as no follow-up activities or long-term
maintenance and monitoring system was recommended after the project’s completion. Recently,
in 2015, the Geological Survey of Bangladesh (GSB) set up four automated systems in Cox’s Bazar
and Chittagong to monitor and predict rainfall. They found that 100 mm of rainfall in 3 h or 200 mm
rainfall in 24 h or 350 mm rainfall in 3 days could trigger landslides in the vicinity of the two cities.
The weather stations are regularly updated and linked with an online database and can send SMS text
messages to registered personnel. However, the system is not yet functional and publicly available,
and requires improvements.

Over the past 20 years, landslide disasters were prominent in the CHD, particularly in CMA
(Figure 1b). Despite being repeatedly hit by devastating landslides, the concerned authorities, like the
Chittagong Development Authority (CDA), and the Chittagong City Corporation (CCC), have failed
to mitigate landslide disaster risks in CMA. However, these two public organizations are solely
responsible for the sustainable development, planning control, and ensuring citizen safety in CMA.
Thousands of people are currently living on the dangerous hill-slopes in CMA and they have grave
concerns during the monsoon season (May to September). Yet, the authorities have not produced a
landslide hazard zonation map, nor an effective landslide alert system. To overcome such limitations,
this article aims to produce a scientifically valid EWS for the communities living with landslide risks
in CMA. This work is original and co-produced with the participation of stakeholders and the local
population, contributing to a new model of EWS for mitigating landslide disasters in Bangladesh.

2. Study Area Profile

The selected case study area is administratively known as the Chittagong Metropolitan Area
(CMA). CMA is the second largest urban-metropolis (after the capital city—Dhaka) in Bangladesh
with a population of around 8 million. The Chittagong Development Authority (CDA) is the statutory
planning authority of CMA and their jurisdiction area is approximately 680 km2. CMA is bounded
on the southwest by the Karnafuli River, on the northeast by the Halda River, on the west by the Bay
of Bengal and on the east by the Rangamati district (Figure 1). CMA lies between 22◦06′ and 22◦33′

north latitude and 91◦41′ and 91◦62′ east longitude. The annual average temperature of the Chittagong
district varies from a maximum 32.5 ◦C to a minimum 13.5 ◦C, and the average annual rainfall is
3378 mm [34]. Chittagong had been a seaport since the ninth century [34] and is famous for its unique
natural beauty characterized by hills, sea, rivers, valleys, and forests. The core-urbanized area of CMA
is known as the Chittagong City Corporation (CCC) with an approximate area of 259 km2 (Figure 1b).
The total population of CCC is approximately 2.6 million as per the 2011 population census (that was
1.3 million in 1991) with a density of 20,000 people per km2 [34].
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The hills are less than 300 meters high, and often less than 100 meters. Unconsolidated Dupi Tila
and Dihing sandstones and shales predominantly underlie them. The brown hill soils that cover most
of the region include a wide range of soils developed over both hard and soft sandstones, siltstones,
and shales. They mainly occur on steep slopes, especially in the high hills. Heavy rainfall-induced
landslides and soil erosions are dominant on the hills [7,13,35]. Given its geomorphological, geological,
and climatic characteristics, and human interventions such as hill cutting and deforestation, CMA has
become highly vulnerable to landslides.

3. Materials and Methods

A total eleven landslide factors were identified (soil permeability, surface geology, landcover,
altitude, slope, aspect; and distance to stream, fault line, hill cut, road cut, and drainage network) and
a detailed landslide inventory map was prepared. Four statistical methods were applied to prepare the
landslide susceptibility maps. After model validation, the map with the highest accuracy and spatial
agreement was used for classifying the high, medium and low susceptible zones. A dynamic Web-GIS
landslide EWS was developed by analyzing the rainfall thresholds, historical landslide events, and the
susceptible zones. Finally, the EWS was presented to the vulnerable communities and concerned
stakeholders in the CMA. They were trained on the efficiency, interpretation, dissemination and
preparedness policy of the system at the local level.

3.1. Preparing Landslide Factor Maps

A detailed landslide inventory map was prepared by conducting fieldwork in 2014–2016,
analyzing historical landslide events and local newspapers, and verifying the past landslide locations.
A landslide investigation form was prepared to collect information on landslide location, size, volume,
type, state, distribution pattern, style, rate, water content, material, land use type, cause of movement,
and damage assessment through field surveys [9]. A landslide inventory of 52 landslide events
in CMA was developed [36,37]. The daily rainfall data from 1960–2014 was collected from the
Bangladesh Meteorological Department (BMD) and the data from 2015–2017 was obtained from the
National Oceanic and Atmospheric Administration (NOAA)—National Centers for Environmental
Information [38]. The CMA boundary, and drainage and road network layers were collected from the
CDA. An ASTER digital elevation model (DEM) image (dated 29 November 2013) with a spatial
resolution of 30 m was used to prepare the altitude, aspect, slope, and stream network maps.
Landsat TM satellite images (dated 31 October 1990 and 23 November 2010, as the late autumn
season is generally cloud free) were used to prepare the land cover maps [12,39]. A maximum
likelihood supervised classification method was applied and six broad land cover types were identified.
For validation purposes [40], local guide maps and Google Earth images (dated 31 December 1990 and
10 January 2011) were used. The details of the land cover mapping and accuracy assessment technique
are described in [39]. The surface geology, soil permeability, and fault line map were collected from
the GSB. The hill cut map was prepared by analyzing the land cover changes between 1990 and 2010
and through on-site validation. The distance maps were produced by applying the Euclidean distance
technique. All the images (30 m×30 m) were set with the World Geodetic System (WGS)-1984 datum
and Universal Transverse Mercator (UTM) 46 North projection system.

