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Abstract: Cartographic generalization is one of the important processes of transforming the content 

of both analogue and digital maps. The process of reducing details on the map has to be conducted 

in a planned way in each case when the map scale is to be reduced. As far as digital maps are 

concerned, numerous algorithms are used for the generalization of vector line elements. They are 

used if the scale of the map (on screen or printed) is changed, or in the process of smoothing vector 

lines (e.g., contours). The most popular method of reducing the number of vertices of a vector line 

is the Douglas-Peucker algorithm. An important feature of most algorithms is the fact that they do 

not take into account the cartographic properties of the transformed map element. Having 

analysed the existing methods of generalization, the authors developed a proprietary algorithm 

that is based on the analysis of the curvature of the vector line and fulfils the condition of objective 

generalization for elements of digital maps that may be used to transform open and closed vector 

lines. The paper discusses the operation of this algorithm, along with the graphic presentation of 

the generalization results for vector lines and the analysis of their accuracy. Treating the set of 

verification radii of a vector line as a statistical series, the authors propose applying statistical 

indices of position of these series, connected with the shape of the vector line, as the threshold 

parameters of generalization. The developed algorithm allows for linking the generalization 

parameters directly to the scale of the topographic map that was obtained after generalization. The 

results of the operation of the algorithm were compared to the results of the reduction of vertices 

with use of the Douglas-Peucker algorithm. The results demonstrated that the proposed algorithm 

not only reduced the number of vertices, but that it also smoothed the shape of physiographic lines, 

if applied to them. The authors demonstrated that the errors of smoothing and position of vertices 

did not exceed the acceptable values for the relevant scales of topographic maps. The developed 

algorithm allows for adjusting the surface of the generalized areas to their initial value more 

precisely. The advantage of the developed algorithm consists in the possibility to apply statistical 

indices that take the shape of lines into account to define the generalization parameters. 

Keywords: generalization; automation; algorithm; cartography; line; area 

 

1. Introduction 

Map content generalization is one of the essential works in processing the information when 

changing the scale of the map from the larger to the smaller one. Many factors influence the 

generalization, which depend primarily on the aim of the work and the purpose of the map. These 

factors affect the type of actions taken to implement the reduction of map content information. These 

actions can be grouped into four categories of processes, called elements of cartographic 

generalization  [1], [2]: 
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1. selection and simplification—defining important data features, preserving and, if possible, 

highlighting these features, eliminating undesirable details, 

2. classification—ordering or selection of an appropriate scale for the data and their grouping, 

3. symbolization—graphic coding of grouped basic features of compared values and their mutual 

position, and 

4. induction—application of a logical process of inference in cartography. 

Depending on whether the map is being generalized in an analog or digital form, different 

ways of implementing the main postulates of generalization are possible. Analogue maps, edited 

and generalized for decades or even hundreds of years in the traditional way, by their very nature 

are not subject to the processes of computer automation. Otherwise, digital maps, the generalization 

of which can be computer-aided. The form of their record imposes the necessity of attempting to 

automate the processes of processing the information that is contained in them [3], [4]. 

2. Related Work 

From the point of view of the vector model that is used to present the content of the map and 

the topology of the objects contained in the content of the maps, can be divided into: 

1. point e.g., church, town etc. 

2. lines e.g., borders, roads etc. 

3. polygons—e.g., land use, sea etc. 

Linear elements usually have the form of a vector line on the maps. Most generalization 

algorithms that are included in the available GIS software are related to the simplification of these 

elements of map content. The easiest one is the algorithm for removing every nth point (Tobler’s 

method from 1966) [5]. However, this approach does not take account of the relationship between 

neighboring points. This method was subject to improvements and it was a contribution to the 

development of other, more sophisticated ways of generalizing linear elements. 

In the 1970s and later, many digital generalization algorithms were developed, most of which 

refer to relatively simple issues related to one type of elements—with lines [1], [6]. The necessary 

condition for their use is the digital form of the map. The Douglas-Peucker (DP) algorithm [7] is an 

iterative algorithm that is based on the concepts of the baseline and tolerance zone. The baseline 

connects the beginning and end points of the generalized line. The first point is called the anchor and 

the second one is a float. The tolerance zone, the width of which is determined by the user 

depending on the anticipated degree of generalization, is to ensure the preservation of the character 

of the most important features of the line. Li and Openshaw [8] presented a new approach to 

simplifying the course of linear objects that is based on the natural process that people use to observe 

geographic objects. The method simulates the natural principle that is used by the human eye and 

brain. The ratio of input and target resolution is used to calculate the so-called “smallest visible 

object”. The method proved to be effective in detecting and maintaining the general shape of line 

features. Visvalingam and Whyatt [9] proposed a gradual simplification of linear features using the 

concept of “effective area”. Based on the analysis and detection of changes in the direction of the 

line, Wang and Muller [10] proposed a line simplification algorithm. 

In recent years, the study of line simplification has focused on shape analysis [11], [12], 

topological consistency assessment [13], [14], analysis of geographical characteristics [15], [16], and 

data quality [17], [18]. Jiang and Nakos [11] presented a new approach to the simplification of lines 

that is based on the detection of the shape of geographic objects in self-organizing maps. Dyken et al. 

[13] presented a method of simultaneous simplification of partial curves. This method uses limited 

Delaunay triangulation to preserve the topological relationships between linear features. Nabil et al. 

[15] presented a method of line simplification that is based on the Voronoi diagram. It is based on the 

preliminary division of the complex cartographic curve into a series of simpler fragments. They are 

then simplified using methods, such as the DP algorithm. With this method you can avoid 

intersections of input lines. Nöllenburg et al. [16] proposed a method of morphing lines at various 

levels of detail. The method can be used to continuously generalize linear geographic elements, such 
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as rivers and roads. Stanisławski et al. [17] studied different types of metric assessments, such as 

Hausdorff distance, segment length, vector shift, surface displacement, and tortuosity for the 

generalization of linear geographic elements. Their research can provide references to the 

appropriate settings of the line generalization parameters for the maps at various scales. 

