
 International Journal of

Geo-Information

Article

A Parallel-Computing Approach for Vector
Road-Network Matching Using GPU Architecture

Bo Wan 1,2, Lin Yang 1,3,* , Shunping Zhou 1,2, Run Wang 1,2 , Dezhi Wang 1,2

and Wenjie Zhen 1

1 Faculty of Information Engineering, China University of Geosciences (Wuhan), 388 Lumo Road,
Wuhan 430074, China; magicwan1105@163.com (B.W.); zhoushunping@mapgis.com (S.Z.);
runwang@cug.edu.cn (R.W.); wuhan1990hk@126.com (D.W.); zhenwenjiezwj@outlook.com (W.Z.)

2 National Engineering Research Center of Geographic Information System, Wuhan 430074, China
3 State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
* Correspondence: yanglin@mapgis.com; Tel: +86-159-2732-2600

Received: 2 October 2018; Accepted: 5 December 2018; Published: 7 December 2018
����������
�������

Abstract: The road-network matching method is an effective tool for map integration, fusion, and
update. Due to the complexity of road networks in the real world, matching methods often contain
a series of complicated processes to identify homonymous roads and deal with their intricate
relationship. However, traditional road-network matching algorithms, which are mainly central
processing unit (CPU)-based approaches, may have performance bottleneck problems when facing
big data. We developed a particle-swarm optimization (PSO)-based parallel road-network matching
method on graphics-processing unit (GPU). Based on the characteristics of the two main stages
(similarity computation and matching-relationship identification), data-partition and task-partition
strategies were utilized, respectively, to fully use GPU threads. Experiments were conducted on
datasets with 14 different scales. Results indicate that the parallel PSO-based matching algorithm
(PSOM) could correctly identify most matching relationships with an average accuracy of 84.44%,
which was at the same level as the accuracy of a benchmark—the probability-relaxation-matching
(PRM) method. The PSOM approach significantly reduced the road-network matching time in dealing
with large amounts of data in comparison with the PRM method. This paper provides a common
parallel algorithm framework for road-network matching algorithms and contributes to integration
and update of large-scale road-networks.

Keywords: parallel computing; road-network matching; GPU architecture; PSO

1. Introduction

1.1. Road-Network Matching

Road-network matching is a key technology of vector road-map integration, fusion, and update [1].
The main task of road-network matching is building the corresponding relationship of road–object pairs
that represent the same segment of real-world road in heterogeneous road maps [2]. It has significant
potential for the timely and cost-effective updating of road-network data and geographic-information
science applications (e.g., vehicle-navigation products) [3].

The core of the road-network matching method is evaluating the similarity of two node/road
features and determining the corresponding relationship of matching pairs.

(1) Similarity quantifies the similar degree of two features, providing the basis for determining the
matching relationship of homonymous objects [1]. The similarity-evaluation function varies with
the matching unit. In earlier studies, the matching unit is usually the limited local context around
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nodes or road segments. Such similarities as the Hausdorff distance or the Fréchet distance of
homonymous nodes or road segments and the topological structure of intersections are mainly
considered in these approaches [4–8]. Some researchers also integrated multi-factors (e.g., length,
orientation, and number of topological connections) for road-segment matching [2,9]. However,
matching a unit at the node/road segment scale may bring about local optimization problems,
limiting matching accuracy. Some studies pay more attention to the structural information
of the road network and shift the matching unit to a larger scale, such as junction/segment
clusters, for global optimization [3,10]. It makes the similarity measures more comprehensive but
more complicated.

(2) When the similarity of matching units is evaluated, the matching relationship of the nodes/road
segments can be determined. Most earlier methods rely on a sequential greedy strategy [1].
This strategy intends to achieve the local optimum by comparing similarity with an experiential
threshold [4,11,12]. To overcome the limitation of the local optimum, several optimization
strategies have been proposed to find a global optimal solution from all possible matching
choices [8,13]. In these strategies, the objective function maximizes total similarity among all matched
feature pairs. Global optimal solutions have greatly promoted matching accuracy. However, increased
computational complexity also degrades the performance of the matching method.

To date, most studies on road-network matching focus on evaluating the effectiveness of the
matching model and promoting matching accuracy. Few studies have mentioned the performance of
the matching method, and are listed in Table 1. The amount of data in most studies is small, fewer
than 1000 nodes/segments. Time cost varies from seconds to hours. Even at the same data scale, the
time cost is different. Reasons that affect the computational costs can be summarized in three points.

Table 1. Studies that mention the performance of road-network matching algorithms (listing data scale,
time cost, accuracy, recall, and environment).

Author (Year)
Data Scale

Time Cost Accuracy
Ratio

Recall
Ratio

Environment
Node Number Segment Number

Li (2010) [1]

/ 434/423 31 min 39 s 98%

- -- 308/264 23 min 16 s 97.58%

- 377/374 1 min 37 s 97.85%

- 344/322 2 h 6 min 14 s 95.03%

Tong (2014) [8]

- 99/84 1.8 s 91.8% 100% MATLAB 6.0, Intel Core
5 Duo processor, and

4 GB memory.
- 116/112 3.83 s 96.1% 96.1%

- 137/108 4.71 s 87.2% 91.2%

Zhang
(2012) [15]

249/387 (Wuhan) 358/577 (Wuhan) 4 s per iteration 97.2% 91.2% Microsoft Visual Studio
2008 (C# Programming
Language) and ArcGIS

Engine 9.3.