3.2. Landslide Susceptibility Mapping

A landslide susceptibility map (LSM) generally displays a quantitative/qualitative classification
of areas that have the potential for the occurrence of landslides. In other words, susceptibility is
related to spatial aspects of the hazard [41]. LSMs have been widely accepted and have become more
popular with the advancement of geographic information system (GIS) and remote sensing (RS) tools
and techniques, and availability of satellite images [42–44]. A variety of data-driven bivariate and
multivariate statistical methods—the weights of evidence (WoE), logistic regression, and multiple
linear regression (MR); machine learning methods—the random forest, artificial neural network (ANN),
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support vector machine (SVM); and user-defined weight based multi-criteria evaluation methods such
as the analytic hierarchy process (AHP), weighted linear combination (WLC), and ordered weighted
average (OWA), are being effectively implemented in the LSMs [10,12,45–47].

In this study, the ANN, SVM, MR, and a combination of MR and principal component analysis
(PCA) methods were used. ANN is a reasoning model that was designed imitating human brain
function and nervous system. Neural networks, with their remarkable ability to derive meaning
from complicated data, can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques. A feed-forward multi-layer perceptron neural
network that uses the back-propagation algorithm was employed. In this ANN model, a network of
nodes is formed consisting of input layers, hidden layers, and output layers [39,47]. The input signal
is processed layer by layer. If expected output result is not obtained, then the reverse propagation
algorithm is run to adjust the network weights and thresholds for the desired output. The learning
algorithm defines how network weights are adjusted between successive training cycles. After the
network goal was reached, the whole study area was fed into the network to estimate the landslide
susceptibility. For details please read [46–48].

The SVM is based on statistical learning theory and nonlinear transformations of covariates [49].
The SVM model is trained by a training dataset and a separate set of testing data is used to evaluate
the results. Initially the SVM separates the data patterns using an optimum linear separating
hyper-plane and later uses kernel functions to convert the original format that is separable in a
high-dimension feature space [46]. The details of the SVM based LSM method is described in [47].
In MR [13], a least square approach was adopted to formulate a linear relationship between dependent
(i.e., landslide locations) and independent variables (i.e., landslide causative factors). PCA was applied
to produce a set of new images (also known as components) that were uncorrelated with one another
and the first few components contain most of the information contained in the original dataset [13].
The combination of PCA and MR is labelled as PCA_MR.

The conditional independence (CI) tests for the eleven landslide factor maps were evaluated
by applying the pair-wise Cramér’s V [50] to understand the relationship between two dependent
variables. The historical landslide locations were divided into training and testing datasets using a
random sampling method. The training data was used to produce the LSMs and the testing dataset
was used for model validation. The spatially agreed areas between the combinations of two LSMs
were calculated to understand their overall performances [12]. The receiver operating characteristics
(ROC) curves were used to validate the susceptibility maps [12,13]. It is a plot of the true positive rate
(the cumulative percentages of observed landslides) against the false positive rate (the cumulative
percentages of decreasing susceptibility index). The area under the ROC curve (AUC) value 0.5 means
predictions are no better than random, whereas AUC with a value >= 0.9 represents ideal situation [13].

3.3. Rainfall Threshold Analysis

Rainfall thresholds can be defined mainly by process-based/physical or empirical models.
Physical models are dependent on detailed spatial information on various hydrological, morphological,
lithological, and soil properties. However, acquiring such information requires extensive specialized
field tests and continuous monitoring [51]. Empirical rainfall thresholds are defined by analyzing
the rainfall-induced landslide events, in general, by Cartesian plotting [21]. The threshold is often
measured by considering the antecedent conditions or precipitation measurements obtained for a
specific rainfall event [52]. It is advantageous to define a localized rainfall threshold for initiating
landslides. The available daily rainfall datasets collected from the BMD and NOAA were analyzed
for historical rainfall analysis. Total rainfall for seven days prior to landslide events were considered.
This technique has previously been applied to generate accurate results in the local context [13,33].
The ‘RClimDex’ statistical software package [53] was used for analyzing rainfall patterns.
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3.4. The Framework for the Landslide EWS

To understand how the landslide susceptibility index values are related to varying rainfall
amounts, a hypothetical example is given in this section. Let us assume that a sequent of the study
area is represented by a 6 × 6 cell square, as shown in Figure 2 (top part). It has been classified into no,
low, medium, and high susceptible zones, respectively (see Figure 2, bottom part) by applying certain
quantitative LSM methods. No susceptible zone (mostly covers waterbodies, floodplains, low lands,
and sandy beach etc.) means it will never receive a warning for landslides under any circumstances,
or any amount of rainfall.