Another issue studied in the analysis of the generalization of digital maps was the problem of 

changing the shape of areal and linear objects whose boundaries were subject to simplification. 

McMaster [19] presented a method of simplification lines based on the integration of smoothing and 

simplifying, which is to reduce the change of area. A similar idea is presented by T. Gökgöz et al. 

[20]. Bose et al. [21] proposed a method to simplify the boundaries of polygons. In their research, 

according to accepted boundaries of surface changes, the path containing the smallest number of 

edges was used for simplification. In the study of Buchin et al. [22] is presented the method of area 

preservation in the process of simplifying polygon boundaries by means of an edge shift operation. 

In this algorithm, the orientation of polygons is preserved by an edge-shifting operation that is 

shifted to the inside or outside of the polygons. Another method of analyzing the curvature of vector 

lines and their generalization is an algorithm that is based on the method of analyzing the course 

and form of empirical lines. The idea of this generalization method concerning analogue maps was 

included in Julian Perkal’s works [23], [24]. He divided the areas that are distinguished on the map 

into two types: those that have precisely defined boundaries between them and those whose 

dividing lines are not clearly defined. 

Another known method of generalization is the Chrobak method [25] [26], which is based on 

the so-called elementary triangle. It is a method of simplifying open and closed vector lines 

depending on the scale and presentation of the map. In this method, the topology of the line that is 

associated with the hierarchy of three consecutive vertices of vector line is very important, assuming 

that the initial and final number of vector line vertices are unchanged. In a simplified way, it can be 

said that these two vertices (two out of three analyzed vertices) form the basis for creating a triangle, 

and the third vertex determines a point that in the given range maintains the highest height in the 

triangle while meeting the condition that the sides of this triangle are not smaller than the shortest 

side of the so-called elementary triangle. The length of the sides of the elementary triangle depends 

mainly on the scale of the map being developed [27]. 

3. Algorithm for Checking the Curvature Radius of a Vector Line 

Analyzing various approaches to the generalization of linear elements of the topographic 

digital map, the authors decided to propose a different approach to solve this problem. Due to 

professional interest in cartography and military topography, we particularly wanted to put 

emphasis on solving this problem for its application in technological processes of military 

topographic map production. Maps of this type are performed in two types, both as digital maps 

that are used in GIS systems and analogue (cartographic) maps used daily in the paper version of the 

army. Regardless of their scale, they should reflect the character of the terrain elements as faithfully 

as possible. The proposed algorithm for examining the radius of curvature and the generalization of 

a vector line described below is based on the method of analyzing the course and shape of empirical 

lines. The vector line can be defined as a sequence of vectors, where the end of one vector is the 

beginning of the next. Each two sections have at most one common point. Otherwise, it can be 

defined as an element of a class of curves defined with the inclusion of an additional condition per 

function f: (x, y) ≥ ℝ2, mapping the interval in the plane for functions with linear intervals—that is, a 

function of a real variable whose domain can be broken down into the sum of disjoint compartments 

in such a way that each function is linear. For the implementation of objective generalization, it was 

proposed to use the mathematical modeling method of “rolling” the circle on the physical surface of 

the Earth, just like Perkal proposed [23]. The main factor distinguishing this algorithm is the method 

of controlling it, based on the analysis of the circle radius value that is described on three consecutive 

points of a vector line (PS, PC, and PE) open or closed. The points analyzed must meet the basic 

relationship: 
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It means that they must belong to a set that fulfills the above condition. This condition 

determines the belonging of the set of P points to the circle, defined by the Equation (1), where the 

radius is constant. The radius of this circle, is a measure of the degree of generalization. Due to the 

way that the algorithm works, it is an iterative algorithm. 

If the vector line counts i = 1, …, n points, then the following points are taken for analysis: PS = 

Pi, PC = Pi+1, PE = Pi+2 from i = 1 to i = n − 2. The starting point of the entire vector line and the end point 

are invariants and are not subject to the generalization process. 

In the case of generalization of an open line, the simplification process starts from the first point 

of the whole vector line. In the case of a closed line, unless there are other initial conditions, the 

algorithm selects the point from which the generalization of this line begins. The selection is based 

on the fact that among all calculated radii of circles based on three consecutive vertices, the vertex 

with largest radius is selected. The center point (PC) of the three points becomes the starting point of 

the generalization process. 

The generalization process involves the analysis of the ratio of the radius of Rgen generalization 

radius and the Rver verification radius. The verification radius is the radius of a circle containing three 

consecutive points of a polyline. The generalization radius Rgen is the radius that is related to the 

generalized line. Generalization is based on Formula (2), which uses the difference in the length of 

these radii is checked, and the size of the shortest distance between the chord of the circle based on 

the first and third point (PS and PE) and the center point (PC): 

���� − ����

⎩
⎪
⎨

⎪
⎧ < 0, �(��, ��) < 2 ∗ ����, �� �� �������

≥ 0, �(��, ��) ≥ 2 ∗ ����, �� �� ���� ��ℎ��� 

≥ 0, �(��, ��)  < 2 ∗ ����, �� �� ������� �� �����

≫ 0, ℎ��� < ℎ���, �� �� �������

 (2) 

where: Rgen—radius of the generalization circle; Rver—radius of verification circle; PS—the first point 

with (starting point) coordinates xS and yS; PC—the focal point coordinates xC and yC; PE—the end 

point coordinates xE and yE; hdop—permissible Hausdorff distance between the highest point of arc 

and the chord of the verification circle equal to 0.3mm * M (M—the denominator of the target map 

scale, an empirical coefficient related to the accuracy of the topographical map, orthophotomap, and 

screen vectorization); harc—height of the verification circle arc; d(PS,PE)—chord length. 