1059/1299 (Beijing) 1567/2019 (Beijing) 5 s per iteration 96.5% 94.6%

2732/1666 (Zurich) 3995/2489(Zurich) 30 s per iteration 96.5% 94.7%

Luan (2012) [16] 700 - 13.5 min 86.11% 90.30% CPU 3.06 GHz and 1 GB
of RAM.

Yang (2014) [3] 756/361 - - 95.45% 98.91% -

Liu (2016) [17]

-
arcs: 577/585;

strokes: 136/140
(Ring and radial area)

25.44 s 80.67%
- -

-
arcs: 522/513;

strokes: 113/114
(Grid area)

10.43 s 76.83%

-
arcs: 1092/1101;
strokes: 220/230

(Hybrid area)
43.56 s 83.33%

Zhao (2010) [14] 121/261 142/325 71 s - -
C# Programming

Language and ArcGIS
Engine 9.2

Fan (2016) [18]
- 12208/5945 (Heidelberg) 22 min 98.3% 95.3% -
- 107438/61559 (Shanghai) 142 min 96.9% 85.6%

Zhang
(2018) [19]

474/671 (Beijing) 784/962 (Beijing) 44 s 95.3% 95.0% C #, ArcEngine10.1,
CPU Intel Core 2 Duo

E7200, 3.53 GHz.1556/2229 (Shanghai) 3250/4480 (Shanghai) 247 s 95.1% 95.9%
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(1) The scale of road-network data. Dealing with a larger scale of road-network data requires a
higher time cost, because the number of objects that need to be computed increases.

(2) The complexity of the matching unit and the similarity function. Compared with a simple
matching unit (e.g., road segment or node), the similarity function of complex matching units
(e.g., node/segment cluster) is always more complex in order to take more factors into careful
consideration. Thus, complex matching units often need more computing time.

(3) The number of iterations and convergence rate. Optimal solutions are usually determined
iteratively in the previous literature. For instance, the probabilistic relaxation method iterates
to find the stable matching probability matrix, and its computing time is closely related to
convergence rate and the number of iterations [14].

From a data perspective, dividing the data into smaller units can offer a potential for accelerating
matching efficiency by parallel computation [1].

1.2. Research Object

Numerous algorithms have been proposed to solve the road-network matching problem [1–5,8,
13,14,19]. The accuracy of road-networks matching is greatly promoted in previous studies. However,
the performance of the matching method is less noticed. As the sizes of the databases increase, the
performance issue becomes increasingly prominent. Parallel techniques are well-suited to accelerate
matching computation. Dividing large areas into several sub-regions could be an effective way for
faster computing with parallel computation [1]. Graphics-processing units (GPU) that have hundreds,
even thousands, of integrated cores in a single chip are perfect for solving problems that can be
partitioned into independent and smaller parts.

Accordingly, to perform the road-network matching in an effective and efficient manner, a parallel
matching strategy using GPU architecture is developed in this paper, and particle-swarm optimization
(PSO) is introduced for the global optimization of the matching process. PSO is straightforwardly
parallelizable and has shown excellent convergence rates, which can further reduce the computing
time. It has the advantage of concurrently evaluating a model population, and particles can be evenly
distributed to multiple threads/processes [20]. The remainder of this article is organized as follows.
Section 2 introduces the model construction of the particle-swarm optimization-based matching
(PSOM), including the matching unit introduction, the mapping of matching process to particle
flight process and the workflow of PSOM. Section 3 introduces the parallel strategies of similarity
computation and matching identification in PSOM. Section 4 describes the accuracy evaluation indices.
Experiments conducted on 14 datasets with different scales are presented in Section 5.1. Parameter
settings of particle and thread are discussed in Section 5.2; algorithm accuracies are analyzed in
Section 5.3; and Section 5.4 examines the speed-up ratio of PSOM under the GPU environment,
comparing with another global optimization strategy, the probability-relaxation algorithm (PRM).
The conclusions are drawn in Section 6.

2. PSO-Based Road-Network Matching Algorithm (PSOM)

2.1. Matching Unit

The node/road-segment-matching unit may result in local optimization problems. In this paper,
the “stroke”, a natural morphological extension of continuous road segments, is employed as the
matching unit. Strokes can serve as reference to help locate homonymous road segments and handle a
fuzzy matching relationship of road segments. A hierarchical stroke structure is also a global constraint
that can avoid local matching errors caused by nonsystematic bias.



ISPRS Int. J. Geo-Inf. 2018, 7, 472 4 of 21

2.2. Model Construction of PSOM

PSO has the advantage of global optimization and parallelization. This section provides a detailed
solution of how to use the PSO to solve road-network matching problems.

(1) Particle Swarm

The first step of PSO is to generate a swarm composed of several models (position vector) in the
model parameter space. The initial models can be defined by a given random distribution. Each model
is represented by a particle that interacts with its neighborhood to find the global minimum of the
misfit function.

The swarm is composed of m particles, which means m potential-candidate solutions in the
solution space. The swarm in the nth iteration is denoted as P(n) = [P1(n),P2(n), . . . ,Pm(n)], where
Pm(n) is the mth particle in the nth iteration.

Suppose the dimension of one particle is d, the ith particle can be represented as position vector
Pi(n) = [pi1(n),pi2(n), . . . ,pid(n)], where pij (n)denotes the position of j-dimension for particle i.

