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Abstract: The European Space Agency (ESA) defines Earth observation (EO) Level 2 information product
the stack of: (i) a single-date multi-spectral (MS) image, radiometrically corrected for atmospheric,
adjacency and topographic effects, with (ii) its data-derived scene classification map (SCM), whose
thematic map legend includes quality layers cloud and cloud–shadow. Never accomplished to date in an
operating mode by any EO data provider at the ground segment, systematic ESA EO Level 2 product
generation is an inherently ill-posed computer vision (CV) problem (chicken-and-egg dilemma) in the
multi-disciplinary domain of cognitive science, encompassing CV as subset-of artificial general intelligence
(AI). In such a broad context, the goal of our work is the research and technological development (RTD)
of a “universal” AutoCloud+ software system in operating mode, capable of systematic cloud and
cloud–shadow quality layers detection in multi-sensor, multi-temporal and multi-angular EO big data
cubes characterized by the five Vs, namely, volume, variety, veracity, velocity and value. For the
sake of readability, this paper is divided in two. Part 1 highlights why AutoCloud+ is important in
a broad context of systematic ESA EO Level 2 product generation at the ground segment. The main
conclusions of Part 1 are both conceptual and pragmatic in the definition of remote sensing best practices,
which is the focus of efforts made by intergovernmental organizations such as the Group on Earth
Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). First, the ESA EO Level 2
product definition is recommended for consideration as state-of-the-art EO Analysis Ready Data (ARD)
format. Second, systematic multi-sensor ESA EO Level 2 information product generation is regarded as:
(a) necessary-but-not-sufficient pre-condition for the yet-unaccomplished dependent problems of semantic
content-based image retrieval (SCBIR) and semantics-enabled information/knowledge discovery (SEIKD)
in multi-source EO big data cubes, where SCBIR and SEIKD are part-of the GEO-CEOS visionary goal
of a yet-unaccomplished Global EO System of Systems (GEOSS). (b) Horizontal policy, the goal of
which is background developments, in a “seamless chain of innovation” needed for a new era of Space
Economy 4.0. In the subsequent Part 2 (proposed as Supplementary Materials), the AutoCloud+ software
system requirements specification, information/knowledge representation, system design, algorithm,
implementation and preliminary experimental results are presented and discussed.
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1. Introduction

Radiometric calibration (Cal) is the process of transforming remote sensing (RS) sensory data,
consisting of non-negative dimensionless digital numbers (DNs, where DN ≥ 0), provided with no
physical meaning, i.e., featuring no radiometric unit of measure, into a physical variable provided with
a community-agreed radiometric unit of measure, such as top-of-atmosphere reflectance (TOARF),
surface reflectance (SURF) or surface albedo values belonging to the physical domain of change
0.0–1.0 [1–3].

To cope with the five Vs characterizing big data analytics, specifically, volume, variety, veracity,
velocity and value [4], radiometric Cal of Earth observation (EO) big data is considered mandatory
by the intergovernmental Group on Earth Observations (GEO)-Committee on Earth Observation
Satellites (CEOS) Quality Accuracy Framework for Earth Observation (QA4EO) Calibration/Validation
(Cal/Val) guidelines [3]. In agreement with the visionary goal of a GEO’s implementation plan for
years 2005-2015 of a Global Earth Observation System of Systems (GEOSS) [5], unaccomplished to
date, the ambitious goal of the GEO-CEOS QA4EO Cal/Val guidelines is systematic transformation of
EO big data cubes into timely, comprehensive and operational EO value-adding information products
and services (VAPS). Despite being considered a well-known “prerequisite for physical model-based
analysis of airborne and satellite sensor measurements in the optical domain” [1], EO data radiometric
Cal is largely oversighted in the RS common practice and existing literature. For example, in a pair of
recent surveys about EO image classification systems published in the RS literature in years 2014
and 2016, the word “calibration” is absent [6,7], whereas radiometric calibration preprocessing
issues are barely mentioned in a survey dating back to year 2007 [8]. A lack of EO input data Cal
requirements means that statistical model-based data analytics and inductive learning-from-data
algorithms are dominant in the RS community, including (geographic) object-based image analysis
(GEOBIA) applications [9,10] in the domain of geographic information science (GIScience). On the
one hand, statistical model-based and inductive learning-from-data algorithms require as input DNs
provided with no physical meaning. On the other hand, inductive learning-from-data algorithms
are inherently semi-automatic and site-specific [2]. In practice, they require no radiometric Cal data
pre-processing, but they typically gain in robustness when input with radiometrically calibrated data.

In compliance with the GEO-CEOS QA4EO Cal/Val requirements and with the GEO’s visionary goal
of a GEOSS, aiming at harmonization between missions acquiring EO data across time and geographic
space, the European Space Agency (ESA) has recently defined an ESA EO Level 2 information product as
follows [11,12]:

(i) a single-date multi-spectral (MS) image, radiometrically corrected for atmospheric, adjacency
and topographic effects,

(ii) stacked with its data-derived scene classification map (SCM), whose general-purpose, user- and
application-independent thematic map legend includes quality layers cloud and cloud–shadow,

(iii) to be systematically generated at the ground segment, automatically (without human–machine
interaction) and in near real-time.

Unlike the non-standard ESA EO Level 2 SCM legend adopted by the Sentinel 2 imaging sensor-
specific (atmospheric, adjacency and topographic) Correction Prototype Processor (Sen2Cor), developed
by ESA and distributed free-of-cost to be run on the user side [11,12], see Table 1, an alternative ESA EO
Level 2 SCM legend, proposed in [13–15] and shown in Table 2, consists of an “augmented” fully-nested
3-level 9-class Dichotomous Phase (DP) taxonomy of land cover (LC) classes in the 4D geospatial-temporal
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scene-domain. It comprises: (i) a standard 3-level 8-class DP taxonomy of the Food and Agriculture
Organization of the United Nations (FAO) Land Cover Classification System (LCCS) [16], see Figure 1,
augmented with (ii) a thematic layer explicitly identified as class “others”, synonym for class “unknown”
or “rest of the world”, which includes quality layers cloud and cloud–shadow. It is noteworthy that in
traditional EO image classification system design and implementation requirements [17], the presence of
an output class “unknown” was considered mandatory, to cope with uncertainty in inherently equivocal
information-as-data-interpretation (classification) tasks [18].

Table 1. Non-standard general-purpose, user- and application-independent European Space Agency (ESA)
Earth observation (EO) Level 2 scene classification map (SCM) legend adopted by the sensor-specific
Sentinel 2 (atmospheric, adjacency and topographic) Correction (Sen2Cor) Prototype Processor [11,12],
developed and distributed free-of-cost by ESA to be run on the user side.

Label Classification
0 NO_DATA
1 SATURATED_OR_DEFECTIVE
2 DARK_AREA_PIXELS
3 CLOUD_SHADOWS
4 VEGETATION
5 BARE_SOILS
6 WATER
7 CLOUD_LOW_PROBABILITY
8 CLOUD_MEDIUM_PROBABILITY
9 CLOUD_HIGH_PROBABILITY

10 THIN_CIRRUS
11 SNOW

Table 2. General-purpose, user- and application-independent ESA Level 2 SCM legend proposed
in [13–15], consistent with the standard 3-level 8-class Food and Agriculture Organization (FAO)
Land Cover Classification System (LCCS) Dichotomous Phase (DP) taxonomy [16]. The “augmented”
standard taxonomy consists of the standard 3-level 8-class FAO LCCS-DP taxonomy (identified as
classes A11 to B48) + quality layers Cloud and Cloud–shadow + class Others (Unknown) = 8 land cover
(LC) classes + 2 LC classes (Cloud–shadow, Others) + 1 non-LC class (Cloud).

Original FAO
LCCS-DP Identifier Label “Augmented” FAO LCCS-DP taxonomy, class name Pseudocolor

A11 1 Cultivated and Managed Terrestrial (non-aquatic) Vegetated Areas
A12 2 Natural and Semi-Natural Terrestrial Vegetation
A23 3 Cultivated Aquatic or Regularly Flooded Vegetated Areas
A24 4 Natural and Semi-Natural Aquatic or Regularly Flooded Vegetation
B35 5 Artificial Surfaces and Associated Areas
B36 6 Bare Areas
B47 7 Artificial Waterbodies, Snow and Ice
B48 8 Natural Waterbodies, Snow and Ice