����,��� = �(�� − ��)� + (�� − ��)� (3) 

ℎ��� = R��� −
1

2
�4����

� − ����,���
�
 (4) 

The application of the fourth case in Formula (2) algorithm is optional and takes place after 

entering the harc parameter into the procedure. 

In order to automate the generalization process and analyze its result, a computer program in 

Delphi language was written. The analysis of the procedure is shown in Figures 1–4. 

Figure 1a shows the initial vector line subjected to the generalization process. This line contains 

14 of the vector line vertices. When generalized, the radius marked Rgen, was taken as the radius limit 

generalization in the iteration process. The radius of a circle defined by three successive points of a 

vector line was denoted as Rver (radius of verification). Figure 2 shows the first stage of generalization 

consisting of: 

1. determining the actual radius of the circle based on the first three points of the vector line P2 = 

PS, P3 = PC and P4 = PE; 

2. checking whether the radius is greater, equal to or smaller than the accepted radius of 

generalization Rgen and checking whether there is no other vertex of the vector line located 

inside the circle with a radius equal to the radius of generalization Rgen (the generalization 

circle); 
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3. depending on the result of the check: 

a. if the verification radius is smaller than the generalization radius Rver < Rgen (Rwer − Rgen < 0) 

and the chord length is ds(PS,PE) <2 × Rgen, then the middle point from the analyzed three 

vertices is removed from the set of vector line vertices. In the situation shown in Figure 1b, 

the radius of the circle described on points P2 = PS, P3 = PC, and P4 = PE is shorter than the 

radius of generalization, so the point P3 = PC will be removed from the set of vector line 

vertices; 

b. if the verification radius is greater than or equal to the generic radius Rver ≥ Rgen and 

ds(PS,PE) >2 × Rgen, as shown in Figure 1c., then the set of vector line points is left 

unchanged. The next three vertices are checked, starting from P2; 

c. if the verification radius is greater or equal to the generalization radius Rver ≥ Rgen (Rwer − Rgen 

> 0) and ds(PS,PE) < 2 × Rgen, as shown in Figure 1d, then the PC point will be removed from 

the set of vertices of the vector line or moved in another position in order to smooth the 

line as explained later. In case that Rver ≥ Rgen and ds(PS,PE) > 2 × Rgen and harc < hdop, the 

point P3 = PC will be removed from the set of vector line points (see Figure 1e). 

d. The successive three points are subject to examination starting from P2; 

4. in the same way, all the points of the vector line are analyzed in the first iteration stage. The 

result of the first stage of generalization is shown in Figure 2; 

5. in the second iteration stage, the radius values of circles based on the remaining points of the 

vector line are checked again starting from point P1. This situation is illustrated in Figure 3. In 

this case, the radius of the circle circumscribed on P2 = PS, P4 = PC, and P6 = PE is shorter than the 

radius of generalization, so the point P4 will be removed from the set of vertices of the vector 

line; 

6. The generalization process continues until the position of the last point in the vertices line is 

evaluated. If the number of vertices has been reduced in the process, iteration begins, starting 

from point 1. A new set of vertices is subject to generalization. This iterative generalization lasts 

until iteration does not cause a change in the number of vertices. The lack of further changes in 

the number of vertices is a condition whose fulfilment ends the procedure of the algorithm 

(interruption of iteration); and, 

7. after the completion of the generalization process, the vector line will take the form shown in 

Figure 4. 

 
(a) 
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(b) (c) 

 
(d) 

 
(e) 

Figure 1. (a) Beginning shape of line string. (b) The first case according to the Formula (1); (c) The 

second case according to the Formula (1); (d) The third case according to the Formula (2); and, (e) The 

fourth case according to the Formula (1). 

 

Figure 2. The result of the first stage of generalization. 
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Figure 3. Advanced stage of generalization. 

 

Figure 4. Line string after generalization. 

An important issue to determine the value of the initial radius of generalization, which will be 

the basis for determining the degree of simplified polyline. We refer to the vector lines that are 

contained on the map. Map lines are an approximation of empirical curves that have already been 

generalized by surveyors or GIS system operators in the process of spatial data acquisition. The 

principle applied to large-scale maps for the purposes of measuring objects having boundaries in the 

form of curves consists in selecting measurement points in such a way that the distance of the chord, 

based on two subsequent points to the arc, is not greater than the acceptable error of determining the 

coordinates of this element, whose value for analogue topographic maps is 0.3 mm × Mmap 

(Mmap—denominator of the map scale). 

4. Evaluation of the Proposed Generalization Algorithm 

In order to investigate the operation of the vector line generalization algorithm, based on the 

analysis of the radius of curvature, a computer program in Delphi language was written. A 

simplified block diagram of the program has been presented in Figure 4a. The input data for the 

program are: the coordinates of the points forming the vertices of the vector line (polyline) or the 

coordinates of points of the area (polygon) and the Map Scale Change Factor (MSCF). MSCF is an 

empirical coefficient that is used to calculate the value of the radius of generalization depending on 

the map scale value and the modal value of empirical radii of three consecutive vertices on a vector 

line: 

���� =
��

��

∗ ℎ��� + �� (5) 

where: MSCF—Map Scale Change Factor—empirical coefficient used to calculate the value of the 

radius of generalization depending on the map scale value and the modal value of empirical radii of 

three consecutive vertices on a vector line; Mn—scale of the newly developed map; Ms—scale of the 

source map; and, hemp—empirical coefficient used to adjust the generalization radius to the modal 

value and scale of the newly developed map. Based on the analyses of the shape of generalized lines 

that were obtained in several tens of experiments and the analyses of the error in the adjustment of 

lines after generalization (see Section 5), the value of 0.3 was adopted. The aim of the value of this 

coefficient is also to achieve the most aesthetic acceptable generalization in a significantly reduced 

scale; C1  − proportionality coefficient that ensures that the MSCF value is higher than one (C1 = 1). 