Road-network matching is an optimization problem in d (the number of nodes in road network)
dimensional space. In this paper, one particle corresponds to one solution space/model for the
road-network matching. A particle’s position in d-dimensional space is a solution composed of d
matching pairs.

We denote the road network with fewer nodes as Ra, and the road network with more nodes as
Rb. The nodes of Ra are labeled as Na, and the nodes of Rb are labeled as Nb. The size of Na is viewed
as the dimension d of the model, and each node in Na corresponds to one dimension of the model.
Actually, the size of Na is used to define the size of position vector Pi(n) that is denoted as dimension d.
Then, the position of the ith dimension for particle i, pij (n) is represented by a matching pair (naj, nbx),
naj ∈ Na, nbx ∈ Npb∈ Nb. naj is the jth element in Na and nbx is any node from the potential candidate
nodes set Npb, which also belongs to Nb.

Specifically, suppose feature naj in Ra has k potential candidate features {nc1,nc2, . . . , nck} in Rb,
then all potential matching pairs for naj constitute set PSetaj{(naj, nc1), (naj, nc2), . . . , (naj, nck)}. Each (naj,
nbx) denotes one matching pair of Ra and Rb, and represents the position for one specific dimension.
Thus, the set of (naj, nbx), which is composed of m matching pairs, constitutes a specific solution space,
and corresponds to a specific position of the particle in the M-dimensional space. The matching pair
(naj, nbx) updates during the flight process in terms of iterative function; therefore, the position of the
particle and the model vector change.

(2) Particle Velocity

Particle velocity controls how a particle moves in the model parameter space. The velocity
vector represents the changing degree of the particle position. Velocity vector is adjusted according
to its own personal best model and the global best model of the whole swarm. It is represented by
vi(n) = [vi1(n),vi2(n), . . . vid(n)], in which vij(n) is the velocity of particle i in the jth dimension on the
nth iteration. Here, vij(n) represents the updated extent of the jth matching pair, which will decide the
next matching pair for naj.

(3) Particle Fitness Value

Particle fitness value is determined by the optimization objective, which is used to evaluate
the optimization extent. The particle fitness value is the final optimized solution when the iteration
process ends. In our problem, the optimization objective is the global similarity of Ra and Rb. Here, the
fitness of one particle is represented by the sum of the similarity of each matching pair in a particle.
The greater the fitness value is, the better the matching results are.

PFVi =
d

∑
i=0

Sim(naj, nbx) (1)
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The fitness value of particle i in the nth iteration is represented as fi(n) = [fi1(n),fi2(n), . . . fid(n)], in
which fij(n) is the fitness value for the jth dimension. The similarity-measure model Sim(naj, nbx) is
used to calculate fij(n) for jth matching pair (naj, nbx) in the particle (see Appendix A). Note that here
fij(n) is a universal framework that could fit different kinds of similarity functions.

fij(n) = Sim(naj, nbx) (2)

Sim(naj, nbx) is the similarity between node naj and nbx. fij(n) quantitatively describes the similarity
between node naj and nbx.

(4) Individual Optimum Extremum

Individual optimum extreme refers to the optimal solution in its multiple iterations for a single
particle, which is also called the personal best model. The formula is as follows:

Pcbest
i (n) = Max(PFVi(n)), n ∈ [1, ci] (3)

where Pcbest
i (n) is the maximum PFV chosen from the initial state to the current iteration ci for particle i.

Pcbest
i (n) is also represented as vector Pcbest

i (n) = [Pcbest
i1 (n), Pcbest

i2 (n), . . . Pcbest
id (n)], where Pcbest

ij (n) is the
value on the jth dimension. In this way, the local optimization of each matching pair is also achieved
by updating the personal best model of each particle. Thus, the individual optimum extreme refers to
a set of matching pairs with individual best fitness.

(5) Global Optimal Extremum

Global extreme value refers to the optimal particle in the process of searching from the initial
state to the current iteration for the whole particle swarm, which is also called the global best model.
In each iteration, the particle with maximum fitness PFV is selected from the particle swarm. Pgbest (n)
is continuously updated in the iteration process.

Pgbest(n) = Max(PFVi(n)), i ∈ [1, m], n ∈ [1, ci] (4)

The global optimal extremum on the nth iteration is represented as Pgbest (n) = [Pgbest
1 (n), Pgbest

2 (n),

. . . Pgbest
j (n)], where Pgbest

j (n) is the value on the jth dimension. In this way, the flying process
maximizes the total similarity of all matched feature pairs of Ra and Rb. When the iteration ends,
Pgbest(n) is the optimal matching result for Ra and Rb.

(6) Particle Flying

The principle of particle flying is illustrated in Figure 1; the velocity of particle i, vij(n + 1) is
decided by three parts: (1) velocity in the last iteration, which inherits the previous velocity; (2) distance
between the current position of particle i and the optimal position of particle i, which represents the
cumulative experience of particle i; and (3) distance between the current position of particle i and the
global optimal particle in the swarm, which represents the sharing experience from the society. In this
way, other particles gradually fly to the state of global optimum.