9 Quality layer: Cloud
10 Quality layer: Cloud–shadow
11 Others (e.g., unknowns, no data, etc.)

Figure 1 shows that the standard two-phase fully-nested FAO LCCS hierarchy consists of a first-stage
fully-nested general-purpose, user- and application-independent 3-level 8-class FAO LCCS-DP legend,
preliminary to a second-stage application-dependent and user-specific FAO LCCS Modular Hierarchical
Phase (MHP) taxonomy, consisting of a hierarchical (deep) battery of one-class classifiers [16]. The standard
first-stage 3-level 8-class FAO LCCS-DP hierarchy is “fully nested”. It comprises three dichotomous
LC class-specific information layers, equivalent to a world ontology, world model or mental model of
the real-world [13,16,19–24]: DP Level 1—Vegetation versus non-vegetation, DP Level 2—Terrestrial
versus aquatic and DP Level 3—Managed versus natural or semi-natural. In recent years, the two-phase
FAO LCCS taxonomy has become increasingly popular [25]. One reason for its popularity is that the
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FAO LCCS hierarchy is “fully nested” while alternative LC class hierarchies, such as the Coordination
of Information on the Environment (CORINE) Land Cover (CLC) taxonomy [26], the U.S. Geological
Survey (USGS) Land Cover Land Use (LCLU) taxonomy by J. Anderson [27], the International Global
Biosphere Programme (IGBP) DISCover Data Set Land Cover Classification System [28] and the EO Image
Librarian LC class legend [29], start from a Level 1 taxonomy which is already multi-class. In a hierarchical
EO image understanding (EO-IU) system architecture submitted to a garbage in, garbage out (GIGO)
information principle, synonym for error propagation through an information processing chain, the
fully-nested two-phase FAO LCCS hierarchy makes explicit the full dependence of high-level LC class
estimates, performed by any high-level (deep) LCCS-MHP data processing module, on the operational
quality (in accuracy, efficiency, robustness, etc.) of lower-level LCCS modules, starting from the initial FAO
LCCS-DP Level 1 vegetation/non-vegetation information layer whose relevance in thematic mapping
accuracy (vice versa, in error propagation) becomes paramount for all subsequent LCCS layers.
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Figure 1. As in [16], courtesy of the Food and Agriculture Organization (FAO of the United Nations
(UN). Two-stage fully-nested FAO Land Cover Classification System (LCCS) taxonomy. The first-stage
fully-nested 3-level 8-class FAO LCCS Dichotomous Phase (DP) taxonomy is general-purpose, user-
and application-independent. It consists of a sorted set of three dichotomous layers: (i) vegetation
versus non-vegetation, (ii) terrestrial versus aquatic, and (iii) managed versus natural or semi-natural.
These three dichotomous layers deliver as output the following 8-class FAO LCCS-DP taxonomy.
(A11) Cultivated and Managed Terrestrial (non-aquatic) Vegetated Areas. (A12) Natural and
Semi-Natural Terrestrial Vegetation. (A23) Cultivated Aquatic or Regularly Flooded Vegetated Areas.
(A24) Natural and Semi-Natural Aquatic or Regularly Flooded Vegetation. (B35) Artificial Surfaces
and Associated Areas. (B36) Bare Areas. (B47) Artificial Waterbodies, Snow and Ice. (B48) Natural
Waterbodies, Snow and Ice. The general-purpose user- and application-independent 3-level 8-class FAO
LCCS-DP taxonomy is preliminary to a second-stage FAO LCCS Modular Hierarchical Phase (MHP)
taxonomy, consisting of a battery of user- and application-specific one-class classifiers, equivalent to
one-class grammars (syntactic classifiers) [19].

The GIGO commonsense principle, intuitive to understand in general terms as error propagation
through an information processing chain, becomes neither trivial nor obvious to understand when applied
to a hierarchical LC class taxonomy, starting from a FAO LCCS-DP Level 1 vegetation/non-vegetation
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and featuring inter-layer semantic dependencies, equivalent to transmission lines where semantic error
can propagate, from low-level (coarse) to high-level (fine) semantics [30]. On the one hand, an inherently
difficult image classification scenario into vegetated/non-vegetated LC classes agrees with a minor portion
of the RS literature where supervised data learning classification of EO image datasets at continental or
global spatial extent into binary LC class vegetation/non-vegetation is considered very challenging [31].
On the other hand, it is at odd with the RS mainstream, where the semantic information gap from
sub-symbolic EO data to multi-class LC taxonomies, where target LC classes are far deeper in semantics
than the initial FAO LCCS-DP Level 1 vegetation/non-vegetation information layer, is typically filled in
one conceptual stage, highly informative, but opaque (mysterious, unfathomable) in nature. This one-stage
mapping from sub-symbolic sensory data to high-level (symbolic) concepts is typically implemented as
a supervised data learning classification stage [32,33], e.g., a support vector machine, random forest or
deep convolutional neural network (DCNN) [34–38], which is equivalent to a black box learned from
supervised (labeled) data based on heuristics (e.g., architectural metaparameters are typically user-defined
by trial-and-error) [30], whose opacity contradicts the well-known engineering principles of modularity,
regularity and hierarchy typical of scalable systems [39]. In addition, inductive algorithms, capable of
learning from either supervised (labeled) or unsupervised (unlabeled) data, are inherently semi-automatic
and site-specific [2]. In general, "No Free Lunch” theorems have shown that inductive learning-from-data
algorithms cannot be universally good [40,41].

Over land surfaces of the Earth, the global cloud cover is approximately 66% [42]. In the ESA EO
Level 2 product definition, cloud and cloud–shadow quality layer requirements specification accounts
for a well-known prerequisite of clear-sky multi-temporal EO image compositing and understanding
(classification) solutions proposed by the RS community, where accurate masking of cloud and
cloud–shadow phenomena is considered necessary, but not sufficient pre-condition [12,13,43–63].
Intuitively, in single-date and multi-temporal MS image analysis, cloud and cloud–shadow preliminary
detection is a relevant problem, because unflagged cloud and cloud–shadow phenomena may be
mapped onto erroneous LC classes or false LC change (LCC) occurrences.

It is noteworthy that joint (combined) cloud and cloud–shadow detection is a typical example
of physical model-based cause–effect relationship, expected to be very difficult to solve by inductive
machine learning-from-data algorithms, such as increasingly popular DCNNs [34], with special
regard to DCNNs designed and trained end-to-end for semantic segmentation [37] and instance
segmentation [38] tasks, whereas DCNNs trained for object detection, such as [36], where image-objects
are localized with bounding boxes and categorized into one-of-many categories, are inapplicable to the
cloud/cloud–shadow instance segmentation problem of interest. In general, inductive supervised data
learning algorithms are capable of learning complex correlations between input and output features,
but unsuitable for inherent representations of causality [30,64], in agreement with the well-known
dictum that correlation does not imply causation and vice versa [13,19,30,33,64,65].

In the last decade, many different cloud/cloud–shadow detection algorithms have been presented
in the RS literature to run either on a single-date MS image or on an MS image time-series, typically
acquired by either one EO spaceborne/airborne MS imaging sensor or a single family (e.g., Landsat)
of MS imaging sensors [12,13,43–60]. To be accomplished in operating mode at the ground segment
(midstream) by EO data providers in support of the downstream sector within a “seamless chain of
innovation” needed for a new era of Space Economy 4.0 [66], systematic radiometric Cal of multi-source
multi-angular multi-temporal MS big image data cubes [1,3,13,67–69], encompassing either single-date
or multi-temporal cloud and cloud–shadow detection as a necessary-but-not-sufficient pre-condition,
is regarded by the RS community as an open problem to date [61–63].

In agreement with the GEO-CEOS QA4EO Cal/Val requirements [3], this work presents
an innovative AutoCloud+ computer vision (CV) software system for cloud and cloud–shadow
quality layer detection. To be eligible for systematic ESA EO Level 2 product generation at the
ground segment [43,67,70], AutoCloud+ must overcome conceptual (structural) limitations and
well-known failure modes of standard cloud and cloud–shadow detection algorithms [44,47,61–63],
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such as the single-date multi-sensor Function of Mask (FMask) open source algorithm [58,59],
the single-date single-sensor ESA Sen2Cor software toolbox [11,12,44], to be run free-of-cost
on the user side, and the multi-date Multisensor Atmospheric Correction and Cloud Screening
(MACCS)-Atmospheric/Topographic Correction (ATCOR) Joint Algorithm (MAJA) developed and
run by the Centre national d’études spatiales (CNES)/Centre d’Etudes Spatiales de la Biosphère
(CESBIO)/Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR) [46–48],
which incorporates capabilities of the ATCOR commercial software toolbox [71–74].

A synonym for inherently ill-posed scene-from-image reconstruction and understanding [13,23,75,76],
vision is a cognitive (information-as-data-interpretation) process [18], encompassing both biological vision and
CV, where CV is subset-of artificial general intelligence (AI) [77–81], i.e., AI⊃ CV, in the multi-disciplinary
domain of cognitive science [18,77–81], see Figure 2. In vision, spatial information dominates color
information [23]. This unquestionable true fact is familiar to all human beings wearing sunglasses: in
perceptual terms, human panchromatic and chromatic visions are nearly as effective [13].

Starting from this simple, yet not trivial, observation about human visual perception, in order to
outperform standard CV software toolboxes in operating mode for cloud and cloud–shadow detection
in EO big data cubes, such as the single-date sensor-specific ESA Sen2Cor [11,12,44] and the multi-date
multi-sensor CESBIO/CNES/DLR MAJA software [46–48], degrees of novelties of an innovative
“universal” AutoCloud+ CV software system are expected to encompass the Marr five levels of
understanding of an information processing system, specifically [13,19,76,82,83]:

• outcome and process requirements specification, including computational complexity estimation,
• information/knowledge representation,
• system design (architecture),
• algorithm, and
• implementation.

Among these five levels, the three more abstract ones, namely, outcome and process
requirements specification, information/knowledge representation and system design, are typically
considered the linchpin of success of an information processing system, rather than algorithm and
implementation [13,19,76,82,83].

To be considered “universal” and in operating mode, the AutoCloud+ software system’s outcome
and process requirements were specified as follows.

(i) “Fully automated”, i.e., no human–machine interaction and no labeled data set for supervised
inductive learning-from-data are required by the system to run, which reduces timeliness, which
is the time span from EO data acquisition to EO data-derived VAPS generation, as well as costs
in manpower (e.g., to collect training data) and computer power (no training time is required).

(ii) Near real-time, e.g., computational complexity increases linearly with image size.
(iii) Robust to changes in input sensory data acquired across space, time and sensors.
(iv) Scalable to changes in MS imaging sensor’s spatial and spectral resolution specifications.
(v) Last but not least, AutoCloud+ must be eligible for use in multi-sensor, multi-temporal and

multi-angular EO big data cubes, either radiometrically uncalibrated, such as MS images typically
acquired without radiometric Cal metadata files by small satellites [84] or small unmanned aerial
vehicles (UAVs) [85], or radiometrically calibrated into TOARF, SURF or surface albedo values in
agreement with the GEO-CEOS QA4EO Cal/Val requirements [3].

For the sake of readability this paper is divided in two. The present Part 1 highlights why
AutoCloud+ is important in a broad context of systematic ESA EO Level 2 product generation at the
ground segment within a “seamless innovation chain” needed for a new era of Space 4.0 [66]. Heavily
referenced, this in-depth problem background discussion can be skipped by expert readers. In the
subsequent Part 2 (see Supplementary Materials), first, a “universal” AutoCloud+ CV software system
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is instantiated at the Marr five levels of understanding of an information processing system (refer
to this Section above) [13,19,76,82,83]. Second, preliminary experimental results, collected from an
AutoCloud+ prototypical implementation and integration, are presented and discussed.