The modal value and the MSCF factor values constitute the basis for calculating the Rgen 

generalization radius. 

���� = ��� ∗ ���� (6) 

where: Rmv—radii modal value 

The determination of the MSCF coefficient was one of the most important issues that 

determined the quality of the obtained solutions. The aim of the Authors was to link the 

generalization process to the change in the scale of the topographic map. The idea that is known 

from the Tobler formula [5] was used here. The adopted basis for the generalization coefficient is the 
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ratio of the source map scape to the resulting map scale. If the scale of the map remains unchanged, 

i.e., Mn/Ms = 1 the generalization process should not be conducted. This is a limitation of the scope of 

generalization conducted with use of this method. 

The presented algorithm was developed based on the assumption that it would be used to 

generalize physiographic lines. This assumption hinders the determination of the appropriate value 

of the main parameter that controls generalization in this method, i.e., the radius of generalization. It 

determines the degree of simplification of the vector line. The proposed method of simplification of a 

vertex line is iterative while maintaining a constant radius of generalization, whose length depends 

on the degree of change in the scale of the map. The value of Rgen, calculated based on the MSCF 

coefficient and the modal value of the radii, links the map scales to the shape of the vertex line and it 

is applicable only if the algorithm is applied to topographic maps. To determine its value, we used 

indices in form of the generalization error that consists of two values apart from the visual 

assessment of the generalized line. The error resulting from the use of the smoothing function (Msm) 

was calculated based on the differences between the values of the co-ordinates of vertices before and 

after generalization. Coordinates of vertices that remained after the reduction were used for 

calculations. Some of them had been subjected to the smoothing procedure and for polygons—the 

surface had been evened, which led to a change in their position. 

�� = ���
2 +  ��

2  (7) 

�� = �
∑ ∆��

2�
�=1

� − 1
 (8) 

�� = �
∑ ∆��

��
���

� − 1
 (9) 

where: MP—error in vertex position after generalization, caused by the application of smoothing 

function; MX—error in the determination of the X coordinate; MX—error in the determination of the 

Y coordinate; ΔXi—difference between coordinates after and before generalization: ΔXi = Xi′ – Xi; 

ΔYi—difference between coordinates after and before generalization: ΔYi = Yi′ – Yi; Xi, 

Yi—coordinates of the ith vertex before generalization; Xi, Yi—coordinates of the ith vertex before 

generalization; and, n—number of vertices remaining after generalization. 

The second component of the generalization error is the error resulting from the reduction of 

vertices. For the purposes of the algorithm, a procedure was used that calculated the Hausdorf 

distance between the removed point Pc (the middle point of the three) and the line connecting points 

Ps and Pe (the start and end points). These values were used to calculate the value of the line position 

error after generalization, pursuant to the formula: 

���� = �
∑ ��

��
���

� − 1
 (10) 

where: MRed—line position error after the reduction of vertices; DH—Hausdorf distance between the 

line and the reduced vertex; and, l—number of reduced vertices (l ≠ 1). 

Generalization error was calculated with use of the formula: 

���� = ����
� + ����

�  (11) 

where: Mgen—generalization error. 

The results of error calculations for each of the four datasets (shown in Figures 5c, 6a, 7a, and 

8a) are presented in Table 2 in Section 5. The errors were calculated for each generalization process 

with a change in the map scale. The results of the preceding generalizations constituted input data 

for subsequent ones. 
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In the beginning, the algorithm calculates the initial parameters: the number of vertices, the 

radii of the circles based on subsequent sets of three vertices, minimum and maximum circle radii, 

and the median and the modal value of the series. The legitimacy of the statistical position indicators 

that were adopted for analysis is presented in Section 5. For closed vector lines (polygons), the 

surface area is calculated. For research purposes, the software was equipped with procedures that 

enable variant-based realization of the algorithm. The options of line smoothing and (for polygons) 

evening the surface may be used. The computer program was also equipped with a procedure of 

graphic visualization of input spatial data and consecutive stages of generalization. 

 
(a) 
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(b) 

Figure 4. (a) Block diagram of the algorithm. (b) Smoothing the vector line. 

At the first stage of its operation, the computer program that is based on the algorithm that 

realizes Formula (2) performs a reduction of the vertices of the polyline or polygon by analysing the 

vertices from the first one to the last one on the whole line. After the end of the iteration, at the next 

stage of generalization, if the number of vertices after the iteration is lower than before (i.e., if the 

number of vertices has been reduced), the vector line (polyline) is subjected to the smoothing 

procedure. It was the intention of the authors for the shape of the processed line to be as close to that 

of empirical (physiographic) lines as possible. To achieve it, smoothing was applied apart from the 

functions of the reduction of the number of vertices, and, for closed polygons, their surface was 

evened. Smoothing is applied to these vertices that fulfil condition 3 in Formula (2). If the smoothing 

function is active, then these points are not removed, but are moved to a position on the arc of the 

generalization circle, spanned between the starting and ending points of the analysed three points 

(Figure 4b). 