1 

 

 

      

      

      

      

      

      

 

LSM Zoning No Low Medium High 

Zoning ID 1 2 3 4 

 Figure 2. Association between (cell-based) landslide susceptibility index values and landslide warning
zoning (imaginary) that are included in landslide susceptibility maps (LSMs).

Let us assume again, the rainfall pattern analysis has identified three rainfall rates (R1 = low
rainfall, R2 = medium rainfall, and R3 = high rainfall). Next, a purposely-built landslide hazard
matrix [54] is proposed (Figure 3) that assumes—the higher the susceptibility, the lower the rainfall
level that could trigger landslides [23,55]. The hazard matrix corresponds between different rainfall
rates and susceptibility classes, and produces two levels of qualitative hazard classes (i.e., no-warning
state, and warning state).

Figure 4 illustrates the spatial distribution of landslide warning zones by simulating a simplified
warning and no-warning situation. It helps to understand which zone needs a warning with respect to
a certain amount of forecasted rainfall. For example, the low rainfall (forecasted) can trigger landslides
in the high susceptible zone, this has been termed as scenario 1 (Figure 4a). If it rains within the
medium threshold range (forecasted), then combined zones 4 and 3 will get a warning (Figure 4b),
while zones 4, 3 and 2 together will be warned (Figure 4c) for the cases of high rainfall (forecasted).
This means more areas/cells are likely to be affected or to receive an early warning if a higher amount
of rainfall is expected. A back-analysis of the whole landslides dataset was used to validate the results.
This kind of hazard matrix is easy to understand by the end users and policy makers, and has already
been successfully applied by [23,55,56].
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3.5. The Landslide Web-Warning System Development

In the next step, a website was designed for developing the landslide alert system. The EWS
displays different susceptible zones according to precipitation. The precipitation data is being collected
from www.worldweatheronline.com scheduled twice a day as it provides publicly available APIs.
The tools have been leveraged with various libraries and frameworks, for instance, Python 2.7
(Python Software Foundation, Delaware, USA) along with GDAL, a Geospatial Data Abstraction
Library, is used to process and reclassify raster dataset; MySQL (Oracle Corporation, California,
USA) for database; whereas PHP (Zend Technologies, California, USA) as a server-side language.
Several JavaScript APIs are used for client-side interface and interaction namely OpenLayers for
displaying map data in web browsers, W2UI JavaScript UI library for layouting, and jQuery
along HTML5 and CSS. Before deploying the EWS online, the system needs to process a classified
raster dataset (.tiff) of the study area. The classified TIF folder contains several files: .tif, .tif.aux,
.tif.rrd/.tif.ovr, tif.vat.dbf. Basically, statistical information for the raster dataset is stored in a separated
auxiliary file (.tif.aux.xml), and it stores a pointer to the pyramid file (, .tif.rrd/.tif.ovr) and the attribute
table is stored in another file (tif.vat.dbf).

The classified .tiff may contain continuous values having a range of 0–1 or in some contexts
it may be reclassified as discrete number, say, 0,1,2,3,4,5 etc., otherwise the continuous values have
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to be reclassified into discrete ones (0–5). A RasterPack python module has been developed to
generate this new format. The very first line of the text file is meta data of the raster file, for example,
MinX, MaxY, Rows, Cols, CellSize, MaxX,MinY, SemiMajorAxis, InverseFlattening, LatitudeOfOrigin,
CentralMeridian, ScaleFactor, FalseEasting, and FalseNorthing for further projection of landslide
zoning map while overlaying in the Open Street Map. Using PHP, a special raster format was created
from the text file to speed up the display of the susceptible zones in different colors, and resampling is
made if image size is big enough to render in web browsers in terms of memory and loading time.
The precipitation is stored in a MySQL database. In the EWS, users can register themselves through
subscription to different types of alerts. The flowchart of the landslide EWS development process is
illustrated in Figure 5.
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The link insert.php is a proxy to collect rainfall data daily through the external API of
worldweatheronline.com in the background. It is scheduled in a cron job in the Linux server. It sends
email alerts to the registered users depending on the specified cumulative precipitation and it displays
live on www.landslidebd.com/map-ctg/. Images of the raster dataset are generated dynamically using
PHP on demand using the reclassified text file which is generated by the RasterPack Python module.
In order to update the system, it is just required to upload a newer version of the reclassified image as
shown in Figure 6. The system can store rainfall values for previous 30 days and has a provision to
enter ten days advanced precipitation values manually from another source. It is useful for generating
various warning scenarios, and thus for validating the system-generated results. The end users
(residents or stakeholders) can register themselves on the website and receive landslide alerts via email
notifications five days in advance for their respective zones.
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3.6. Dissemination of Landslide Warnings

To understand the overall landslide disaster scenario, a series of workshops and meetings
were conducted with various government officials, community representatives, and local people.
The intention was to create a platform to introduce the landslide EWS to these groups and implement
it in the real-world to help mitigate the landslide disaster impacts in the CMA.