The rest of the present Part 1 is organized as follows. Section 2 critically reviews the cognitive
(information-as-data-interpretation) problem of systematic ESA EO Level 2 product generation, whose
necessary-but-not-sufficient pre-condition is cloud and cloud–shadow quality layers detection.
Section 3 surveys standard algorithms for cloud and cloud–shadow quality layers detection, available
either open source or free-of-cost. Conclusions are reported in Section 4.
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Figure 2. Multi-disciplinary cognitive science domain, adapted from [18,77–81], where it is postulated
that ‘Human vision→ computer vision (CV)’, where symbol ‘→’ denotes relationship part-of pointing
from the supplier to the client, not to be confused with relationship subset-of, ‘⊃’, meaning specialization
with inheritance from the superset to the subset, in agreement with the standard Unified Modeling
Language (UML) for graphical modeling of object-oriented software [86]. The working hypothesis
‘Human vision → CV’ means that human vision is expected to work as lower bound of CV, i.e.,
a CV system is required to include as part-of a computational model of human vision [13,76,87–104].
In practice, to become better conditioned for numerical solution, an inherently ill-posed CV system
is required to comply with human visual perception phenomena in the multi-disciplinary domain
of cognitive science. Cognitive science is the interdisciplinary scientific study of the mind and its
processes. It examines what cognition (learning, adaptation, self-organization) is, what it does and
how it works [18,77–81]. It especially focuses on how information/knowledge is represented, acquired,
processed and transferred either in the neuro-cerebral apparatus of living organisms or in machines,
e.g., computers. Like engineering, remote sensing (RS) is a meta-science [105], the goal of which is
to transform knowledge of the world, provided by other scientific disciplines, into useful user- and
context-dependent solutions in the world. Neuroscience, in particular neurophysiology, studies the
neuro-cerebral apparatus of living organisms. Neural network (NN) is synonymous with distributed
processing system, consisting of neurons as elementary processing elements and synapses as lateral
connections. Is it possible and even convenient to mimic biological mental functions, e.g., human
reasoning, by means of an artificial mind whose physical support is not an electronic brain implemented
as an artificial NN (ANN)? The answer is no according to the “connectionists approach” promoted by
traditional cybernetics, where a complex system always comprises an “artificial mind-electronic brain”
combination. This is alternative to a traditional approach to artificial intelligence (AI), whose so-called
symbolic approach investigates an artificial mind independently of its physical support [77].
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2. Systematic ESA EO Level 2 Information Product Generation as a Broad Context of
Cloud/Cloud–Shadow Quality Layers Detection in a Cognitive Science Domain

Systematic ESA EO Level 2 product generation at the ground segment in multi-source EO big
data cubes [11,12] is an inherently ill-posed CV problem [13,23,75,76]; the necessary-but-not-sufficient
pre-condition of this CV problem is the inherently ill-posed CV sub-problem of cloud and cloud–shadow
quality layers detection. The former is regarded as a broad context where the importance and degree of
complexity of the latter are highlighted.

Featuring a relevant survey value in the multidisciplinary domain of cognitive science [18,77–81],
encompassing AI⊃ CV (see Figure 2), this section provides a critical review of ESA EO Level 2 product
generation strategies. Expert readers non-interested in the broad context of cloud and cloud shadow
quality layers detection can skip this review section and move directly to either Section 3 in the present
Part 1 or the Part 2 (proposed as Supplementary Materials) of this paper.

In this review section, the Marr two lower levels of abstraction of an information processing
system, identified as algorithm and implementation (see Section 1), are ignored. Rather, it focuses on
the Marr (three more abstract) levels of understanding known as outcome and process requirements
specification, information/knowledge representation and system design (see Section 1), because they
are typically considered the cornerstone of success of an information processing system [13,19,76,82,83].
Hence, this critical review is not alternative, but complementary to surveys on EO image understanding
systems typically proposed in the RS literature, such as [6–8], focused exclusively on the two lower
levels of abstraction, specifically, algorithm and implementation. In more detail, among the three
aforementioned surveys, EO image preprocessing requirements, such as radiometric Cal, atmospheric
correction and topographic correction, although considered mandatory by the GEO-CEOS QA4EO
Cal/Val guidelines [3], are totally ignored in surveys [6,7], published in year 2014 and 2016 respectively.
In contrast, EO image pre-processing issues are briefly taken into account by the third survey [8], dating
back to year 2007. This observation supports the thesis that, in more recent years, when computational
power has been exponentially increasing according to the Moore law of productivity [106], statistical
model-based (inductive) image analysis algorithms have been dominating the RS literature, whereas
physical model-based or hybrid (combined statistical and physical model-based) inference algorithms,
which require as input sensory data provided with a physical meaning, specifically, EO data provided
with a physical unit of radiometric measure in agreement with the GEO-CEOS QA4EO Cal/Val
requirements [3], have been increasingly oversighted.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  9 of 51 
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To successfully cope with the five Vs of EO big data analytics, specifically, volume, variety,
veracity, velocity and value [4], multi-sensor analysis of multi-temporal multi-angular EO sensory data
cubes depends upon the ability to distinguish between relevant changes and no-changes occurring
at the Earth surface through time [68,69]. A necessary-but-not-sufficient pre-condition for EO big
data transformation into timely, comprehensive and operational EO data-derived VAPS, expected
by GEO to be pursued by a GEOSS never accomplished to date [5], is radiometric Cal, considered
mandatory by the GEO-CEOS QA4EO Cal/Val requirements [3], but largely oversighted in the RS
common practice and literature, e.g., see [6,7]. In short, radiometric Cal guarantees EO sensory data
interoperability (consistency, harmonization, reconciliation, “normalization”) across time, geographic
space and sensors. In greater detail, the capability to detect and quantify change/no-change in terms
of either qualitative (nominal, categorical) Earth surface variables, such as LC classes belonging to a
finite and discrete LC class taxonomy (legend), or quantitative (numeric) Earth surface variables, such
as biophysical variables, e.g., leaf area index (LAI), biomass, etc., depends on the radiometric Cal of EO
sensory data, equivalent to non-negative dimensionless DNs ≥ 0, provided with no physical meaning
and typically affected at sensor-level by ever-varying atmospheric conditions, solar illumination
conditions, spaceborne/airborne viewing geometries and Earth surface topography, into a physical
variable provided with a community-agreed radiometric unit of measure, such as TOARF, SURF or
surface albedo values in range 0.0–1.0 [1–3]. Solar illumination conditions are typically parameterized
by metadata Cal parameters, such as image acquisition time, solar exo-atmospheric irradiance, solar
zenith angle and solar azimuth angle, see Figure 3. Sensor viewing characteristics are typical metadata
Cal parameters, such as sensor zenith angle and sensor azimuth angle, see Figure 3. Atmospheric
conditions are described by categorical variables, such as aerosol type, haze, cloud and cloud–shadow,
and by numeric variables, such as water vapor, temperature and aerosol optical thickness (AOT) [68,69].
Finally, Earth surface geometries must be inferred from ancillary data, such as a digital elevation model
(DEM), in combination with solar and viewing conditions [107], see Figure 3.

Adopted by different scientific disciplines, such as inductive machine learning-from-data [32,33],
AI as superset-of CV [77], i.e., AI ⊃ CV (see Figure 2), and RS [2,13], popular synonyms for deductive
inference are top-down inference, prior knowledge-based inference, learning-by-rule inference and physical
model-based inference. Synonyms for inductive inference are bottom-up inference, learning-from-data
inference, learning-from-examples inference and statistical model-based inference [82,83].

On the one hand, non-calibrated sensory data, provided with no physical meaning, can be
investigated by statistical data models and inductive inference algorithms, exclusively. On the other
hand, although they do not require physical variables as input, statistical data models and inductive
learning-from-data algorithms can benefit from input data Cal in terms of augmented robustness to
changes in the input data set acquired through time, space and sensors. In contrast, radiometrically
calibrated data, provided with a physical meaning, can be interpreted by either inductive, deductive
(physical model-based) or hybrid (combined deductive and inductive) inference algorithms. Although
it is considered a well-known “prerequisite for physical model-based (and hybrid) analysis of airborne
and satellite sensor measurements in the optical domain” [1,13,67–69], EO data Cal is largely neglected
in the RS common practice. For example, in major portions of the RS literature, including the GEOBIA
sub-domain of GIScience [9,10], no reference to radiometric Cal issues is found. This lack of input
EO data Cal requirements proves that, to date, EO image analytics mainly consists of inductive
learning-from-data algorithms, starting from scratch because no a priori physical knowledge is exploited
in addition to data. This is in contrast with biological cognitive systems, where “there is never an
absolute beginning” [108], because a priori genotype provides initial conditions (that reflect properties of
the world, embodied through evolution, based on evolutionary experience) to learning-from-examples
phenotype, according to a hybrid inference paradigm, where phenotype explores the neighborhood of
genotype in a solution space [13,78]. Hybrid inference combines deductive and inductive inference
to take advantage of each and overcome their shortcomings [2]. Inductive inference is typically
semi-automatic and site-specific [2]. Deductive inference is static (non-adaptive to data) and typically
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lacks flexibility to transform ever-varying sensory data (sensations) into stable percepts (concepts) in a
world model [13,23,82,83].

In compliance with the GEO-CEOS QA4EO Cal/Val requirements and the visionary goal of a
GEOSS [5], ESA has recently provided an original ESA EO Level 2 information product definition,
refer to Section 1 [11,12]. The ESA EO Level 2 product definition is non-trivial. Notably, it is more
restrictive than the National Aeronautics and Space Administration (NASA) EO Level 2 product
definition of “a data-derived geophysical variable at the same resolution and location as Level 1 source
data” [109]. According to the standard Unified Modeling Language (UML) for graphical modeling of
object-oriented software [86], where symbol ‘→’ denotes relationship part-of pointing from the supplier
to the client (vice versa, it would denote relationship depend-on), not to be confused with relationship
subset-of, whose symbol is ‘⊃’, meaning specialization with inheritance from the superset to the subset,
the following dependence relationship holds true:

‘NASA EO Level 2 product→ ESA EO Level 2 product’.