If the analyzed line is the border of an area, then the surface of the area is additionally aligned 

after the iteration. The centroid of the shape that is formed by the area border has been adopted as 

the invariant of the transformation of vertices. The procedure involves checking whether the 

difference between areas before and after iteration does not exceed the permissible value (Mda). If it 

does, then the position of vertices is changed according to the direction of their distance from the 

center of gravity. The algorithm of the surface adjustment function is based on calculating the 

changes in the distances between the center of gravity of the polygon (the centroid) with specific 

vertices, proportionally to the length of the vector line. The algorithm is iterative, so, after the 

calculations are completed, the difference in the surface of the areas is verified again. If the 

difference between the areas still does not meet the assumed condition, then the procedure of 

changing the position of vertices is repeated until satisfactory results are obtained (i.e., until the 

difference is smaller than acceptable). The acceptable difference (Mda) was adopted as 0.01 of the 

initial value of the area. In the further stage of the generalization process, the number of vertices is 

again reduced and the difference in the surface areas is re-checked. This step is repeated until the 

number of vertices remains unchanged in a subsequent iteration. 

The illustrations below present the input data and generalization results. Figure 5a,b show the 

shape of an open vector line (polyline) before and after generalization. This is a test dataset that 

allows for a graphic presentation of the generalization principle. It does not show the real object and 

it illustrates the effectiveness of the algorithm in reducing the number of vertices and simplifying the 

shape. The presented drawings were developed with use of the procedure “Draw a polygon” 

implemented in the application. 

The visualization procedure transforms the input coordinates from the geodetic (Cartesian) set 

of coordinates to the set of coordinates of the computer screen. This is a simple procedure that uses 

the graphic components of the Delphi language to draw vertices and the lines that connect them. The 

drawing is updated after each iteration. 
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(a) (b) 

   
(c) (d) (e) 

Figure 5. (a) Line string before generalization, initial number of vertexes—15, minimal radius—61 m; 

(b) Line string after generalization, final form, number of vertexes—8, radius of generalization 

(modal value × 1.6)—170 m; (c) Line string before generalization, initial number of vertices—125, 

scale of the map 1:25,000; (d) Line string after generalization, final form, number of vertices—94, 

radius of generalization (modal value × Map Scale Change Factor (MSCF))—65 m × 1.6 = 104 m, scale 

of the map 1:50,000; (e) Line string after generalization, final form, number of vertices—80, radius of 

generalization (modal value × MSCF)—105 m × 1.6 = 168 m, scale of the map 1:100,000. 

Figure 5c–e show stages of generalization of a vector line that are a result of the vectorization of 

the coastline of a river section. The scale of the source map was 1:25,000, and of the target 

maps—1:50,000 and 1: 100,000. In the case shown in Figure 5d the modal value of the statistical series 

of the vertices dataset was 65. The adopted value of the generalization radius Rgen = 104 m was 

calculated with use of Formulae (5) and (6). In the case shown in Figure 5e, the modal value of the 

statistical series of the vertices dataset was 105 m. The adopted value of the generalization radius Rgen 

= 168 m was calculated with use of Formulae (5) and (6). 

It should be noted that, when this method of generalization is used, the algorithm requires 

performing it consecutively, for each map scale, from larger to smaller ones. The results of 

generalization in the larger scale, recorded in files on computer disc, constitute input data for the 

generalization of the map in a smaller scale in the adopted series of scales. This procedure has been 

used in each of the generalization cases presented below. 
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Other types of vector lines were also subjected to the algorithm. One of them is shown in Figure 

6a–e. Generalization was applied to a closed vector line, whose shape was obtained as a result of 

vectorization of the coastline of a water reservoir contained in the topographic map in the scale of 

1:25,000. The aim of generalization was to obtain a form of the vector line that would be suitable for 

application in the process of generalization of a map in the scale of 1:50,000. Figure 6b shows the 

result of generalization with the modal value of 25 m used as the adopted generalization radius and 

the MSCF coefficient of 1.6. The operation of the program ended when no changes in the number of 

vertices occurred in subsequent iterations. The number of vertices of the vector line decreased from 

141 to 89. 

  

(a) (b) 

 

 

(c) (d) 
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(e) 

Figure 6. (a) Area limited by a polygon, number of vertices—141; (b) Area limited by a polygon, 

number of vertices—89, radius of generalization (modal value × MSCF)—25 × 1.6 = 40 m. (c) Area 

limited by a polygon, number of vertices—58, radius of generalization (modal value × MSCF)—44 m 

× 1.6 =70 m. (d) Area limited by a polygon, number of vertices—29, radius of generalization (modal 

value × MSCF)—74 m × 1.75 = 130 m. (e) Generalization results presented in approximate map scales: 

1:25,000, 1:50,000, 1:100,000. 

Figure 6c presents the result of generalization with the applied modal value of 44 m, which, 

according to Formulae (5) and (6) and the MSCF factor of 1.6, resulted in the Rgen generalization 

radius of 71 m. Iterations were finished when no further changes occurred in the number of vertices, 

which was reduced to 56.The aim of this attempt was to generalize the object for a map in the scale of 

1:100,000. Figure 6d shows the result of an attempt at the application of the generalization radius of 

130 m (modal value—74 m, MSCF 1.75) for further generalization of the object for a map in a scale of 

1:250,000. Iterations were finished when no further changes occurred in the number of vertices, 

which was reduced to 27. Subsequent iterations did not lead to a further reduction. 

Figure 6e presents source data in the scale of 1:25,000 and the results of the operation of the 

generalization algorithm on approximate map scales: 1:50,000 and 1:100,000 in the way, in which 

they would be presented on such maps. 

Another example of closed vector line generalization is the shape presented in Figure 7a,b. As 

in the previous example, the radius based on the modal value of the data series (modal value—26 m, 

MSCF—1.6) was adopted as the generalization radius from scale of 1:25,000 to the map scale of 

1:50,000. Iterations ended when there were no further changes in the number of vertices, which 

diminished to 25. A similar shape is presented in Figure 7c. The aim of this generalization attempt 

was to obtain the object shape that would be suitable for a map scale of 1:100,000. The Rgen radius was 

67 m, pursuant to Formulae (5) and (6). Iterations were ended when the number of vertices of the 

vector line decreased to 19 and did not diminish any further. 
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(a) (b) 

 
(c) 

Figure 7. (a) Area limited by a polygon, number of vertices—52; (b) Area limited by a polygon, 

number of vertices—25, radius of generalization (modal value × MSCF)—42 m × 1.6 = 67 m; (c) Area 

limited by a polygon, number of vertices—19, radius of generalization (modal value × MSCF)—44 m 

× 1.6 =70 m. 