The velocity and position of each particle are updated as follows:

vij(n + 1) = wvij(n) + c1r1(Pcbest
ij (n)− xij(n)) + c2r2(Pgbest

j (n)− xij(n)) (5)

where vij(n + 1) means the velocity of particle i on the jth dimension at iteration n + 1. w is an inertia
weight, and c1 and c2 are two acceleration parameters that, respectively, control the cognition and
social interactions of the particles. r1 and r2 are uniform random-number vectors drawn at iteration
n, Pcbest

ij (n) is the personal best model of particle i on the jth dimension at iteration n, and Pgbest
j (n) is
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the global best model of the swarm on the jth dimension at iteration n. Through particle iteration,
the optimal similarity matching-pair sequence is gradually formed.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 21 
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Then, the next position of each particle is calculated by Formula (6):

xij(n + 1) = xij(n) + vij(n + 1) (6)

To identify the matching pair, we consider all the features in Ra as the anchor point; in other
words, naj in the jth matching pair (naj, nbx) is fixed. The objective is to find the correct matching feature
from Npb for each feature naj in Ra. Since each feature naj in Ra has the potential matching area in Rb,
in our problem, the flying range of each dimension for one particle is limited. The model parameter
space of the jth dimension is restricted to all potential matching pairs of naj, which is selected from set
PSetaj. The flying position range for jth dimension should be restricted in PSetaj.

Usually, the change of velocity is a continuous process, while in the search of matching pairs,
the change of the matching pair is a discrete process, so we need to map the continuous changing
process into a discrete process. Meanwhile, to guarantee that the changing direction of velocity in each
iteration process is in the right orientation, the similarity value is utilized in the personal best model of
particle i and the global best model of the swarm to ensure that global similarity is increasing in the
flying process.

The speed-range vector is defined to restrict the flying extreme. The jth dimension of this
vector represents the flying range for the jth matching pair, Vrj ∈ [minSim(PSetaj)-maxSim(PSetaj),
maxSim(PSetaj)-minSim(PSetaj)]. The lower bound is defined by minSim(PSetaj)-maxSim(PSetaj), and
the upper bound is defined by maxSim(PSetaj)-minSim(PSetaj), in which minSim(PSetaj) is the minimum
value among the similarity value for k potential candidate pairs in PSetaj, and maxSim(PSetaj) is the
maximum value among the similarity value for k potential candidate pairs in PSetaj.

For each dimension, k potential-candidate pairs in PSetaj are sorted in order of similarity value,
and the corresponding relationship between the similarity value interval and matching pairs should
be established for these k candidate pairs. In the iteration process, to get a new position for the jth
dimension of particle i, a matching pair (naj, nbx) is found that has the closest value with xij from PSetaj..
Then, Sim(naj, nbx) is assigned to xij.

Mapping between continuous velocity and discrete matching is achieved. Using the extent of
similarity changing to update speed is more in line with the optimization objective of global matching.

Fitness value PFV of each particle changes synchronously when all matching pairs in the particle
are changed in terms of iteration function. That is, the position of the entire particle swarm changes
with the change of velocity position of each dimension. In this way, the optimization direction of the
particle swarm is in the direction of global similarity increasing in the process of iterations.

2.3. PSOM Workflow

The PSOM algorithm can quickly find optimal solutions, but it is easy to fall into a local
optimum. Therefore, a tabu-search strategy is used to prevent prematurely falling into a local optimum.
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Two optimal solutions should be recorded in the iterations. Pgbest(n) records the global best model
of the swarm at iteration n, and Phgbest(n) records the history global best model of the swarm in the
process of n iterations. Pgbest(n) is put into the tabu list to stay for

√
N time, in which N is the number

of particles. The particle in the tabu list will not be selected except for when it meets the contempt
criterion that intends to prevent loss of the global optimal solution. The contempt criterion is valid
when the PFV of the current particle is greater than Phgbest(n).

The PSOM workflow is shown in Figure 2, and the specific steps are as follows:

(1) Similarity calculation. For all nodes in Ra, calculate the similarity value of each matching pair in
PSetaj using Equation (2), and sort PSetaj by the similarity value.

(2) Particle Initialization. Initialize particles in a random manner, and select Pgbest(n), putting into the
tabu list.

(3) Particle Iteration. Calculate and update the velocity and position of each particle using Equations
(5) and (6). Calculate the PFV for all particles at iteration n using Equation (1), and the maximum
particle is selected to be Pgbest(n). If the PFV is greater than Phgbest(n), the maximum particle is
assigned to Phgbest(n); otherwise, Pgbest(n) is put into the tabu list if it is not contained. The global
optimal model Pgbest(n) and the personal best model Pcbest

i (n) are updated and recorded in each
iteration. Continue with this step until the maximum iteration number is reached.

(4) Output all the matching pairs in the final global optimum particle Phgbest(n).
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3. PSOM Parallelization Strategy

PSOM is composed of a similarity computation process and matching-relationship identification
process. Accordingly, the parallelization strategy is designed for these two stages, respectively
(Figure 3).
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3.1. Parallel-Similarity Computation

Similarity calculation is the precondition of matching-relationship identification. The time cost
of similarity calculation is dependent on the data scale and the complexity of the similarity measure.
Transforming similarity calculation from a sequence way to a parallel way can significantly speed up
the process, and is applicable for different similarity-measurement methods.

For each node naj in the original map, the potential matching pairs are selected using a specified
buffer threshold. Suppose each naj has m matching candidates, stored in PSetaj{(naj, nc1), (naj, nc2), . . . ,
(naj, ncm)}. The similarity for n nodes in the original map need n×m similarity operations. Similarity
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computation of matching pairs is an independent operation, so the n*m similarity operations can be
distributed across multiple threads, and the whole similarity-calculation process can be parallelized.