Depicted in Figure 4, this dependence relationship implies that a NASA EO Level 2 product can be
accomplished although no ESA EO Level 2 product exists, whereas the vice versa does not hold.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 51 

 

physical model-based inference. Synonyms for inductive inference are bottom-up inference, learning-

from-data inference, learning-from-examples inference and statistical model-based inference [82,83]. 

On the one hand, non-calibrated sensory data, provided with no physical meaning, can be 

investigated by statistical data models and inductive inference algorithms, exclusively. On the other 

hand, although they do not require physical variables as input, statistical data models and inductive 

learning-from-data algorithms can benefit from input data Cal in terms of augmented robustness to 

changes in the input data set acquired through time, space and sensors. In contrast, radiometrically 

calibrated data, provided with a physical meaning, can be interpreted by either inductive, deductive 

(physical model-based) or hybrid (combined deductive and inductive) inference algorithms. 

Although it is considered a well-known “prerequisite for physical model-based (and hybrid) analysis 

of airborne and satellite sensor measurements in the optical domain” [1,13,67–69], EO data Cal is 

largely neglected in the RS common practice. For example, in major portions of the RS literature, 

including the GEOBIA sub-domain of GIScience [9,10], no reference to radiometric Cal issues is 

found. This lack of input EO data Cal requirements proves that, to date, EO image analytics mainly 

consists of inductive learning-from-data algorithms, starting from scratch because no a priori physical 

knowledge is exploited in addition to data. This is in contrast with biological cognitive systems, 

where “there is never an absolute beginning” [108], because a priori genotype provides initial 

conditions (that reflect properties of the world, embodied through evolution, based on evolutionary 

experience) to learning-from-examples phenotype, according to a hybrid inference paradigm, where 

phenotype explores the neighborhood of genotype in a solution space [13,78]. Hybrid inference 

combines deductive and inductive inference to take advantage of each and overcome their 

shortcomings [2]. Inductive inference is typically semi-automatic and site-specific [2]. Deductive 

inference is static (non-adaptive to data) and typically lacks flexibility to transform ever-varying 

sensory data (sensations) into stable percepts (concepts) in a world model [13,23,82,83]. 

In compliance with the GEO-CEOS QA4EO Cal/Val requirements and the visionary goal of a 

GEOSS [5], ESA has recently provided an original ESA EO Level 2 information product definition, 

refer to Section 1 [11,12]. The ESA EO Level 2 product definition is non-trivial. Notably, it is more 

restrictive than the National Aeronautics and Space Administration (NASA) EO Level 2 product 

definition of “a data-derived geophysical variable at the same resolution and location as Level 1 

source data” [109]. According to the standard Unified Modeling Language (UML) for graphical 

modeling of object-oriented software [86], where symbol ‘→’ denotes relationship part-of pointing 

from the supplier to the client (vice versa, it would denote relationship depend-on), not to be confused 

with relationship subset-of, whose symbol is ‘’, meaning specialization with inheritance from the 

superset to the subset, the following dependence relationship holds true: 

‘NASA EO Level 2 product → ESA EO Level 2 product’. 

Depicted in Figure 4, this dependence relationship implies that a NASA EO Level 2 product can be 

accomplished although no ESA EO Level 2 product exists, whereas the vice versa does not hold.  

 

Figure 4. In agreement with the standard Unified Modeling Language (UML) for graphical
modeling of object-oriented software [86], relationship part-of, denoted with symbol ‘→’ pointing
from the supplier to the client, should not to be confused with relationship subset-of, ‘⊃’, meaning
specialization with inheritance from the superset to the subset. A National Aeronautics and Space
Administration (NASA) EO Level 2 product is defined as “a data-derived geophysical variable at
the same resolution and location as Level 1 source data” [109]. Herein, it is considered part-of an
ESA EO Level 2 product defined as [11,12]: (a) a single-date multi-spectral (MS) image whose digital
numbers (DNs) are radiometrically corrected into surface reflectance (SURF) values for atmospheric,
adjacency and topographic effects, stacked with (b) its data-derived general-purpose, user- and
application-independent scene classification map (SCM), whose thematic map legend includes quality
layers cloud and cloud–shadow. In this paper, ESA EO Level 2 product is regarded as an information
primitive to be accomplished by Artificial Intelligence for the Space segment (AI4Space), such as in
future intelligent small satellite constellations, rather than at the ground segment in an AI for Data
and Information Access Services (AI4DIAS) framework. In this graphical representation, additional
acronyms of interest are computer vision (CV), whose special case is EO image understanding (EO-IU)
in operating mode, semantic content-based image retrieval (SCBIR) [13,110–115], semantics-enabled
information/knowledge discovery (SEIKD), where SCIR + SEIKD is considered synonym for
AI4DIAS, and Global Earth Observation System of Systems (GEOSS), defined by the Group
on Earth Observations [5]. Our working hypothesis postulates that the following dependence
relationship holds true. ‘NASA EO Level 2 product→ ESA EO Level 2 product = AI4Space ⊂ EO-IU
in operating mode ⊂ CV→ [EO-SCBIR + SEIKD = AI4DIAS]→ GEO-GEOSS’. This equation means
that GEOSS, whose part-of are the still-unsolved (open) problems of SCBIR and SEIKD, cannot
be achieved until the necessary-but-not-sufficient pre-condition of CV in operating mode, specifically,
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systematic ESA EO Level 2 product generation, is accomplished in advance. Encompassing
both biological vision and CV, vision is synonym for scene-from-image reconstruction and
understanding. Vision is a cognitive (information-as-data-interpretation) problem [18] very difficult
to solve because: (i) non-deterministic polynomial (NP)-hard in computational complexity [87,116],
(ii) inherently ill-posed in the Hadamard sense [23,75,117], because affected by: (I) a 4D-to-2D
data dimensionality reduction from the 4D geospatial-temporal scene-domain to the (2D, planar)
image-domain, e.g., responsible of occlusion phenomena, and (II) a semantic information gap from
ever-varying sub-symbolic sensory data (sensations) in the physical world to stable symbolic percepts in
the mental model of the physical world (modeled world, world ontology, real-world model) [13,18–24].
Since it is inherently ill-posed, vision requires a priori knowledge in addition to sensory data to become
better posed for numerical solution [32,33]. If the aforementioned working hypothesis holds true,
then the complexity of SCBIR + SEIKD is not inferior to the complexity of vision, acknowledged to be
inherently ill-posed and NP-hard. To make the inherently-ill-posed CV problem better conditioned for
numerical solution, a CV system is required to comply with human visual perception. In other words,
a CV system is constrained to include a computational model of human vision [13,76,87–104], i.e.,
‘Human vision→ CV’. Hence, dependence relationship: ‘Human vision→ CV ⊃ EO-IU in operating
mode ⊃ NASA EO Level 2 product→ ESA EO Level 2 product→ [EO-SCBIR + SEIKD = AI4DIAS]→
GEO-GEOSS’ becomes our working hypothesis (to be duplicated in the body text). Equivalent to a first
principle (axiom, postulate), this equation can be considered the first original contribution, conceptual
in nature, of this research and technological development (RTD) study.

An improved (“augmented”) and more restrictive ESA EO Level 2 product definition could
be defined to account for bidirectional reflectance distribution function (BRDF) effect correction,
in addition to atmospheric, topographic and adjacency effects correction, to model surface anisotropy
in multi-temporal multi-angular EO image data cubes [2,68,69,74,118–121]. A surface that reflects the
incident energy equally in all directions is said to be Lambertian, where reflectance is invariant
with respect to illumination and viewing conditions, see Figure 3. On the contrary, a surface
is said to be anisotropic when its reflectance varies with respect to illumination and/or viewing
geometries. These changes are driven by the optical and structural properties of the surface material.
In other words, in EO image pre-processing (enhancement) for radiometric Cal, BRDF effect correction
is LC class-specific [68,69,74,118–121]. The LC class-specific task of BRDF correction is to derive,
for non-Lambertian surfaces, spectral albedo (bi-hemispherical reflectance, BHR) values, defined
over all directions [2,74,118–121], from either SURF or TOARF values where the Lambertian surface
assumption holds [71–74,118].

Our working hypothesis, depicted in Figure 4, when translated into symbols of the standard
UML for graphical modeling of object-oriented software [86] can be formulated as follows (refer to the
caption of Figure 4):

‘Human vision→ CV ⊃ EO-IU in operating mode ⊃ NASA EO Level 2 product
→ ESA EO Level 2 product→ [EO-SCBIR + SEIKD = AI4DIAS]→ GEO-GEOSS’.

(1)