Another example of closed vector line generalization is the shape that is presented in Figures 

8a,b. As in the previous example, the radius of 22 based on the modal value of the data series (modal 

value—14, MSCF—1.6) was adopted as the generalization radius from scale of 1:25,000 to the map 

scale of 1:50,000. Iterations ended when there were no further changes in the number of vertices, 

which diminished to 142. A similar shape is presented in Figure 8c. The aim of this generalization 

attempt was to obtain the object shape that would be suitable for a map scale of 1:100,000. The Rgen 

radius was 40 m, pursuant to Formulae (5) and (6). Iterations were ended when the number of 

vertices of the vector line decreased to 89 and they did not diminish any further. 

  
 

(a) (b) (c) 

Figure 8. (a) Area limited by a polygon, number of vertices—215; (b) Area limited by a polygon, 

number of vertices—142, radius of generalization (modal value × MSCF)—14 m × 1.6 = 22 m; (c) Area 

limited by a polygon, number of vertices—89, radius of generalization (modal value × MSCF)—25 m 

× 1.6 = 40 m. 

The results of vector line generalization based on this algorithm were compared with the 

Douglas-Peucker algorithm [7]. For that purpose, an application in the C++ language was used, 
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whose source code is presented on the website 

https://rosettacode.org/wiki/Ramer-Douglas-Peucker_line_simplification. The application was 

compiled in online mode with the use of the compiler that is available on the website 

https://www.onlinegdb.com/online_c++_compiler. 

The main problem in the comparison of these algorithms was the determination of the value of 

the reduction parameter that was used in the Douglas-Peucker method, and more specifically, the 

determination of its dependence on the scale of the generalized map. The Douglas-Peucker 

algorithm is a method of reducing the number of vertices. None of the vertices change its position. 

Figure 9a–d present the results of the reduction of datasets shown, respectively, in Figures 5a,c, 6a, 

and 7a. It is difficult to compare the reduction and generalization results, as the operation of the 

algorithms is based on different principles. The aim of the algorithm that was proposed by the 

authors is to introduce such changes to the set of vertices that will not only reduce their number, but 

also change the position of some of them. These changes result from the operation of the smoothing 

function, which is used in order to maintain the topographic nature of the line. Another reason for 

changing the position of vertices is to adjust their positions to the optimum position, so that the 

acceptable difference in the surface areas of polygons is not exceeded. The authors propose to use 

1/10 of the modal value of the series of verification radii as the reduction parameter in the 

Douglas-Peucker algorithm. 

 

 
(a) (b) 

  
(c) (d) 

Figure 9. (a) Reduction of diagram data (org. Figure 5a), reduction parameter—90 m, number of 

vertices—9; (b) Line string reduction (org. Figure 5c), reduction parameter—2.1 m, number of 

vertices—81; (c) Polygon reduction (org. Figure 6a), reduction parameter—2.5 m, number of 
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vertices—62; (d) Polygon reduction (org. Figure 7a), reduction parameter—4.1 m, number of 

vertices—34. 

5. Discussion 

An important parameter of the proposed generalization process is the size of the radius of the 

generalization circle, at which the optimum shape of the line and number of vertices of the vector 

line are achieved for the subsequent map scale in the series of scales. Polish analogue topographic 

maps use scales from 1:25,000 to 1:50,000, 1:000,000, and 1:250,000 in compliance with NATO 

standards. Assuming that the initial generalization of line shape takes place during the 

determination of the coordinates of the vertices (e.g., during field measurements or vectorization of 

orthoimaging) and that it is performed by a surveyor or GIS operator, it is reasonable to assume that 

the size of the error of the determination of such coordinates is proportional to and compliant with 

the general principles of generalization of curved lines (empirical curves). The principle states that 

the difference between the position of the point on the curved line and the chord based on two 

subsequent vertices of the vector line cannot exceed the error of the position of the determined 

element that is permissible for the given map. This difference increases with the growth of the scale 

denominator. The analysis of various shapes of curves that are approximated with vector lines 

demonstrates the connection between the new, smaller map, with the modal value of the lengths of 

the radii of circles being based on three consecutive vertices. Adapting the generalization radius 

calculated for the given scale of the target map according to Formulae (5) and (6) results in a 

significant reduction in the number of vertices, while the fidelity of the shape of the line after 

generalization to the original shape is maintained. 

The presented method of determining the generalization radius directly depends on the change 

in map scale (Formula (5)). While developing the algorithm, the authors assumed that its results 

should reflect the cartographic method of editing maps when changing their scale from large to 

small. The parameter that controls generalization that was used for the evaluation of the algorithm 

in tests was one of the statistical indicators of the position of the elements in data series. Treating the 

determination of the position of vertices of the vector line in a simple vector model as a 

measurement experiment performed in the field or on the computer screen during vectorization, it 

was considered that the lengths of the radii of circles defined by three consecutive points are 

variables that constitute a statistical series. Apart from the influence of the methodological and 

equipment-related conditions, each result of measurement that is performed by an observer in the 

process of field or laboratory generalization is also affected by the individual personal traits of the 

observer. These traits are of a random nature. Due to that, one may attempt to describe the resulting 

statistical series with use of the statistical position indicator. This indicator depends not so much on 

the distance between consecutive vertices of the line, but also on their position in relation to each 

other. This is why this series is called a statistical shape series, as, according to this algorithm, the 

“co-linearity” of three consecutive vertices of the vector line is an important element that controls 

generalization. 