4. Results

4.1. Landslide Factor Maps

The eleven landslide factor maps are displayed in Figure 7. Soil permeability was divided into
mixed-moderate, moderate, rapid, slow, and very slow categories (Figure 7a) as defined by the Soil
Resource Development Institute (SRDI), Bangladesh. The geology map (Figure 7b, for a detailed
map please see the Appendix A, Figure A1) was classified as beach sand, Boka Bil, Tipam, Sandstone,
Dupi Tila, Valley, and Dhing. Boka Bil, Tipam, Dupi Tila, and Dhing formations are actually hilly
deposits from the Tertiary period. Beach sand and Valley formations are from the Quaternary period.
Beach sand/tidal deposits are formed near the coast due to tidal actions and are dominated by silt
or silt and clay. Valley deposits are formed due to erosional activities near the hilly region and are

worldweatheronline.com
www.landslidebd.com/map-ctg/
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composed of sand, sandy clay, and silty clay [12,13,35]. The land cover map was prepared using six
broad classes: built-up areas; cropland; waterbodies; hill forest; bare soil; and shrub land (Figure 7c).
The overall accuracy of the land cover map was found to be 86%, using error-matrix based accuracy
assessment [39]. The aspect map contains the conventional eight directions (Figure 7g). The landslide
locations were randomly divided into two groups: testing and training landslides (Figure 7l).ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  10 
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(k) drainage network; and (l) landslide inventory map.

4.2. Landslide Susceptibility Mapping and Model Selection

The eleven landslide factor maps and the landslide training datasets were used to produce the
ANN, SVM, MR, and PCA_MR susceptibility maps (Figure 8). The prediction capability of the LSMs
are different and they vary spatially.
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The ROC method was applied to select the best fit model. The AUC success rate values for
the ANN, SVM, MR, and MR_PCA models were calculated 97.71%, 96.11%, 99.47%, and 93.35%,
respectively (Figure 9). The selection of the best model also relates to consistency analysis of the
models. The ROC curves help to understand the statistical consistency and scientific validity of the
models; however, it is also necessary to analyze the spatially agreed areas between two LSMs to
understand the overall performance. In the case of SVM and ANN comparison, about 79% of areas
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fell into identical susceptible zones, 61% landslides fell in high susceptibility zone, and total agreed
landslide areas were calculated to be 65%. For the SVM and MR comparison, values for the total area
of agreement, landslides in high susceptibility zone, and total landslide agreed areas were found 50%,
49%, and 52%; and for the ANN and MR comparison, the same values were calculated 50%, 54%,
and 58%, respectively (see Appendix A, Table A2). The general assumption is that the LSM with the
best combination of the highest AUC value, the highest percentage of spatially agreed areas and the
highest landslide density in the high susceptibility zone should be selected for further analysis [12,57].
Henceforth, the ANN LSM was found to be the best fit model for CMA and was selected for developing
the landslide EWS.
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4.3. Rainfall Threshold Analysis Results

Historical daily rainfall data (1950–2013) for the Chittagong district were analyzed to understand
the local rainfall pattern. The results show that the average annual rainfall was around 3000 mm
and about 95% of the total rainfall occurred within the months of May to September. On average,
the monthly precipitation varied from 400–500 mm from June to September. During the monsoon
season, around 15 consecutive days of precipitation (30 days in extreme case), 41 days of rainfall over
20 mm, and heavy rainfall (≥50 mm) for a total of 18 days was observed in CMA. Just to clarify Table 1,
the first indicator (monthly maximum 1-day precipitation) suggests that the maximum 1-day rain for
each month (mostly covers the monsoon season) ranges from 115 to 511 mm, with an average value of
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236 mm. The monthly maximum five-consecutive days of precipitation (average) in the monsoon was
calculated to be 490 mm (Table 1).

Table 1. Rainfall pattern analysis results.

Indicator Description Precipitation
Index (Unit) Minimum Maximum Average

Monthly maximum 1-day precipitation R × 1 (mm) 115 511 236
Monthly maximum consecutive 5-day

precipitation R × 5 (mm) 208 1037 490

Annual count of days when PRCP >= 10 mm R10 (days) 41 80 61
Annual count of days when PRCP >= 20 mm R20 (days) 27 60 41

Annual count of days when PRCP >= nn mm; nn
is user defined threshold

R50 (days) 8 30 18
R75 (days) 4 18 10
R100 (days) 1 14 6

Maximum number of consecutive days with
PRCP >= 1 mm CWD (days) 7 30 15

Annual total PRCP in wet days (PRCP >= 1 mm) PRCPTOT
(mm) 1780 4340 2917

For estimating the rainfall threshold, the major historical landslide events (see Appendix A,
Table A1) and associated rainfall data were analyzed. This study has considered rainfall on the day
of landslide and up to seven days before the event by plotting the values in the Cartesian graph for
simple statistical analysis to define the rainfall thresholds. The results reveal that landslides are mostly
associated with rainfall up to 4 days prior to the event (Figure 10, and Table 2).

As per the rainfall trend analysis (Figure 10, and Table 2), a landslide warning can be issued at
least five days in advance if the cumulative rainfall is predicted to be 71–288 mm or above. It is found
(considering median values only) that 71 mm rainfall in 24 h, or 148 mm rainfall in 48 h, or 211 mm
rainfall in 72 h could trigger a landslide (Table 2).
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Figure 10. Rainfall trend analysis for triggering landslides in Chittagong Metropolitan Area. Here,
“E” stands for landslide event number (see Table 2); “0” refers to the day of the landslide event;
and “−7” refers to seven days before the landslide event.
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Table 2. Calculations showing rainfall thresholds for different days from the landslide events.