Duplicated from the caption of Figure 4 and regarded as the first original contribution of this research
and technological development (RTD) study, Equation (1) shows our working hypothesis as dependence
relationship, equivalent to a first principle (axiom, postulate). In more detail, Equation (1) postulates
that systematic ESA EO Level 2 product generation is an inherently ill-posed CV problem, where
CV ⊃ EO-IU, whose solution in operating mode is necessary-but-not-sufficient pre-condition for the
yet-unaccomplished dependent problems of semantic content-based image retrieval (SCBIR) [13,110–115]
and semantics-enabled information/knowledge discovery (SEIKD) in large-scale EO image data
cubes, with SCBIR + SEIKD considered synonym for AI for Data and Information Access Services
(AI4DIAS), where AI4DIAS is part-of a yet-unaccomplished GEOSS. The closed-loop AI4DIAS system
architecture, suitable for semantics-enabled incremental learning [13,115], is sketched in Figure 5 [13].
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The working hypothesis (1) regards the ESA EO Level 2 information product as baseline
information unit (information primitive) whose systematic generation is of paramount importance to
contribute toward filling an analytic and pragmatic information gap from multi-sensor, multi-temporal
and multi-angular EO big image data cubes into timely, comprehensive and operational EO data-derived
VAPS, in compliance with the visionary goal of a GEOSS [3,5], unaccomplished to date. To justify
our working hypothesis (1), let us introduce, first, the definition proposed for an EO-IU system to be
considered in operating mode and, second, the background knowledge of vision stemming from the
multidisciplinary domain of cognitive science [18,77–81].ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 51 
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Figure 5. Artificial intelligence (AI) for Data and Information Access Services (AI4DIAS), synonym
for semantics-enabled DIAS or closed-loop EO image understanding (EO-IU) for semantic querying
(EO-IU4SQ) system architecture. At the Marr level of system understanding known as system design
(architecture) [76], AI4DIAS is sketched as a closed-loop EO-IU4SQ system architecture, suitable
for incremental semantic learning. It comprises a primary (dominant, necessary-but-not-sufficient)
hybrid (combined deductive and inductive) feedback (provided with feedback loops) EO-IU
subsystem in closed-loop with a secondary (dominated) hybrid feedback EO-SQ subsystem. Subset-of
a computer vision (CV) system, where CV ⊃ EO-IU, the EO-IU subsystem is required to be
automatic (no human–machine interaction is required by the CV system to run) and near real-time
to provide the EO-SQ subsystem with useful information products, including thematic maps of
symbolic quality, such as single-date ESA EO Level 2 Scene Classification Map (SCM) considered
a necessary-but-not-sufficient pre-condition to semantic querying, synonym for semantics-enabled
information/knowledge discovery (SEIKD) in massive multi-source EO image databases. The EO-SQ
subsystem is provided with a graphic user interface (GUI) to streamline: (i) top-down knowledge
transfer from-human-to-machine of an a priori mental model of the 4D geospatial-temporal real-world,
(ii) high-level user- and application-specific EO semantic content-based image retrieval (SCBIR)
operations. Output products generated by the closed-loop EO-IU4SQ system are expected to
monotonically increase their value-added with closed-loop iterations, according to Bayesian updating
where Bayesian inference is applied iteratively [122,123]: after observing some evidence, the resulting
posterior probability can be treated as a prior probability and a new posterior probability computed
from new evidence. One of Marr’s legacies is the notion of computational constraints required to make
the typically ill-posed non-deterministic polynomial (NP)-hard problem of intelligence, encompassing
vision [87], better conditioned for numerical solution [32,33]. Marr’s computational constraints
reflecting properties of the world are embodied through evolution, equivalent to genotype [78],
into the human visual complex system, structured as a hierarchical network of networks with feedback
loops [87–93,96–98]. Marr’s computational constraints are Bayesian priors in a Bayesian inference
approach to vision [76,122], where ever-varying sensations (sensory data) are transformed into stable
percepts (concepts) about the world in a world model [23], to perform successfully in the world [18].
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Based on scientific literature [13–15,67,82,83,124], a CV ⊃ EO-IU system is defined in operating
mode if and only if it scores “high” in every index of a minimally dependent and maximally
informative (mDMI) set of EO outcome and process (OP) quantitative quality indicators (Q2Is), to be
community-agreed upon for use by members of the RS community, in agreement with the GEO-CEOS
QA4EO Cal/Val guidelines [3]. A proposed instantiation of an mDMI set of EO OP-Q2Is includes
the following.

(i) Degree of automation, inversely related to human–machine interaction, e.g., inversely related to
the number of system’s free-parameters to be user-defined based on heuristics.

(ii) Effectiveness, e.g., thematic mapping accuracy.
(iii) Efficiency in computation time and in run-time memory occupation.
(iv) Robustness (vice versa, sensitivity) to changes in input data.
(v) Robustness to changes in input parameters to be user-defined.
(vi) Scalability to changes in user requirements and in sensor specifications.
(vii) Timeliness from data acquisition to information product generation.
(viii) Costs in manpower and computer power.
(ix) Value, e.g., semantic value of output products, economic value of output services, etc.

According to the Pareto formal analysis of multi-objective optimization problems, optimization of
an mDMI set of OP-Q2Is is an inherently-ill posed problem in the Hadamard sense [117], where many
Pareto optimal solutions lying on the Pareto efficient frontier can be considered equally good [125].
Any EO-IU system solution lying on the Pareto efficient frontier can be considered in operating mode,
therefore suitable to cope with the five Vs of spatial-temporal EO big data, namely, volume, variety,
veracity, velocity and value [4].

In the multidisciplinary domain of cognitive science (see Figure 2), vision is synonym for scene-from-
image reconstruction and understanding [23], see Figure 6. Encompassing both biological vision and CV,
vision is a cognitive (information-as-data-interpretation) problem [18], very difficult to solve because:
(i) non-deterministic polynomial (NP)-hard in computational complexity [87,116], (ii) inherently
ill-posed in the Hadamard sense [117], i.e., vision admits no solution, multiple solutions or, if the
solution exists, the solution’s behavior changes continuously with the initial conditions [23,75]. Vision
is inherently ill-posed because affected by: (I) a 4D-to-2D data dimensionality reduction, from the
geospatial-temporal scene-domain to the (2D, planar) image-domain, e.g., responsible of occlusion
phenomena, and (II) a semantic information gap, from ever-varying sub-symbolic sensory data
(sensations) in the physical world to stable symbolic percepts in the mental model of the physical
world (modeled world, world ontology, real-world model) [12,18–24], see Figure 6. Since it is inherently
ill-posed, vision requires a priori knowledge in addition to sensory data to become better posed for
numerical solution [32,33]. For example, in inherently ill-posed CV systems, a valuable source of
a priori knowledge is reverse engineering primate visual perception [87–93], so that a CV system is
constrained to include a computational model of human vision [13,76,87–104], i.e., ‘Human vision
→ CV’, see Figure 2. According to cognitive science, AI ⊃ CV is not a problem in statistics [125],
which is tantamount to saying there is no (qualitative, equivocal, nominal) semantics in (quantitative,
unequivocal, numeric) sensory data [13]. These principles are implicit in the dual meaning of the
word “information”, either quantitative (unequivocal) information-as-thing, typical of the Shannon data
communication/transmission theory [126], or qualitative (equivocal) information-as-data-interpretation,
typical of AI ⊃ CV tasks investigated by philosophical hermeneutics [18].
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Figure 6. Synonym for scene-from-image reconstruction and understanding, vision is a cognitive
(information-as-data-interpretation) problem [18] very difficult to solve because: (i) non-deterministic
polynomial (NP)-hard in computational complexity [87,116], and (ii) inherently ill-posed [23,75]
in the Hadamard sense [117]. Vision is inherently ill-posed because affected by: (I) a 4D-to-2D
data dimensionality reduction from the 4D geospatial-temporal scene-domain to the (2D, planar)
image-domain, e.g., responsible of occlusion phenomena, and (II) a semantic information gap from
ever-varying sub-symbolic sensory data (sensations) in the physical world-domain to stable symbolic
percepts in the mental model of the physical world (modeled world, world ontology, real-world
model) [13,18–24]. Since it is inherently ill-posed, vision requires a priori knowledge in addition to
sensory data to become better posed for numerical solution [32,33].

Largely oversighted by the RS and CV literature, an undisputable observation (true-fact) is
that, in general, spatial information dominates color information in vision [23]. This commonsense
knowledge is obvious, but not trivial. On the one hand, it may sound awkward to many readers,
including RS experts and CV practitioners. On the other hand, it is acknowledged implicitly by all
human beings wearing sunglasses: human panchromatic vision is nearly as effective as chromatic
vision in scene-from-image reconstruction and understanding [13]. This true fact means that spatial
information dominates both the 4D geospatial-temporal scene-domain and the (2D) image-domain
involved with the cognitive task of vision, see Figure 6. This evidence is also acknowledged by the
Tobler’s first law (TFL) of geography, familiar to geographers working in the real-world domain.
The TFL of geography states that “all things are related, but nearby things are more related than
distant things” [127], although certain phenomena clearly constitute exceptions [128]. Obscure to
many geographers familiar with the TFL formulation, the statistical concept of spatial autocorrelation
is the quantitative counterpart of the qualitative TFL of geography [13]. The relevance of spatial
autocorrelation in both the 4D geospatial-temporal scene-domain and the (2D) image domain involved
with vision is at the very foundation of the (GE)OBIA approach to CV, originally conceived around
year 2000 by the GIScience community as a viable alternative to traditional 1D spatial-context
insensitive (pixel-based) image analysis [9,10]. Unfortunately, rather than starting with background
knowledge in the multi-disciplinary domain of cognitive science, the GEOBIA approach was started
from scratch by a self-referencing GEOBIA sub-community within the GIScience domain, see
Figure 2 [9,10,129,130]. As a consequence of its lack of interdisciplinarity, the GEOBIA community
showed an increasing tendency to “re-invent the wheel” in ever-varying implementations of the same
sub-optimal EO-IU system architecture, although the CV ⊂ AI communities clearly acknowledge that
the key of success of an information processing system lies on outcome and process requirements
specification, information/knowledge representation and system design, rather than algorithm or
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implementation (refer to Section 1) [13,19,76,82,83]. Based on these observations, to enforce a ‘Human
vision→ CV’ paradigm, see Figure 2, the following original constraint can be adopted to make an
inherently ill-posed CV system better conditioned for numerical solution [13].

If a chromatic CV ⊃ EO-IU system does not down-scale seamlessly to achromatic image
analysis, then it tends to ignore the paramount spatial information in favor of subordinate
(secondary) spatial context-insensitive color information, such as MS signatures typically
investigated in traditional pixel-based single-date or multi-temporal EO-IU algorithms.
In other words, a necessary and sufficient condition for a CV ⊃ EO-IU system to fully
exploit primary spatial topological information (e.g., adjacency, inclusion, etc.) and spatial
non-topological information (e.g., spatial distance, angle distance) components, in addition
to secondary colorimetric information, is to perform nearly as well when input with either
panchromatic or color imagery [13].

Underpinned by this background knowledge about the cognitive process of vision, an undisputable
true fact is that ESA EO Level 2 product generation is an inherently ill-posed CV problem (chicken-and-egg
dilemma), whose inherently ill-posed CV sub-problem is cloud and cloud–shadow quality layers detection.
Since it is inherently ill-posed, ESA EO Level 2 information product generation is, first, very difficult to
solve; in fact, no ESA EO Level 2 product has ever been accomplished in an operating mode by any EO
data provider at the ground segment to date. Second, it requires a priori knowledge in addition to sensory
data to become better conditioned for numerical solution [32,33].