To assess the usability of location indices that can be used in assessing the validity of 

generalization, we tested the use of dominant, median, and average radii of circles as factors 

enabling the determination of the radius of the generalization. These statistics are presented in Table 

1. Four datasets (shown in the Figures 5c, 6a, 7a, and 8a) were analyzed and accordingly these data 

were grouped in Table 1. Data set number 1 applies to a linear object (polyline), while the rest relates 

to areas (polygon). The data contained in the table show that with the implementation of subsequent 

generalizations for individual map scales, in each data set the same relationships between the basic 

statistical indicators are observed. 

Conducting generalization for subsequent map scales results in a proportional increase in the 

calculated median and modal value of the radii of verification circles. 
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Table 1. Summary of statistical indicators of the analyzed data. 

 
 

With the increase of the radius of generalization, the number of vertices decreases and the 

average radius of circles that are based on successive points of the line increases. This trend is 

noticeable in each set of analyzed data. Similar changes were observed for statistical indicators 

(median and modal value). 

Table 2. List of mean errors of the position of points after generalization. 

 

 

The table contains a list of calculated mean squared errors of the position of vertices after 

generalization. The column marked as Mp_map contains the values of acceptable errors in the 

position of points on maps in the analyzed scales, pursuant to the hdop value that is specified in 

Formula (2). Column Msm1 presents the values of smoothing errors calculated pursuant to Formula 

(7), where measurement data or the results of previous generalization were used as the initial values 

of coordinates. The initial values of coordinates were adopted for calculations as error-free. Each 

calculated error value was referred to the adopted map scale. Column Mred1 contains the values of 

reduction errors calculated pursuant to Formula (10). The calculations were based on the value of 

the Hausdorf distance between the removed vertex and the chord connecting the start and end 

points of the analyzed three vertices. Each calculated error value was referred to the adopted map 

scale. 

średni maksym. minimal. Mediana
Domina

nta

Generali

azcji

Numer 1 1:25 000 1:50 000 poliline 3867 x 29 125 688 17020 1 175 65 104

1:50 000 1:100 000 poliline 3845 x 38 94 693 8397 24 236 105 168

1:100 000 1:250 000 poliline 3580 x 38 80 904 8397 31 281 173 277

1:250 000 1:500 000 poliline 3454 x 43 62 1030 8154 42 401 401 641

Numer 2 1:25 000 1:50 000 polygon x 109244 17 140 260 3729 1 59 25 40

1:50 000 1:100 000 polygon x 109173 16 89 415 4715 21 154 44 70

1:100 000 1:250 000 polygon x 109168 23 58 5718 51914 71 129 74 130

Numer 3 1:25 000 1:50 000 polygon x 43600 23 54 128 1848 11 40 42 67

1:50 000 1:100 000 polygon x 43599 41 26 111 444 42 68 44 70

1:100 000 1:250 000 polygon x 43598 32 19 301 2454 66 101 73 128

Numer 4 1:25 000 1:50 000 polygon x 85607 10 216 106 3191 3 29 14 22

1:50 000 1:100 000 polygon x 85053 14 142 91 627 21 44 25 40

1:100 000 1:250 000 polygon x 84568 19 89 112 802 35 64 45 79

Promienie
Liczba 

werteksów

Śr. dł. 

boku
Zestaw danych

Skala mapy 

wyjściowej

Skala mapy 

docelowej

Rodzaj 

obiektu

Długość 

linii

Pole 

obszaru

No 1 1:25 000 1:50 000 poliline 15m ±8,4m ±21,6m ±23,2m ±8,4m ±21,6m ±23,2m

1:50 000 1:100 000 poliline 30m ±15,0m ±1,8m ±15,1m ±17,2m ±21,7m ±27,7m

1:100 000 1:250 000 poliline 75m ±25,5m ±15,1m ±29,6m ±30,8m ±26,4m ±40,5m

1:250 000 1:500 000 poliline 150m ±44,7m ±44,2m ±62,8m ±54,2m ±51,4m ±74,8m

No 2 1:25 000 1:50 000 polygon 15m ±12,3m ±2,9m ±12,7m ±12,3m ±2,9m ±12,6m

1:50 000 1:100 000 polygon 30m ±13,5m ±3,3m ±13,9m ±18,3m ±4,4m ±18,8m

1:100 000 1:250 000 polygon 75m ±54,7m ±19,6m ±58,1m ±57,7m ±20,1m ±61,1m

No 3 1:25 000 1:50 000 polygon 15m ±26,3m ±7,8m ±27,4m ±26,3m ±21,6m ±34,0m

1:50 000 1:100 000 polygon 30m ±14,2m ±2,7m ±14,5m ±29,9m ±21,7m ±36,9m

1:100 000 1:250 000 polygon 75m ±41,4m ±52,3 ±66,7m ±51,1m ±56,6m ±76,2m

No 4 1:25 000 1:50 000 polygon 15m ±6,4m ±1,6m ±6,6m ±6,4m ±1,6m ±6,6m

1:50 000 1:100 000 polygon 30m ±7,3m ±8,0m ±10,8m ±9,7m ±8,2m ±12,7m

1:100 000 1:250 000 polygon 75m ±33,2m ±15,5m ±36,6m ±34,5m ±17,6m ±38,8m

Msm2Msm1Data set
Source map 

scale

The scale of 

the target 

map

The type 

of object
Mp_map Mred2 Mgen2Mred1 Mgen1
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Columns Msm2 and Mred2 contain, respectively, the errors calculated while considering the 

erroneous positions of points obtained from the previous M generalizations where error for 

generalization j is equal to MP1i, pursuant to the formula: 

��� = �� ����
�  (12) 

where: Mp2 refers, respectively, to Msm2 and Mred2 errors. 