There are three phases for the parallelization of similarity computing. The first phase is
decomposing node–feature pairs into multiple subsets for threads. The size of subsets is determined by
the total number of nodes in the original map and the number of available compute units. The second
phase is a parallel execution of similarity operations. Each thread handles a subset, calculating the
similarity of node–feature pairs and sorting PSet by the similarity value. The final phase is collecting
the outputs derived from each thread and recompiling them into a large single similarity set, which is
used for the matching-relationship identification process.

Additionally, due to the diversity of data structures in different data sources, the original data
are reconstructed in the data preparation stage. The additional structure (i.e., stroke structure) and
the matching candidates of each node are all prepared beforehand. They are allocated in the global
memory for the usage of similarity calculation in the GPU procedure.

3.2. Parallel-Matching Identification

The flight behavior of each particle is independent and has intrinsic parallel attributes, which
make the PSOM algorithm a kind of natural parallel optimization algorithm.

The matching-relationship identification of PSOM utilizes a decomposition parallel strategy.
This strategy decomposes the whole particle swarm into subgroups corresponding with the compute
units. Each node of the compute units deals with all the tasks including initialization, iterative
information update, and information exchange. The best-location information is exchanged between
nodes according to a specific strategy. Because PSOM is a fine-granularity parallel-computing model,
the node number (i.e., the thread number of GPU) is set equal to the particle number in this paper.
This can balance the computing load and maximize parallel the efficiency.

The PSOM algorithm can be divided into two stages, particle initialization and particle flight.
Two GPU kernel functions are designed to parallel these two processes, respectively. The first kernel
function k-particle-initial initializes the particles in parallel. The number of threads is determined
according to the number of particles, and the curand function is used to generate random numbers that
are used to set the initial position of particles in parallel. The initial potential matching pairs in one
particle are randomly selected from the PSetaj of nodes in Ra. Particles with different possible parameter
models are initialized in parallel. After the initialization of all particles is completed, the comparison is
made in the first thread to find the global optimal value and local optimal value. The second kernel
function k-particle-fly is iteratively executed in parallel. The iteration number of k-particle-fly is a
preset flying-time number, and the number of threads is still determined by the number of particles.
The flying process is described in detailed in the pseudo-code (Algorithm 1).

In the flying process, communications are inevitable for visiting and updating the global optimum
particle and the tabu list. The key point is to control synchronization access to the global memory.
Thus, a shared region should be designed for the global optimum particle and the tabu list. The global
memory is utilized to reserve the global optimum value. After the local optimum value in each particle
is updated, the global optimum particle is calculated through communication between each single
thread and the global memory. The global optimum particle is finally updated into the global memory.

To avoid the conflict of the global optimum updating and reducing communication times/cost, a
periodically updated strategy is adopted. The update behavior is executed in the first thread when the
specified iteration of all particles is completed. Hence, the global optimal value can be periodically
updated to guide the following flying direction of each particle. This strategy not only fully exerts the
independence of each particle, but also reduces the communication cost.

Besides, during iteration, many random values are needed to avoid frequent data exchange
between CPU and GPU. The CUDA CURAND library on the GPU can be used to directly generate
random numbers instead of transform time from CPU to GPU.
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Algorithm 1: Parallel-Matching Relationship Identification

Input:
Road-network data in a defined GPU data structure; similarity set layer.
Output:
Matching relationship between road-network Ra and Rb.
Steps:
1: Execute kernel function k-particle-initial.

1.1: Number of threads is determined according to number of particles.
1.2: The curand function is used to randomly set the initial position of each particle.
1.3: Global optimal value and local optimal value are found in the first thread.

2: While iteration condition not reached do
kernel function k-particle-fly.

2.1: The velocity of each particle is calculated according to Equation (5)
2.2: The position of each particle is updated according to Equation (6)
2.3: The PFV of each particle is calculated.
2.4: When all particles are done, the Pcbest(n) and Phbest(n) of each particle and Pgbest(n) of the whole

particle swarm are updated.
2.5: If PFV of the current particle is greater than Phbest(n), then the Pgbest(n) is assigned to Phbest(n).

Otherwise, Pgbest(n) is put into the tabu list.
2.6: The stay time of all particles in the tabu list is updated.

3. If the iteration condition is reached then
the best particle found in the global memory is transferred from the GPU to the CPU.

4. Return the matching pairs in the final global optimum particle Phgbest(n), the algorithm ends.

4. Model Evaluation Indices

Two evaluation indices were used to access the accuracy of the models: the matching accuracy
(Equation (7)) and the accuracy growth rate (Equation (8)).

The matching accuracy (P) is determined by the right matching features (TP), the wrong matching
features (FP), and the ambiguous features that cannot be matched artificially (AM).

P =
TP

TP + FP + AM
× 100% (7)

The closer that P value is to 1, the more correct matching features the algorithm recognizes.
The accuracy growth rate (AGR) is used for comparing the result accuracies between

different algorithms.

AGR(A,B) =
PA − PB

PB
(8)

where AGB(A,B) represents the accuracy growth rate of Algorithm A compared to Algorithm B. PA is
the matching accuracy of Algorithm A, and PB is the matching accuracy of Algorithm B. A higher
absolute value of AGR indicates a higher accuracy change. If AGR is greater than zero, Algorithm A
performs more accurately than Algorithm B; otherwise, Algorithm B is better.