Our conclusion is that systematic ESA EO Level 2 product generation, at the core of the present
work, is of potential interest to relevant portions of the RS community, involved with EO big data
transformation into timely, comprehensive and operational EO data-derived VAPS [3,5]. Regarded as
necessary-but-not-sufficient pre-condition for a GEOSS to cope with the five Vs of EO big data analytics,
see Figure 4, systematic ESA EO Level 2 product generation is still open for solution in operating mode.
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Figure 7. Semantics-enabled EO big data cube, synonym for artificial intelligence (AI) for Data and
Information Access Services (AI4DIAS). Each single-date EO Level 1 source image, radiometrically
calibrated into top-of-atmosphere reflectance (TOARF) values and stored in the database, is
automatically transformed into an ESA EO Level 2 product comprising: (i) a single-date multi-spectral
(MS) image radiometrically calibrated from TOARF into surface reflectance (SURF) values, corrected
for atmospheric, adjacency and topographic effects, stacked with (ii) its EO data-derived value-adding
scene classification map (SCM), equivalent to a sensory data-derived categorical/nominal/qualitative
variable of semantic quality, where the thematic map legend is general-purpose, user- and
application-independent and comprises quality layers, such as cloud and cloud–shadow. It is eventually
stacked with (iii) its EO data-derived value-adding numeric variables, such as biophysical variables,
e.g., leaf area index (LAI) [2,131], class-conditional spectral indexes, e.g., vegetation class-conditional
greenness index [132,133], categorical variables of sub-symbolic quality (geographic field-objects), e.g.,
fuzzy sets/discretization levels low/medium/high of a numeric variable, etc. [134].
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As the second original contribution of this review section, the several degrees of novelty of the
ESA EO Level 2 product definition (refer to Section 1) are described below.

First, the ESA EO Level 2 product definition is innovative because it overtakes the traditional concept
of EO data cube with an innovative EO data cube stacked with its data-derived value-adding information
cube, synonym for semantics-enabled EO data cube or AI4DIAS, see Figure 7. A semantics-enabled EO
data cube is alternative to existing EO data cubes, affected by the so-called data-rich information-poor
(DRIP) syndrome [135], such as the existing first generation of the European Commission (EC) Data and
Information Access Services (DIAS) [136,137]. Intuitively, EC-DIAS is affected by the DRIP syndrome
because it is provided with no CV system in operating mode as inference engine, capable of transforming
geospatial-temporal EO big data, characterized by the five Vs of volume, variety, veracity, velocity and
value [4], into VAPS, starting from semantic information products, such as the ESA EO Level 2 SCM
baseline product. Sketched in Figure 5, AI4DIAS complies with the Marr’s intuition that “vision goes
symbolic almost immediately without loss of information” [76] (p. 343).

Second, in our understanding the ESA EO Level 2 product definition is the new standard of
EO Analysis Ready Data (ARD) format. This ARD definition is in contrast with the Committee
on Earth Observation Satellites (CEOS) ARD for Land (CARD4L) product definition [138], where
atmospheric effect removal is required exclusively, i.e., adjacency topographic and BRDF effect
corrections are oversighted, and no EO data-derived SCM is expected as additional output product,
which includes quality layers cloud and cloud–shadow. It is also in contrast with the U.S. Landsat ARD
format [139–143], where atmospheric effect removal is required exclusively, i.e., adjacency topographic
and BRDF effect corrections are omitted, and where quality layers cloud and cloud–shadow are
required, but no EO data-derived SCM is provided as any additional output product. Finally, it
is in contrast with the NASA Harmonized Landsat/Sentinel-2 (HLS) Project [142,143] where, first,
atmospheric and BRDF effect corrections are required, but adjacency and topographic effect corrections
are omitted, and, second, quality layers cloud and cloud–shadow are required, but no EO data-derived
SCM is generated as additional output product. In practice, the CARD4L and U.S. Landsat ARD
definitions are part-of the ESA EO Level 2 product definition. The latter encapsulates the former. When
the latter is accomplished, so is the former; however, the vice versa does not hold.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  18 of 51 

 

 

Figure 8. Definitions adopted in the notion of Space Economy 4.0: space segment, ground segment 

for «mission control» = upstream, ground segment for «user support» = midstream (infrastructures 

and services), downstream utility of space technology [66] (pp. 6, 57). Cable of transforming 

quantitative (unequivocal) big data into qualitative (equivocal) data-derived value-adding 

information and knowledge, AI technologies should be applied as early as possible to the “seamless 

innovation chain” needed for a new era of Space 4.0, starting from AI4Space applications at the space 

segment, which include the notion of future intelligent EO satellites (FIEOS) [144, 145], and AI4DIAS 

applications at midstream, such as systematic ESA EO Level 2 product generation, considered 

synonym for Analysis Ready Data (ARD) eligible for use at downstream. 

Third, we consider ESA EO Level 2 product generation a horizontal policy for background 

developments in support of a new era of Space Economy 4.0 [66], see Figure 8. In the notion of Space 

4.0, global value chains will require both vertical and horizontal policies. Vertical policies are more 

directional and ‘active’, focusing on directing change, often through mission-oriented policies that 

require the active creation and shaping of markets. Horizontal policies are more focused on the 

background conditions necessary for innovation, correcting for different types of market and system 

failures [66].  

Fourth, in an “old” mission-oriented (vertical) space economy [66], the ground segment is 

typically divided into upstream and midstream, which are defined as the portion of ground segment 

for mission support and user support respectively, see Figure 8. ESA expects systematic ESA EO 

Level 2 product generation to be accomplished by EO data providers at midstream. Actually, 

systematic ESA EO Level 2 product generation should occur as early as possible in the information 

processing chain, e.g., in the space segment preliminary to the ground segment, in compliance with 

the Marr’s intuition that “vision goes symbolic almost immediatel without loss of information” [76] 

(p. 343). Hence, in Figure 4, ESA EO Level 2 product generation becomes synonym of AI applications 

for the space segment, AI4Space, where AI  CV. AI4Space comes before the application of AI 

techniques to the ground segment, specifically, AI4DIAS. If a CV  AI application in operating mode 

is implemented onboard a spaceborne platform of an EO imaging sensor to provide imagery with 

intelligence (semantics), then Future Intelligent EO imaging Satellites (FIEOS), conceived in the early 

2000s [144], become realistic, such as future intelligent EO small satellite constellations. In EO small 

satellite constellations provided with no on-board radiometric Cal subsystem, improved time 

resolution is counterbalanced by inferior radiometric Cal capabilities, considered mandatory by the 

GEO-CEOS QA4EO Cal/Val guidelines [3] to guarantee interoperability of multiple platforms and 

sensors within and across constellations. The visionary goal of AI4Space is realistic, based on the 

recent announcement of an RTD project focused on future intelligent small satellite constellations. 

Figure 8. Definitions adopted in the notion of Space Economy 4.0: space segment, ground segment
for «mission control» = upstream, ground segment for «user support» = midstream (infrastructures and
services), downstream utility of space technology [66] (pp. 6, 57). Cable of transforming quantitative
(unequivocal) big data into qualitative (equivocal) data-derived value-adding information and knowledge,
AI technologies should be applied as early as possible to the “seamless innovation chain” needed for
a new era of Space 4.0, starting from AI4Space applications at the space segment, which include the
notion of future intelligent EO satellites (FIEOS) [144,145], and AI4DIAS applications at midstream, such as
systematic ESA EO Level 2 product generation, considered synonym for Analysis Ready Data (ARD)
eligible for use at downstream.
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Third, we consider ESA EO Level 2 product generation a horizontal policy for background
developments in support of a new era of Space Economy 4.0 [66], see Figure 8. In the notion of Space 4.0,
global value chains will require both vertical and horizontal policies. Vertical policies are more directional
and ‘active’, focusing on directing change, often through mission-oriented policies that require the active
creation and shaping of markets. Horizontal policies are more focused on the background conditions
necessary for innovation, correcting for different types of market and system failures [66].

Fourth, in an “old” mission-oriented (vertical) space economy [66], the ground segment is typically
divided into upstream and midstream, which are defined as the portion of ground segment for mission
support and user support respectively, see Figure 8. ESA expects systematic ESA EO Level 2 product
generation to be accomplished by EO data providers at midstream. Actually, systematic ESA EO
Level 2 product generation should occur as early as possible in the information processing chain, e.g.,
in the space segment preliminary to the ground segment, in compliance with the Marr’s intuition that
“vision goes symbolic almost immediatel without loss of information” [76] (p. 343). Hence, in Figure 4,
ESA EO Level 2 product generation becomes synonym for AI applications for the space segment,
AI4Space, where AI ⊃ CV. AI4Space comes before the application of AI techniques to the ground
segment, specifically, AI4DIAS. If a CV ⊂ AI application in operating mode is implemented on-board
a spaceborne platform of an EO imaging sensor to provide imagery with intelligence (semantics),
then Future Intelligent EO imaging Satellites (FIEOS), conceived in the early 2000s [144], become
realistic, such as future intelligent EO small satellite constellations. In EO small satellite constellations
provided with no on-board radiometric Cal subsystem, improved time resolution is counterbalanced
by inferior radiometric Cal capabilities, considered mandatory by the GEO-CEOS QA4EO Cal/Val
guidelines [3] to guarantee interoperability of multiple platforms and sensors within and across
constellations. The visionary goal of AI4Space is realistic, based on the recent announcement of an
RTD project focused on future intelligent small satellite constellations. The quote is: “an Earth-i led
consortium will develop a number of new Earth Observation technologies that will enable processes,
such as the enhancement of image resolution, cloud-detection, change detection and video compression,
to take place on-board a small satellite rather than on the ground. This will accelerate the delivery of
high-quality images, video and information-rich analytics to end-users. On-board cloud detection
will make the tasking of satellites more efficient and increase the probability of capturing a usable
and useful image or video. To achieve these goals, ‘Project OVERPaSS‘ will implement, test and
demonstrate very high-resolution optical image analysis techniques, involving both new software
and dedicated hardware installed on-board small satellites to radically increase their ability to process
data in space. The project will also determine the extent to which these capabilities could be routinely
deployed on-board British optical imaging satellites in the future” [145].