Event ID Event Date
Number of Days Prior to and on the Day of the Major Landslide Events

−7 −6 −5 −4 −3 −2 −1 0

E1 13/08/1999 5 9 28 86 0 123 110 206
E2 29/06/2003 63 1 2 51 206 43 20 103
E3 10/07/2006 30 30 7 19 84 61 38 24
E4 11/06/2007 3 23 22 4 42 3 88 425
E5 10/09/2007 0 7 35 84 160 40 50 76
E6 18/08/2008 7.2 7.8 0.2 32.4 28.5 67.4 159.5 30.4
E7 01/07/2011 30 27.2 29.5 40.4 62.2 94.5 127.8 66
E8 26/06/2012 1 0 4.3 31.2 21.1 38.1 124.2 146.3
E9 28/07/2013 0 0.5 0 19.1 100.6 63.2 65.8 2
E10 21/06/2014 3.8 31.8 19.6 1 1.3 50.5 66.8 43.9
E11 23/06/2015 0 11.4 4.3 4.8 5.1 86.6 55.1 183.9
E12 19/07/2015 0 12.2 25.9 0 51.3 94.5 32.3 31.8
E13 13/06/2017 0 0.3 0.8 0 6.1 246.4 131.6 0
E14 21/07/2017 2 5.1 84.1 81.3 58.4 1.5 125.2 233.4

Mean 10.36 11.88 18.76 32.44 59.04 72.34 85.31 112.26
Median 2.50 8.40 13.30 25.15 46.65 62.10 77.40 71.00

Here, “0” refers to the day of the landslide event, and “−7” refers to seven days before the landslide event.

In this work, 5-days consecutive rainfall was considered for rainfall threshold analysis, as around
95% of the median values fitted the model (i.e., coefficient of determinants, R2 = 0.9475). The rainfall
threshold for triggering landslides was estimated ranging from 70–250 mm, which is a conservative
method and helps to avoid any unavoidable errors. Next, the threshold range was classified into
three rates using the equal-interval method: low rainfall (70–160 mm), medium rainfall (161–250 mm),
and high rainfall (>250 mm). The susceptible zones with the varying amounts of rainfall that is
considered to triggering landslides is connected by applying the hazard matrix as shown in Figure 3.
A total of 36 landslides (as some inventories were missing relevant information) were used to validate
the approach. As per the matrix assumption, the least number of landslides will occur in low
rainfall/low susceptibility (R1/S1) zone, and the majority of landslides will occur in high rainfall/high
susceptibility zone (R3/S3). The results show that no landslide was reported in zones R1/S1, R1/S2,
and R2/S1 (Table 3). Around 66%, and 72% landslides occurred in high rainfall, and high susceptibility
zones, respectively. Most landslides (50%) were observed in zone R3/S3 (Table 3). It proves that
the method of combining various rainfall rates and susceptibility classes, as proposed in this work,
is statistically valid and applicable for the CMA.

Table 3. Number of landslides occurred in different combinations between rainfall rates and
susceptibility classes.

Validation Matrix S1 = Zone 2
(Low LSM)

S2 = Zone 3
(Medium LSM)

S3 = Zone 4
(High LSM)

Total
Landslides (%)

R1
(Low Rainfall) 0 0 2 2 (6%)

R2
(Medium Rainfall) 0 4 6 10 (28%)

R3
(High Rainfall) 2 4 18 24 (66%)

Total Landslides (%) 2 (6%) 8 (22%) 26 (72%) 36 (100%)

4.4. Developing the Landslide Web-Warning System

The ANN LSM was classified into four zones: high; medium; low; and never warning (Figure 11a).
The natural break classification was used as it represents the natural groupings inherent in the data [39].
The landslide warning zones and their subsequent rainfall rates with zone delineations are depicted in
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Table 4, and Figure A2 (see Appendix A). The ANN LSM with cell values ranging from 0–0.071 will
never get any landslide warning (cross-verified by Table 3). The high warning zone with cell values
0.592–1 will get warnings if the 5-day cumulative rainfall is forecasted to be 70–160 mm (Figure 11b).
If 161–250 mm rain is expected during five consecutive days, the ANN LSM index values of 0.263–1
will get landslide warnings (Figure 11c).ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  16 
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Table 4. Rainfall thresholds for landslides and their association with susceptibility zones.

Rainfall Amount (mm)
[Consecutive 5 Days Cumulative] LSM Index Values Zone and Scenario

Delineation

Low Rainfall (R1) = 70–160 0.592–1 Zone 4 [Scenario 1]
Medium Rainfall (R2) = 161–250 0.263–1 Zones 4+3 [Scenario 2]

High Rainfall (R3) > 250 0.071–1 Zones 4+3+2 [Scenario 3]
Never Warning 0–0.071 Zone 1

In the next step, the ANN LSM with warning classifications was converted to fit into a Web
alert system as described in Section 3.5. The proposed landslide EWS (http://www.landslidebd.com/
ctg-warning-system/) is connected with a reliable online-based weather application programming
interface (https://developer.worldweatheronline.com/api/). The reliability of the warning results
was validated using the case of a recent landslide event (see Appendix A, Table A1). The landslide was
triggered by heavy rainfall (464 mm in 5 days) on the 14 October 2018 and killed four people in CMA
(as per our LSM classification the areas belong to high susceptible zone). The landslide warnings were
successfully generated from the newly developed EWS and disseminated via email notifications four
days beforehand the disaster event (see Appendix A, Figure A3). It proves the reliability of rainfall
threshold analyses and their appropriateness in forecasting accurate warnings.