The effectiveness of performance optimization was evaluated by comparing with a benchmark.
To the best of our knowledge, the road-network matching study using parallel computing strategy has
not been reported in previous articles. Therefore, it is not possible to compare our parallel method
with a similar parallelized method. In recent years, the probability-relaxation-matching algorithm
(PRM) is often employed in road-network matching studies [5,13–15,19,21,22], thus it was adopted as
the benchmark. The general probability-relaxation framework was utilized to implement the PRM
in our experiment [23]. In addition, the similarity-computation function used in PRM is totally the
same with that used in PSOM. The ending condition for the iteration of the PRM was set based on the
experience value (0.0005) [15].



ISPRS Int. J. Geo-Inf. 2018, 7, 472 11 of 21

5. Results and Discussion

5.1. Experimental Environment and Data

To evaluating the performance of our method, 14 pairs of road networks were utilized with the
node scale ranging from 44 to 72,130 (see Table 2 and Appendix B). Areas 1–6, 8–9, and 12 are from the
Wuhan, China; Area 7 is part of the Chinese highway network; Areas 10–11 belong to Foshan, China;
and Areas 13–14 belong to Oakland, New Zealand. Each road-network pair comes from different
data producers. The source map represents the road network to be matched, and the destination map
represents the road network that is used to match the source map.

Table 2. Fourteen pairs of road networks used for experiments. NS represents the node number of the
source map, and ND represents the node number of the destination map.

No. NS ND No. NS ND

Area 1 44 582 Area 8 519 673
Area 2 68 673 Area 9 582 825
Area 3 82 396 Area 10 4938 5530
Area 4 110 494 Area 11 7738 9049
Area 5 176 540 Area 12 10,820 13,961
Area 6 382 396 Area 13 13,815 16,771
Area 7 478 493 Area 14 72,130 127,205

The proposed parallel strategy of PSOM was implemented using C++ programming language
with the structure of CUDA based on GPU (PSOM-GPU). Experiments were carried on a computer
equipped with an NVIDIA GeForce GTX 960 GPU and an Inter(R) Pentium(R) D 3.00 GHz with 3.5 GB
RAM. The software-development environment is composed of CUDA 8.0 SDK, Visual Studio 2010,
and MapGIS 10 (ZONDY, Wuhan, Hubei, China).

5.2. Parameter Setting

Two parameters needed to be set in the experiments: the particle number and the thread number.
The particle number used in PSO algorithms is not uniform in different studies, and is usually

between 20 and 50 in sequential algorithms and between 32 and 2000 in parallel algorithms [24–26].
To obtain an appropriate particle number, a set of particle numbers (i.e., 50, 100, 200, 300, 400, 1000,
and 2000) were tested in ten experimental areas with an iteration number of 200.

The algorithm accuracies based on each different particle number were compared with the
accuracy of particle number 50 which served as the baseline. As shown in Figure 4, AGR values
change slightly when particle number is in the range of 100–300. However, as the particle number
increases, most AGR values have a dramatic increase when the particle number is 400. After that, AGR
curves remain relatively stable. Overall, the increase of particle number can promote the matching
accuracy; however, more memory space and processing time are required. Take Area 7 (439 nodes)
as an example, both the matching-relationship identification time and the total time cost increase as
the particle number grows, and an especially dramatic increase appears when the particle number is
larger than 400 (Figure 5). Thus, particle number is positively associated with accuracy, but negatively
correlated with efficiency. Based on the above analysis, the particle number was set as 400 in this study,
which requires less time while maintaining a good performance.

The thread number differed in the two parallel stages.
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In the stage of similarity computation, more than one node–feature pair is assigned in one thread.
Thus, different combinations of node–feature numbers (FN) (i.e., the number of node–feature pairs
assigned to each single thread) and thread numbers (TN) were tested. FN was set from 5 to 25 with
an interval of 5. The size of TN grows in multiplicative size, from 16 to 256. Four road-network sets
(Area 10, Area 11, Area 12, and Area 14) were employed to illustrate the time consumption of similarity
computation under different conditions (Figure 6). For Areas 10–12, the time cost increased with the
growth of FN and TN. No matter what value FN takes, the similarity computation time cost with 16
threads was always the least among five different settings of thread numbers. Thus, for the first three
sets, the lower FN and TN are set, the faster is the computation speed. However, this regularity does
not exist for Area 14. The experimental result reveals that, when setting parameters of FN = 15 and
TN = 32, the time cost is the least, which is the best solution for similarity computation process in
this study.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 21 
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Figure 5. Matching identification time and total time cost under different particle numbers using Area 7
(439 nodes) as an example.

In the matching-relationship identification stage, the number of threads is equal to the total
number of particles. Each thread performs the same operation simultaneously and synchronously.
Since the particle number was set to 400, the thread number of matching-relationship identification
was also set to 400 in our experiment.
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Figure 6. Time consumption of similarity computation in Area 10, Area 11, Area 12, and Area 14 under
different combinations of FN and TN.