Fifth, in the RS common practice, the potential impact of the ESA EO Level 2 product definition
is relevant because it makes explicit, once and for all, the undisputable true fact that atmospheric effect
correction [12,56,68,69,71–74,146], adjacency and topographic effect corrections [107,147–151], BRDF effect
correction [68,69,74,118–121], in addition to cloud/cloud shadow quality layer detection [12,13,43–63],
are inherently ill-posed CV problems [23,75] in the Hadamard sense [117], whose solution does not exist or,
if it exists, it is not unique or it is not robust to small changes in the initial condition, including changes
to the input dataset. Since they are inherently ill-posed, atmospheric, topographic, adjacency and BRDF
effect corrections, in addition to cloud/cloud shadow quality layer mapping, require a priori knowledge in
addition to sensory data to become better posed for numerical solution [32,33]. This is tantamount to saying
that radiometric Cal of EO imagery, encompassing ESA EO Level 2 product generation, is a chicken-and-egg
dilemma [13,147]. On the one hand, no EO image understanding (classification) into a finite and discrete
taxonomy of LC classes, in addition to categorical layers cloud and cloud–shadow, is possible in operating
mode if radiometric Cal is not accomplished in advance, where dimensionless DNs are transformed into a
physical unit of radiometric measure to guarantee data interoperability through space, time and sensors,
in agreement with the GEO QA4EO Cal/Val requirements [5]. On the other hand, no radiometric Cal
of EO imagery is possible without knowing in advance LC classes and nominal quality layers, such as
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cloud and cloud–shadow masks, since atmospheric, topographic and BRDF effect corrections are LC
class-dependent. This is tantamount to saying that, to become better posed for automatic numerical
solution (requiring no human–machine interaction), an inherently ill-conditioned CV algorithm for
EO image correction from atmospheric, topographic, adjacency and BRDF effects needs to be run on
a stratified (masked, layered, class-conditional, driven-by-prior-knowledge) basis, i.e., it should run
separately on informative EO image strata (masks, layers). A stratified (masked, layered, class-conditional,
driven-by-prior-knowledge) approach to CV complies with well-known criteria in the equivocal domain
of information-as-data-interpretation [18].

• Well-known in statistics, the principle of statistic stratification states that “stratification will always
achieve greater precision provided that the strata have been chosen so that members of the same
stratum are as similar as possible in respect of the characteristic of interest” [152].

• The popular problem solving criterion known as divide-and-conquer (dividi-et-impera) [32], to be
accomplished in agreement with the engineering principles of modularity, hierarchy and regularity
considered necessary for scalability in structured system design [39].

• A Bayesian approach to CV, where driven-without-knowledge (unconditional) data analytics is
replaced by driven-by-(prior) knowledge (class-conditional, masked) data analytics [76,122,153,154].
In the words of Quinlan: “one of David Marr’s key is the notion of constraints. The idea that the
human visual system embodies constraints that reflect properties of the world is foundational. Indeed,
this general view seemed (to me) to provide a sensible way of thinking about Bayesian approaches
to vision. Accordingly, Bayesian priors are Marr’s constraints. The priors/constraints have been
incorporated into the human visual system over the course of its evolutionary history (according
to the “levels of understanding of an information processing system” manifesto proposed by Marr
and extended by Tomaso Poggio in 2012)” [153,154]. In agreement with a Bayesian approach to CV,
our working hypothesis, shown in Figure 4, postulates that CV includes a computational model of
human vision [13,76,87–104], i.e., ‘Human vision→ CV’. In practice, a CV system is constrained to
comply with human visual perception. This CV requirement agrees with common sense, although
it is largely oversighted in the RS and CV literature. In the words of Marcus: “there is no need
for machines to literally replicate the human mind, which is, after all, deeply error prone, and far
from perfect. But there remain many areas, from natural language understanding to commonsense
reasoning, in which humans still retain a clear advantage. Learning the mechanisms underlying those
human strengths could lead to advances in AI, even if the goal is not, and should not be, an exact
replica of human brain. For many people, learning from humans means neuroscience; in my view,
that may be premature. We do not yet know enough about neuroscience to literally reverse engineer
the brain, per se, and may not for several decades, possibly until AI itself gets better. AI can help us to
decipher the brain, rather than the other way around. Either way, in the meantime, it should certainly
be possible to use techniques and insights drawn from cognitive and developmental psychology, now,
in order to build more robust and comprehensive AI, building models that are motivated not just by
mathematics but also by clues from the strengths of human psychology” [30]. According to Iqbal and
Aggarwal: “frequently, no claim is made about the pertinence or adequacy of the digital models as
embodied by computer algorithms to the proper model of human visual perception... This enigmatic
situation arises because research and development in computer vision is often considered quite
separate from research into the functioning of human vision. A fact that is generally ignored, is that
biological vision is currently the only measure of the incompleteness of the current stage of computer
vision, and illustrates that the problem is still open to solution” [155]. For example, according to Pessoa,
“if we require that a CV system should be able to predict perceptual effects, such as the well-known
Mach bands illusion where bright and dark bands are seen at ramp edges, then the number of
published vision models becomes surprisingly small” [156], see Figure 9. In the words of Serre, “there
is growing consensus that optical illusions are not a bug but a feature. I think they are a feature.
They may represent edge cases for our visual system, but our vision is so powerful in day-to-day
life and in recognizing objects" [97,98]. For example, to account for contextual optical illusions,
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Serre introduced innovative feedback connections between neurons within a layer [97,98], whereas
typical DCNNs [34–38] feature feedforward connections exclusively. In the CV and RS common
practice, constraint ‘Human vision→ CV’ is a viable alternative to heuristics typically adopted to
constrain inherently ill-posed inductive learning-from-data algorithms, where a priori knowledge is
typically encoded by design based on empirical criteria [30,33,64]. For example, designed and trained
end-to-end for either object detection [36], semantic segmentation [37] or instance segmentation [38],
state-of-the-art DCNNs [34] encode a priori knowledge by design, where architectural metaparameters
must be user-defined based on heuristics. In inductive DCNNs trained end-to-end, number of layers,
number of filters per layer, spatial filter size, inter-filter spatial stride, local filter size for spatial pooling,
spatial pooling filter stride, etc., are typically user-defined based on empirical trial-and-error strategies.
As a result, inductive DCNNs work as heuristic black boxes [30,64], whose opacity contradicts
the well-known engineering principles of modularity, regularity and hierarchy typical of scalable
systems [39]. In general, inductive learning-from-data algorithms are inherently semi-automatic
(requiring system’s free-parameters to be user-defined based on heuristics, including architectural
metaparameters) and site-specific (data-dependent) [2]. "No Free Lunch” theorems have shown that
inductive learning-from-data algorithms cannot be universally good [40,41].
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Figure 9. Mach bands illusion [13,156]. In black: Ramp in luminance units across space. In red: Brightness
(perceived luminance) across space. One of the best-known brightness illusions, where brightness is defined
as a subjective aspect of vision, i.e., brightness is the perceived luminance of a surface, is the psychophysical
phenomenon of the Mach bands: where a luminance (radiance, intensity) ramp meets a plateau, there are
spikes of brightness, although there is no discontinuity in the luminance profile. Hence, human vision
detects two boundaries, one at the beginning and one at the end of the ramp in luminance. Since there is no
discontinuity in luminance where brightness is spiking, the Mach bands effect is called a visual “illusion”.
Along a ramp, no image-contour is perceived by human vision, irrespective of the ramp’s local contrast
(gradient) in range (0, +∞). In the words of Pessoa, “if we require that a brightness model should at least
be able to predict Mach bands, the bright and dark bands which are seen at ramp edges, the number of
published models is surprisingly small” [156]. In 2D signal (image) processing, the important lesson to be
learned from the Mach bands illusion is that local variance, contrast and first-order derivative (gradient) are
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statistical features (data-derived numeric variables) computed locally in the (2D) image-domain not suitable
to detect image-objects (segments, closed contours) required to be perceptually “uniform” (“homogeneous”)
in agreement with human vision. In other words, these popular local statistics, namely, local variance, contrast
and first-order derivative (gradient), are not suitable visual features if detected image-segments/image-contours are
required to be consistent with human visual perception, including ramp-edge detection. This straightforward
(obvious), but not trivial observation is at odd with a large portion of the existing computer vision (CV) and
remote sensing (RS) literature, where many semi-automatic image segmentation/image-contour detection
algorithms are based on thresholding the local variance, contrast or first-order gradient, e.g., [157–159],
where a system’s free-parameter for thresholding image-objects or image-contours must be user-defined in
range ∈ (0, +∞) based on heuristics.

Although it is largely ignored by large portions of the RS community, the unequivocal true fact
that inherently ill-posed CV ⊃ EO-IU algorithms for radiometric Cal of DNs into SURF or surface
albedo values do require EO image classification to be performed in advance is implicitly confirmed
by existing open source or commercial software toolboxes for EO image enhancement (pre-processing),
critically reviewed hereafter.

Supported by NASA, the baseline of the U.S. Landsat ARD format [139–143] is atmospheric
effect removal by the open source Landsat-4/5/7 Ecosystem Disturbance Adaptive Processing System
(LEDAPS). In LEDAPS, exclusion masks for water, cloud, shadow and snow surface types were
detected by an over-simplistic set of prior knowledge-based spectral decision rules applied per
pixel [146]. Quantitative analyses of LEDAPS products led by its authors revealed that these exclusion
masks were prone to errors, to be corrected in future LEDAPS releases [146]. The same considerations
hold for the Landsat 8 OLI/TIRS-specific Landsat Surface Reflectance Code (LaSRC) [160] adopted
by the U.S. Landsat ARD format [139–143]. Unfortunately, suitable for testing or Val purposes,
a multi-level image consisting of exclusion masks has never been generated as standard output
by either LEDAPS or LaSRC. To detect quality layers cloud and cloud–shadow, in addition to
snow/ice pixels, recent versions of LEDAPS and LaSRC adopted the open source C Function of Mask
(CFMask) algorithm [139,140]. CFMask was derived from the open source Function of Mask (FMask)
algorithm [58,59], translated into the C programming language to facilitate its implementation in a
production environment. Unfortunately, to date, in a recent comparison of cloud and cloud–shadow
detectors, those implemented in LEDAPS scored low among alternative solutions [62]. By the way,
potential users of U.S. Landsat ARD imagery are informed by USGS in advance about typical CFMask
artifacts [63]. Like other cloud detection algorithms [61,62], CFMask may have difficulties over bright
surface types such as building tops, beaches, snow/ice, sand dunes, and salt lakes. Optically thin
clouds will always be challenging to identify and have a higher probability of being omitted by the U.S.
Landsat ARD algorithm. In addition, the algorithm performance has only been validated for cloud
detection, and to a lesser extent for cloud shadows. No rigorous evaluation of the snow/ice detection
has ever been performed [63].