4.5. Community Training and Stakeholder Engagement

The project team members arranged some activities (see Appendix A, Figure A4) in CMA to create
public awareness, train the local people and connect the stakeholders. A national seminar (Figure A4a)
was held. Around 35 senior and mid-level officials/experts from different organizations related to
landslide research, disaster emergency, and mitigation programs were present on this occasion. The key
informants and officials were found to be well aware of the landslide situation in CHD. They were in
full support of the implementation of the master plan, hill cutting regulations, and a landslide early
warning system in CMA. They emphasized the need to build awareness among local communities and
strengthen the existing hill management committee in Chittagong.

5. Discussion and Future Research

This work has several issues that need to be addressed in future research. First, a detailed historical
landslide inventory map is missing. Only information for the major landslide events were collected
from various secondary sources and were validated following fieldworks. Our survey team could only
identify the locations where major consequences were reported like human casualties or houses and
roads being damaged or destroyed. Locations of other minor landslide hazards (where no casualty
or damage was reported, but the hill was physically damaged or partially collapsed) could not be
incorporated in the analysis. This is a major drawback of this work. The CMA had no detailed landslide
inventory, and hill cutting maps. This work has produced the first ever landslide inventory, hill cutting,
and susceptibility maps for CMA using available resources. Even for the recent landslides, there is no
monitoring system to survey the whole study area and identify landslide hit areas (with or without
human habitation). The Government of Bangladesh (GoB) should immediately form a specialist team
to conduct necessary surveying and prepare inventory maps after any landslide event.

Second, no rainfall intensity (mm/h) information is available from the Bangladesh Meteorological
Department (BMD), who is solely responsible for collecting historical rainfall data in Bangladesh.
Only daily rainfall data is available in a restrictive way. In 2015, the GSB installed two solar-powered
automatic weather monitoring and rainfall prediction stations in Chittagong City, but they do not share
the data publicly. This is another major limitation of this work, The proposed landslide EWS is based
on analyzing daily rainfall data available from the only BMD station in Chittagong. BMD also does not
provide any API services to connect forecasted precipitation data, so we have utilized a commercial
external service that depends on data from the World Meteorological Organization.

http://www.landslidebd.com/ctg-warning-system/
http://www.landslidebd.com/ctg-warning-system/
https://developer.worldweatheronline.com/api/
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Third, we want to raise the issue of projection anomalies of different factor maps, and the
availability of high-resolution satellite images, improved topographic data, and DEM. For example,
some maps were available in Bangladesh Transverse Mercator (BTM) projections (the study area
boundary, soil permeability, geology, road cutting, and fault map), and others were in UTM projections.
The landslide inventory map was prepared using a handheld GPS device, and later the locations were
plotted in Google Earth. Some layers were produced from low-resolution satellite images (landcover,
hill cutting, slope, etc.). Although appropriate coordinate transformation techniques were applied
in ArcGIS environment, it was a challenging task to ensure that all the factor maps overlapped
(cell-by-cell) properly. As a result, still some errors may exist in the LSM analysis. To overcome such
limitations, it requires coordination among different GoB organizations to produce a unified sets of
landslide factor maps for Chittagong.

Hill cutting is a major concern for the case study area (Figure 12). The LSM maps should be
regularly updated by incorporating the most updated landcover, hill cut, road cut, landslide inventory,
and slope maps. The rainfall thresholds should be updated on a regular basis by considering the
impacts of regional climate change, cyclone intensities, and resulting rainfall patterns as recommended
by the UN Intergovernmental Panel on Climate Change (IPCC) [58]. Finally, activities related to
landslide warning integration, dissemination, protective actions such as sheltering, or evacuation,
public and stakeholder response, community vulnerability assessment [59], integrating indigenous
knowledge, and overall emergency management need special attention for CMA.
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Figure 12. A cluster of houses built on dangerous foothills by cutting hills, where people are living
under serious threats of landslides in CMA. Source: Bayes Ahmed, fieldwork, 2015.

6. Conclusions

Almost every year, rainfall-triggered landslides affect local communities in the Chittagong
Metropolitan Area (CMA), Bangladesh during the monsoon season. Cyclones, flash-flooding,
storm surge, and earthquakes are well-known hazards in the CHD region. Conversely, landslides were
identified as an emerging disaster since 2012, when 90 local residents were killed in CMA. The extreme
population growth and scarcity of flat-lands in CMA have resulted in building housing for the migrants
on hazardous slopes by indiscriminately cutting hills. This article proposes a landslide EWS for CMA
using cutting-edge Web-GIS technologies to reach the policy makers and local people.