5.3. Algorithm Accuracy

Figure 7 delineates the matching accuracies of PSOM-GPU and the benchmark PRM in different
road networks. Figure 8 shows the accuracy growth rate (AGR(PSOM-GPU,PRM)) of PSOM-GPU compared
with PRM.
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Figure 7. Algorithm accuracy P of PRM and PSOM-GPU in thirteen areas (Areas 1–13).
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The accuracies of PSOM-GPU are all greater than 75%, and more than half of the accuracies
are greater than 85%, peaking at 97.73% in Area 1. The accuracies of PSOM-GPU do not change
linearly when the number of nodes increases, but vary from region to region, following the same
trend as the benchmark. As Figure 8 shows, the accuracy differences between PSOM-GPU and
the benchmark are very small with an average AGR(PSOM-GPU,PRM) of −0.012. For the areas with
negative AGR, the absolute values are less than 0.05, which is in an acceptable accuracy error range.
PSOM-GPU can achieve the same matching accuracy as the benchmark PRM, and correctly identify
most matching-relationship (84.44% on average). In addition, since memory space required by PRM in
Area 14 exceeds the tolerance value of the hardware, the accuracies of PRM are not calculated in this
area. However, PSOM-GPU can successfully perform the matching process, and obtain an accuracy
of 74.65%.

5.4. Algorithm Performance

Figure 9 presents the specific time cost of the PSOM-GPU and the benchmark PRM. The time
cost becomes larger with the increase in nodes. However, compared with the benchmark, the growth
rate of time cost for PSOM-GPU is relatively flat. When the node number grows from hundreds
to thousands, the time cost of the whole matching process based on PRM increases by 449 times
from 141 ms in Area 1 to 63,312 ms in Area 10. The time cost for PSOM-GPU grows from 562 ms
in Area 1 to only half of the benchmark with 31,407 ms in Area 10. The difference of time cost
between the two methods is more obvious as the data scale increases. Besides, the PRM might not
be able to get the road-network matching results with large amount of data (e.g., Area 14), while the
PSOM-GPU performed successfully (e.g., spent 136,093 ms in Area 14). Overall, PSOM-GPU has a
better performance than the benchmark in dealing with large-scale road-network matching.
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Figure 9. The time cost of PRM and PSOM-GPU for road network matching. PRM-I, -II and -III denote
the similarity computation, the matching-relationship identification and the global process, respectively,
using PRM. PSOM-GPU-I, -II and -III denote the same three aspects, respectively, using PSOM-GPU.
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To further evaluate the performance of PSOM-GPU, speed-up radio was calculated from local and
global aspects (Figure 10). The local aspect focused on the performance improvement in the similarity
computation stage and the matching-relationship identification stage. The global aspect embodied
the performance of the whole process. Recorded execution time included the execution time on all
stages of the algorithm, and the time spent on exchanging data. For the similarity computation stage,
the time of reading data from disk was recorded, and for the matching-relationship identification stage,
the time of writing data to disk was recorded. Besides, the recorded execution time for PSOM-GPU
also contained the transfer time between the host memory and the GPU device memory. Thus, it is a
fair and holistic comparison of the performance of different algorithms.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  16 of 21 
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Figure 10. The speed-up ratio of PSOM-GPU compared with PRM. I, II and III denote the three aspects
of similarity computation, matching-relationship identification and global process, respectively.

From the local perspective, the speed-up ratios of both stages (the similarity computation
and the matching-relationship identification) show an increasing trend as the number of road
network nodes grows. The speed-up ratio of the similarity computation is increased from 0.88
in Area 1 to 31.36 in Area 13, and that of the matching-relationship identification grows from 0.07
to 4.08. The acceleration result of the algorithm is more obvious with increasing volumes of data.
However, the speed-up performance of the two stages are not the same. Especially in Area 13, the
speed-up ratio of similarity computation is 31.36, much higher than that of matching-relationship
identification (4.08). The acceleration performance of similarity computation is better than the
matching-relationship identification.

The roofline model [27] was adopted to analyze the theoretical performance of the two key
processes (Figure 11). It is an intuitive visual performance model, providing the upper bound of
performance and showing inherent hardware limitations. According to the specifications of NVIDIA
GeForce GTX 960 GPU, the theoretical peak operational intensity of the GPU (hereafter, referred
to as Imax) is 20.5 FLOP per Byte. The operational intensity of similarity computation is around
Imax, reaching 22.46 FLOP per Byte in the average case, which means that the computing power
of the GPU is fully utilized under similarity computation stage. The operational intensity of the
matching-relationship identification stage is very low, only 2.5 FLOP per Byte. The memory bandwidth
restricts the performance improvement of this stage. It indicates that the parallel strategy still has
potential to be improved to increase the operational intensity of matching-relationship identification.

Note that there are some curve fluctuations in the stage of similarity computation in Figure 10.
We can see the descending segments in the curve (speed-up-I) from Area 6 to Area 7 and from Area 9 to
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Area 10, even though the data scale increases slightly. It is the reason that the time cost of the similarity
function is highly dependent on the complexity of road and stroke. For instance, the average point
number of a road segment is 3.6 in Area 6 while 7.8 in Area 7, and the average point number of strokes
is 33.7 in Area 6 while 71.6 in Area 7. Thus, the road complexity of Area 7 is greater than that of Area 6,
which leads to the lower speed-up in Area 7 than in Area 6. In addition, the speed-up ratio also differs
greatly among the four different sub-functions in similarity-measure function. Thus, the speed-up of
similarity computation not only depends on the data scale, but also relates with the complexity of the
original road-network data and the corresponding function complexity.
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Figure 11. Roofline model for NVIDIA GeForce GTX 960 GPU with two stages of PSOM: similarity
computation stage and the matching identification stage.