Columns marked as Mgen1 and Mgen2 present the values of generalization errors, described as: 

����� = �����
� + �����

�  (13) 

where: i—error index in the specific column of Table 2. 

Error values are an indicator of generalization quality. The values that are contained in the table 

demonstrate that the generalization error increases with the increase in the generalization radius 

(adequately to the map scale denominator. In one case (dataset No. 3, generalization from map scale 

1:100,000 to scale 1:250,000), it slightly exceeds the acceptable values of point position error for the 

relevant map scale. These results demonstrate that the assumptions set for the developed algorithm 

have been fulfilled, i.e., that the simplified shape of vector lines subjected to subsequent 

generalizations has been maintained and thee error in developing a topographic map in the given 

scale has not been exceeded. 

In order to evaluate the usability of potential indicators, we have tested the use of modal value, 

median, and average of the radii of circles as the factors that enable the determination of the length 

of the objective generalization radius. The authors understand the objectivity of the applied 

generalization method as becoming independent from the individual habits of 

cartographers-editors. Each of such cartographers-editors, although they comply with the same 

principles during the generalization of shapes, does it in an individual, subjective way. Due to the 

extensive and complex data resources in topographic maps, the principles of editing such maps are 

in some instances quite general. This allows, for example, to determine the shape of linear objects 

quite freely. Another aim of the application of the proposed algorithm is to increase the degree of 

automation of the analogue map editing process on the stage of developing their digital form. 

Analogue maps (cartographic versions of maps in digital format) are the final stage of the 

technological process of their creation. In simple terms, their development consists of several stages: 

 obtaining spatial data and recording them in an IT system, usually GIS; 

 complementing their characteristics with descriptive data; 

 creating a cartographic data base; and, 

 processing it to obtain a topographic analogue map in the desired scale. 

It is possible to use the algorithm at the final stage of developing a topographic map, during the 

reparation of the so-called “carto output”. The tool used for creating, updating and editing 

topographic maps is GIS software, such as ArcGIS® by ESRI or Geomedia® by Intergraph. The 

language of the internal applications in GIS systems is the currently very popular Python language. 

For the purposes of using this generalization method in these software systems, an application in the 

Python environment should be developed. 

The results of these attempts presented in Figures 5a to 7d demonstrate that the statistical 

indicator of a data series that reflects the nature of the generalized line best is the modal value of this 

series. Figure 5a,b present a quite simple example of a vector line with a small number of vertices. It 

does not show any actual field object and it illustrates the effectiveness of the algorithm in reducing 

the number of vertices and simplifying the shape. The line (polyline) that is presented in Figure 5c,d 

is a result of the vectorization of a river coastline. It was subjected to generalization with use of a 

simple smoothing function based on the principle of moving certain vertices onto the circle of the 

generalization radius. 

Both the indicator of the reduction of the number of vertices of the vector line and the shape of 

vector line obtained after generalization, which reflects its original shape quite correctly, prove that 



ISPRS Int. J. Geo-Inf. 2018, 7, 477 19 of 21 

 

the application of this indicator was justified. Figures 5d,e and 6f show generalized shapes of vector 

lines in printout scales. This enables comparing the quality of the algorithm in terms of maintaining 

the characteristics of the vector line. 

The computer application was also equipped with an option that enables comparing the 

difference in the surface area of the polygon before and after generalization. The authors developed 

an iteration algorithm that adjusts the position of points after generalization, so that the difference 

between the area enclosed by the line after the reduction of vertices and the initial area does not 

exceed the assumed error in the determination of surface area. The invariant of the coordinates’ 

re-calculation process is the position of the centroid of the figure created by the polygon. Figure 6d 

shows the generalization of polygon shape after generalization adequate for analogue map scale of 

1:250,000. The surface area is similar to the initial one, and the shape approximates an oval, which, in 

further iterations, may be approximated by a circle. 

6. Conclusions 

The presented generalization method was designed as a tool to be used mainly for processing 

digital data during the process of compiling analogue (cartographic) maps. Cartographic compiling 

of topographic maps is a labor consuming and individualized stage of working on maps in a scale 

smaller than the initial scale. Each such map has some properties that are characteristic for the 

person who performs the editing. As a result, each map is unique and subjective. The proposed 

algorithm by definition automates and facilitates the process of simplification and the reduction of 

linear elements of the map. Its main property consists in the objective reduction of vertices of lines, 

while at the same time maintaining a high degree of similarity between the generalized elements. 

The algorithm fulfils the condition stating that nodal points of the set of lines cannot be subject to 

changes (removal or displacement). 

In order to test the operation of the algorithm, a computer program in the Delphi language was 

developed. Apart from realizing the functions of reduction and simplification of the vector lines, it 

also smoothens them, and for areas that are delimited by vector lines it performs the procedure of 

the adjustment of the position of vertices in order to maintain their surface areas relatively stable. 

The conducted tests of the operation of the algorithm in the form of a computer program allow for us 

to state that: 

1. the design of the algorithm does not require complicated programming solutions to implement 

it in GIS systems; 

2. the algorithm may be applied both to polylines and to vector lines that constitute the borders of 

areas. The algorithm works best for such physiographic elements of the map as water courses, 

land/water borders, borders of forest complexes etc.; and, 

3. the following points do not change their position and they are not subject to reduction during 

generalization: the start and end of the polyline, the center of gravity of the figure constituting 

the area and selected points marked in the dataset. 

Based on the tests and analyses conducted so far, we believe that it is justified to conclude that 

the presented algorithm is well-suited for the generalization of vector lines in computerised systems 

of digital maps. However, its application and further testing in GIS systems must be preceded by 

translating the computer application from the Delphi language to the language that is used by the 

applications of those systems, e.g., Python. 
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