Eleven factor maps were prepared by collecting data from various national organizations and
international web-portals. Detailed field surveying was conducted in CMA to prepare a landslide
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inventory map. Four popular models were applied to prepare landslide susceptibility maps. The ANN
model generated LSM was selected by applying ROC curves and analyzing spatially agreed areas.
Results from the LSMs and rainfall pattern analysis suggest that 70–160 mm, 161–250 mm, and >250 mm
rainfall in five consecutive days can potentially trigger landslides in high, medium, and low susceptible
zones. The warning results were validated using a recent landslide event. Access to necessary data,
community and stakeholder engagement for warning integration, and the availability of quality
datasets were identified as major limitations of this work.

The proposed landslide EWS is original and innovative as it emphasizes on controlling false
warnings and is replicable in similar contexts. This work was co-produced with the participation of
scientists, local people, and stakeholders to overcome the limitations in landslide warning integration
at the local scale. The dynamic landslide web-warning system as developed in this study should be
treated as a significant contribution in advancing the field of landslide disaster risk reduction in the
Chittagong Hill Districts of Bangladesh.
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Appendix A

Table A1. Details of historical major landslide events in Chittagong District, Bangladesh.

Date Landslide Locations Rainfall Sequence Consequences

13/08/1999 Different locations in Chittagong district 435 mm—12 days
2–13 Aug 1999

17 fatalities, 350
houses damaged

29/06/2003 Patiya, Chittagong 658 mm—10 days
20–29 June 2003 4 fatalities

10/07/2006 Satkania, Chittagong 231 mm—6 days
4–9 July 2006 2 fatalities

11/06/2007 Different locations in Chittagong city 610 mm—8 days
4–11 June 2007

128 people died
and 100 injured

10/09/2007 Nabi Nagar, Chittagong 452 mm—7 days
4–10 Sept 2007 2 fatalities

18/08/2008 Matijharna, Chittagong City Corporation 454 mm—11 days
8–18 August 2008

11 fatalities and
25 injured

01/07/2011 Batali Hill, Chittagong 200 mm—6 days
25–30 June 2011

19 people died
and many injured

26/06/2012 Lebubagan and Foys lake
surroundings, Chittagong

889 mm—8 days
19–26 June 2012

90 fatalities and
150 injured
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Table A1. Cont.

Date Landslide Locations Rainfall Sequence Consequences

28/07/2013 Lalkhan Bazar, Chittagong City
Corporation (CCC)

148 mm—2 days
26–27 July 2013 2 fatalities

21/06/2014 Pachlaish, Chittagong 2 days continuous
heavy rainfall

1 dead and 2
injured

23/06/2015 DT Road Rail Gate, Chittagong Wall collapse due to 2 days
heavy rainfall 2 dead

19/07/2015 Motijharna and Tankir Pahar, Chittagong 205 mm—5 days
15–19 July 2015 6 dead

13/06/2017 All five hill districts Several days of
continuous rainfall

159 dead and 88
injured

21/07/2017 Sitakunda, Chittagong Several days of
continuous rainfall 5 fatalities

14/10/2018 Akbar Shah area’s Firoz Shah Colony, and
Panchlaish’s Rahman Nagar area

464 mm—5 days
09–13 October 2018

4 people were
killed

Source: [9]; and national daily newspapers.
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Table A2. Calculations showing spatially agreed areas and proportions of observed landslides.

Study Area Observed Landslide Area

SVM ANN Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 585,642 527.08 77.54 7 0.01 3.98
Low 130,292 117.26 17.25 12 0.01 6.82

Medium 17,340 15.61 2.30 19 0.02 10.80
High 4006 3.61 0.53 6 0.01 3.41

Low

None 776 0.70 0.10 1 0.00 0.57
Low 1084 0.98 0.14 0 0.00 0.00

Medium 2169 1.95 0.29 2 0.00 1.14
High 1599 1.44 0.21 2 0.00 1.14

Medium

None 204 0.18 0.03 0 0.00 0.00
Low 521 0.47 0.07 0 0.00 0.00

Medium 1351 1.22 0.18 1 0.00 0.57
High 1507 1.36 0.20 5 0.00 2.84

High

None 122 0.11 0.02 2 0.00 1.14
Low 240 0.22 0.03 1 0.00 0.57

Medium 1851 1.67 0.25 11 0.01 6.25
High 6615 5.95 0.88 107 0.10 60.80

Total Area 755,319 679.79 100.00 176 0.16 100.00
Total Agreed

Area 594,692 535.20 78.73 115 0.10 65.34

Study Area Observed Landslide Area

SVM PCA_MR Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 271,475 244.33 35.94 0 0.00 0.00
Low 248,840 223.96 32.95 6 0.01 3.41

Medium 137,794 124.01 18.24 11 0.01 6.25
High 79,171 71.25 10.48 27 0.02 15.34

Low

None 1 0.00 0.00 0 0.00 0.00
Low 609 0.55 0.08 0 0.00 0.00

Medium 1313 1.18 0.17 0 0.00 0.00
High 3705 3.33 0.49 5 0.00 2.84

Medium

None 3 0.00 0.00 0 0.00 0.00
Low 228 0.21 0.03 0 0.00 0.00

Medium 758 0.68 0.10 0 0.00 0.00
High 2594 2.33 0.34 6 0.01 3.41

High

None 0 0.00 0.00 0 0.00 0.00
Low 260 0.23 0.03 3 0.00 1.70

Medium 1138 1.02 0.15 21 0.02 11.93
High 7430 6.69 0.98 97 0.09 55.11

Total Area 755,319 679.79 100.00 176 0.16 100.00
Total Agreed

Area 280,272 252.24 37.11 97 0.09 55.11

Study Area Observed Landslide Area

SVM MR Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 371,927 334.73 49.24 1 0.00 0.57
Low 328,215 295.39 43.45 10 0.01 5.68