From the global perspective, the speed-up ratio is on the rise, increasing from 0.25 in Area
1 to 0.82 in Area 8, and then continues rising to more than 1, reaching 4.67 in Area 13. That is,
when the data amount is small (e.g., 519 nodes in Area 8), less calculation is required, and the time
is mainly spent on data transform. When facing with a large-size problem (e.g., 13,815 nodes in
Area 13), the proposed parallelization strategy can significantly reduce the road-network matching
time. Besides, the curve of the overall speed-up ratio is close to that of the matching-relationship
identification process. This can be explained by the time-occupation ratio of the two key processes in
PSOM (Figure 12). The time-consumption ratio of similarity computation is 0.15 on average, while it
is 0.85 for matching-relationship identification. The matching-relationship identification process is
the main consumption of the whole algorithm, which restricts the global performance improvement.
More attention will be paid in parallel-matching identification stage in the future work.
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Figure 12. Time-occupation percentage of similarity computation (I) and matching-relationship
identification (II).
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In general, the proposed PSO-based parallel strategy of road network matching has a good
performance when dealing with large amounts of data.

6. Conclusions

This study developed a parallel PSO-based road-network matching algorithm (PSOM) on
graphics-processing units (GPU), which can be used to conquer the bottleneck problem of traditional
road-network matching algorithms when facing big data. To fully use GPU threads, a data-partition
and a task-partition strategy were proposed in similarity computation and matching-relationship
identification stages, respectively. Fourteen pairs of road networks with different node scales were
selected to verify the proposed PSOM method. Our results show that the road matching accuracy of
the parallel GPU-accelerated PSOM approach achieved the same level as the benchmark PRM. When
facing massive amounts of data, e.g. more than thousands of nodes, the proposed parallel PSOM
method can significantly improve computational efficiency of the road-network matching process.
Overall, the larger the data scale is, the more obvious the advantage of the PSOM-GPU approach in
the speed-up of similarity computation and matching-relationship identification process is. According
to these findings, the proposed parallel PSOM shows great potential for matching road-network in an
effective and efficient manner.

This research also found that, although the parallel GPU-accelerated PSOM approach could promote
the execution efficiency of both similarity computation and matching-relationship identification, the
speed-up effects were different. It had better effect for the similarity computation stage. The memory
bandwidth restricted the performance improvement of matching-relationship identification stage,
which further affected the overall performance improvement. In the future, more work will be assigned
for improving the speed-up performance of matching-relationship identification.
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Appendix A

The corresponding relationship between stroke structures is easier to determine than that of the
node pairs. Thus, the common part of two matching stroke structure layers is extracted and employed
as a reference. Each Pai may have more than one candidate nodes, thus similarities of one node Pai
need multiple computations with the candidate node Pbj in road network B. Two indicators were
selected to measure initial probability: similarity of strokes that the node pairs individually belong to
(denoted as Simsk) and similarity of reference distance evaluated by the distance between the node
pairs and the starting point of stokes (denoted as Simsd). Assuming n is the stroke number the node
Pai belongs to, the similarity between Pai and Pbj is shown in Equation (A1).

SimPai,Pbj
=

n
∑

k=1
Max

sm
Pbj
∈Bcs

[ε1(Simsk(sk
Pai

, sm
Pbj

)) + ε2Simsd(Pai, Pbj)]

n
(A1)

where sk
Pai

represents the kth stroke that Pai belongs to, and sm
Pbj

represents the mth stroke that Pbj

belongs to. The number of strokes that one node belongs to may be more than one. For each node Pai,



ISPRS Int. J. Geo-Inf. 2018, 7, 472 18 of 21

the similarity is evaluated by the average value of all strokes the node belongs to, and for each stroke
sk

Pai
of, the most similar stroke in the stroke set BCS of Pbj is selected. ε1 is set as 0.6 and ε2 is set as 0.4.
Simsd is the reference distance similarity, described in Equation (A2). ωt is set as the reciprocal of

error factor, which is represented as the average global distance between two maps, and d represents
the reference distance evaluated by the distance between the node pairs Pai (or Pbj) and the starting
point of stokes Pa×i (or Pb×j ).

Simsd =
1

1 + ωt(d{Pai ,Pa×i }
− d{Pbj ,Pb×j }

)2 (A2)

Simsk is the stroke similarity, measured by geometrical similarity metrics. Here, hausdorff distance
is chosen to measure geometrical similarity. Considering the stroke hierarchical relationship, if the
current matching strokes are not in the initial set (i.e., Layer 6= 1), another two indices, the relative
locational similarity of intersection Simloc and the relative direction similarity Simdir, are employed to
measure the stroke similarity (Equation (A3)).

Simsk =

{
Simsk (Layer = 1)

ε1Simloc + ε2Simdir + ε3Simsk (Layer 6= 1)
(A3)

where ε1 is set as 0.2, ε2 is set as 0.4, and ε3 is set as 0.4.
Simloc is measured by the relative position of the current stroke on the upper common stroke.

Simloc =
1

1 + ωt(locsk
Pai
− locsm

Pbj
)2 (A4)

Simdir is the relative direction similarity (Equation (A5)). The direction means the relative
deviation angle between the upper common stroke and the current stroke. When the two strokes are
intersected with multiple strokes in the upper layer, average direction similarity needs to be calculated.

Simdir =
1

1 + ωt(dirsk
Pai
− dirsm

Pbj
)2 (A5)

More details can be found in [13].
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