Medium 19,594 17.63 2.59 8 0.01 4.55
High 17,544 15.79 2.32 25 0.02 14.20

Low

None 385 0.35 0.05 0 0.00 0.00
Low 1202 1.08 0.16 3 0.00 1.70

Medium 1297 1.17 0.17 0 0.00 0.00
High 2744 2.47 0.36 2 0.00 1.14
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Table A2. Cont.

Study Area Observed Landslide Area

SVM MR Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

Medium

None 55 0.05 0.01 0 0.00 0.00
Low 680 0.61 0.09 1 0.00 0.57

Medium 643 0.58 0.09 0 0.00 0.00
High 2205 1.98 0.29 5 0.00 2.84

High

None 7 0.01 0.00 0 0.00 0.00
Low 780 0.70 0.10 16 0.01 9.09

Medium 1185 1.07 0.16 18 0.02 10.23
High 6856 6.17 0.91 87 0.08 49.43

Total Area 755,319 679.79 100.00 176 0.16 100.00
Total Agreed

Area 380,628 342.57 50.39 91 0.08 51.70

Study Area Observed Landslide Area

PCA_MR ANN Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 237,807 214.03 31.48 0 0.00 0.00
Low 33,476 30.13 4.43 0 0.00 0.00

Medium 183 0.16 0.02 0 0.00 0.00
High 13 0.01 0.00 0 0.00 0.00

Low

None 212,546 191.29 28.14 1 0.00 0.57
Low 35,793 32.21 4.74 5 0.00 2.84

Medium 1505 1.35 0.20 1 0.00 0.57
High 93 0.08 0.01 2 0.00 1.14

Medium

None 88,416 79.57 11.71 2 0.00 1.14
Low 44,402 39.96 5.88 4 0.00 2.27

Medium 7079 6.37 0.94 11 0.01 6.25
High 1106 1.00 0.15 15 0.01 8.52

High

None 47,975 43.18 6.35 7 0.01 3.98
Low 18,466 16.62 2.44 4 0.00 2.27

Medium 13,944 12.55 1.85 21 0.02 11.93
High 12,515 11.26 1.66 103 0.09 58.52

Total Area 755,319 679.79 100.00 176 0.16 100.00
Total Agreed

Area 293,194 263.87 38.82 119 0.11 67.61

Study Area Observed Landslide Area

PCA_MR MR Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 160,375 144.34 21.23 0 0.00 0.00
Low 109,889 98.90 14.55 0 0.00 0.00

Medium 937 0.84 0.12 0 0.00 0.00
High 279 0.25 0.04 0 0.00 0.00

Low

None 147,150 132.44 19.48 1 0.00 0.57
Low 97,274 87.55 12.88 1 0.00 0.57

Medium 3886 3.50 0.51 4 0.00 2.27
High 1627 1.46 0.22 3 0.00 1.70

Medium

None 47,834 43.05 6.33 0 0.00 0.00
Low 81,664 73.50 10.81 19 0.02 10.80

Medium 6826 6.14 0.90 4 0.00 2.27
High 4679 4.21 0.62 9 0.01 5.11

High

None 17,016 15.31 2.25 0 0.00 0.00
Low 42,050 37.85 5.57 10 0.01 5.68

Medium 11,070 9.96 1.47 18 0.02 10.23
High 22,764 20.49 3.01 107 0.10 60.80

Total Area 755,320 679.79 100.00 176 0.16 100.00
Total Agreed

Area 287,239 258.52 38.03 112 0.10 63.64
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Table A2. Cont.

Study Area Observed Landslide Area

MR ANN Area
Pixel

Area
(km2) % Area

Pixel
Area
(km2) %

None

None 305,784 275.21 40.48 1 0.00 0.57
Low 65,757 59.18 8.71 0 0.00 0.00

Medium 827 0.74 0.11 0 0.00 0.00
High 6 0.01 0.00 0 0.00 0.00

Low

None 269,705 242.73 35.71 3 0.00 1.70
Low 54,235 48.81 7.18 4 0.00 2.27

Medium 6651 5.99 0.88 16 0.01 9.09
High 286 0.26 0.04 7 0.01 3.98

Medium

None 8166 7.35 1.08 3 0.00 1.70
Low 7218 6.50 0.96 3 0.00 1.70

Medium 5912 5.32 0.78 2 0.00 1.14
High 1423 1.28 0.19 18 0.02 10.23

High

None 3089 2.78 0.41 3 0.00 1.70
Low 4927 4.43 0.65 6 0.01 3.41

Medium 9321 8.39 1.23 15 0.01 8.52
High 12,012 10.81 1.59 95 0.09 53.98

Total Area 755,319 679.79 100.00 176 0.16 100.00
Total Agreed

Area 377,943 340.15 50.04 102 0.09 57.95
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