Transcoded into CFMask by the U.S. Landsat ARD processor, the open source Fmask algorithm
for cloud, cloud–shadow and snow/ice detection was originally developed for single-date 30 m
resolution 7-band (from visible blue, B, to thermal InfraRed, TIR) Landsat-5/7/8 MS imagery, which
includes a thermal band as key input data requirement [58]. In recent years, FMask was extended to
10 m/20 m resolution Sentinel-2 MS imagery [59], featuring no thermal band, and to Landsat image
time-series (multiTemporal Mask, TMask) [60]. For more details about the FMask software design and
implementation, refer to the further Section 3.
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Figure 10. As in [74], courtesy of Daniel Schläpfer, ReSe Applications Schläpfer. A complete (“augmented”)
hybrid (combined deductive and inductive) inference workflow for multi-spectral (MS) image correction
from atmospheric, adjacency and topographic effects. It combines a standard Atmospheric/Topographic
Correction for Satellite Imagery (ATCOR) commercial software workflow [71,72], with a bidirectional
reflectance distribution function (BRDF) effect correction, which requires as input an image time-series of
the same surface area acquired with different combinations of the sun and sensor positions. Processing
blocks are represented as circles and output products as rectangles. This hybrid workflow alternates
deductive/prior knowledge-based and inductive/learning-from-data inference units, starting from initial
conditions provided by a first-stage prior knowledge-based decision tree for static (non-adaptive to data)
color naming, such as the Spectral Classification of surface reflectance signatures (SPECL) decision tree [73]
implemented within the ATCOR commercial software toolbox. Categorical variables generated as output
by the two processing blocks identified as “pre-classification” and “classification” are employed as input
by the subsequent processing blocks to stratify (mask) unconditional numeric variable distributions, in line
with the statistic stratification principle [152]. Through statistic stratification, inherently ill-posed inductive
learning-from-data algorithms are provided with a priori knowledge required in addition to data to become
better posed for numerical solution, in agreement with the machine learning-from-data literature [32,33].
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In the Atmospheric/Topographic Correction for Satellite Imagery (ATCOR) commercial software
product, several per-pixel (spatial context-insensitive) deductive spectral rule-based decision trees
are implemented for use in different stages of an EO image enhancement pipeline [71–74,161,162],
see Figure 10. According to Richter and Schläpfer [71,72], “pre-classification as part of the atmospheric
correction has a long history, e.g., in the NASA’s processing chain for MODIS” [57], also refer to [12,56].
One of the ATCOR’s prior knowledge-based per-pixel decision trees delivers as output a haze/cloud/
water (and snow) classification mask file (“image_hcw.bsq”), see Table 3. In addition, ATCOR includes
a so-called prior knowledge-based decision tree for Spectral Classification of surface reflectance
signatures (SPECL) [73], see Table 4. Unfortunately, SPECL has never been tested by its authors in the
RS literature, although it has been validated by independent means [161,162].

Commissioned by ESA, the Sentinel-2 (atmospheric and topographic) Correction Prototype
Processor (Sen2Cor) is not run systematically at the ESA ground segment. Rather, it can be downloaded
free-of-cost from an ESA website to be run on the user side [11,12,44]. Hence, the ESA Sen2Cor software
toolbox does not satisfy the ESA EO Level 2 product requirements specification, refer to Section 1.
The existing sensor-specific Sen2Cor prototype processor, sketched in Figure 11, adopts the same
feedforward workflow of the popular ATCOR commercial software product [71–73]. The Sen2Cor
software toolbox accomplishes, first, one SCM product generation from TOARF values by means
of a per-pixel (spatial context-insensitive) prior spectral knowledge-based (static, non-adaptive to
data) decision tree, whose SCM legend is shown in Table 1. Next, a stratified (class-conditional,
driven-by-knowledge) MS image radiometric correction approach is adopted to transform TOARF
into SURF values, where SURF values are sequentially corrected for atmospheric, adjacency and
topographic effects stratified by the same SCM product generated at first stage from TOARF values.

Table 3. Thematic map legend of the ATCOR-2/3/4 spectral pre-classification [71–73], whose output
product is identified as “image_hcw.bsq” (hcw = haze/cloud/water and snow) map. According to
Richter and Schläpfer, “pre-classification as part of the atmospheric correction has a long history, e.g.,
as part of NASA’s processing chain for MODIS”, e.g., refer to [57].

Label ATCOR-2/3/4 Spectral pre-Classification,
Land Cover (LC) Class Definition Order of Detection

0 Background
1 Cloud shadow 5
2 Cirrus—Thin over water 10
3 Cirrus—Medium over water 11
4 Cirrus—Thick over water 12
5 Land (if not 0 to 5 or 6 to 17) 17
6 Saturated (if (DN > 0.9 * DNmax), then saturated) 1
7 Snow/ice 6
8 Cirrus—Thin over land 7
9 Cirrus—Medium over land 8

10 Cirrus—Thick over land 9
11 Haze—Thin/medium over land 13
12 Haze—Thick/medium over land 14
13 Haze—Thin/medium over water 15
14 Haze—Thick/medium over water 16
15 Cloud over land 3
16 Cloud over water 4
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Table 4. Rule set (structural knowledge) and order of presentation of the rule set (procedural
knowledge) adopted by the prior knowledge-based MS reflectance space quantizer, eligible for MS
reflectance space hyperpolyhedralization into MS color names, called Spectral Classification of surface
reflectance signatures (SPECL), implemented within the ATCOR commercial software toolbox [71–73].

Label Spectral Categories
Spectral Rule (based on reflectance measured at Landsat TM central
wave bands: b1 is located at 0.48 µm, b2 at 0.56 µm, b3 at 0.66 µm, b4 at
0.83 µm, b5 at 1.6 µm, b7 at 2.2 µm)

Pseudocolor

1 Snow/ice b4/b3 ≤ 1.3 AND b3 ≥ 0.2 AND b5 ≤ 0.12
2 Cloud b4 ≥ 0.25 AND 0.85 ≤ b1/b4 ≤ 1.15 AND b4/b5 ≥ 0.9 AND b5 ≥ 0.2
3 Bright bare soil/sand/cloud b4 ≥ 0.15 AND 1.3 ≤ b4/b3 ≤ 3.0
4 Dark bare soil b4 ≥ 0.15 AND 1.3 ≤ b4/b3 ≤ 3.0 AND b2 ≤ 0.10
5 Average vegetation b4/b3 ≥ 3.0 AND (b2/b3 ≥ 0.8 OR b3 ≤ 0.15) AND 0.28 ≤ b4 ≤ 0.45
6 Bright vegetation b4/b3 ≥ 3.0 AND (b2/b3 ≥ 0.8 OR b3 ≤ 0.15) AND b4 ≥ 0.45

7 Dark vegetation b4/b3 ≥ 3.0 AND (b2/b3 ≥ 0.8 OR b3 ≤ 0.15) AND b3 ≤ 0.08
AND b4 ≤ 0.28

8 Yellow vegetation b4/b3 ≥ 2.0 AND b2 ≥_b3 AND b3 ≥ 8.0 AND b4/b5 ≥ 1.5 a

9 Mix of vegetation/soil 2.0 ≤ b4/b3 ≤ 3.0 AND 0.05 ≤ b3 ≤ 0.15 AND b4 ≥ 0.15

10 Asphalt/dark sand b4/b3 ≤ 1.6 AND 0.05 ≤ b3 ≤ 0.20 AND 0.05 ≤ b4 ≤ 0.20 a

AND 0.05 ≤ b5 ≤ 0.25 AND b5/b4 ≥ 0.7 a

11 Sand/bare soil/cloud b4/b3 ≤ 2.0 AND b4 ≥ 0.15 AND b5 ≥ 0.15 a

12 Bright sand/bare soil/cloud b4/b3 ≤ 2.0 AND b4 ≥ 0.15 AND (b4 ≥ 0.25b OR b5 ≥ 0.30 b)

13 Dry vegetation/soil (1.7 ≤ b4/b3 ≤ 2.0 AND b4 ≥ 0.25 c) OR (1.4 ≤ b4/b3 ≤ 2.0
AND b7/b5 ≤ 0.83 c)

14 Sparse veg./soil (1.4 ≤ b4/b3 ≤ 1.7 AND b4 ≥ 0.25 c) OR (1.4 ≤ b4/b3 ≤ 2.0
AND b7/b5 ≤ 0.83 AND b5/b4 ≥ 1.2 c)

15 Turbid water b4 ≤ 0.11 AND b5 ≤ 0.05 a

16 Clear water b4 ≤ 0.02 AND b5 ≤ 0.02 a

17 Clear water over sand b3 ≥ 0.02 AND b3 ≥ b4 + 0.005 AND b5 ≤ 0.02 a

18 Shadow
19 Not classified (outliers)

a: These expressions are optional and only used if band b5 is present. b: Decision rule depends on presence of band
b5. c: Decision rule depends on presence of band b7.
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Figure 11. Sen2Cor flow chart for ESA Level 2 product generation from Sentinel-2 imagery [11,12,44],
same as in the Atmospheric/Topographic Correction for Satellite Imagery (ATCOR) commercial software
toolbox [71–73]. While sharing the same system design, ESA Sen2Cor and ATCOR differ at the two
lowest levels of abstraction, known as algorithm and implementation [76] (refer to Section 1). First,
a scene classification map (SCM) is generated from top-of-atmosphere reflectance (TOARF) values. Next,
class-conditional MS image radiometric enhancement of TOARF into surface reflectance (SURF) values,
synonym for bottom-of-atmosphere (BOA) reflectance values, corrected for atmospheric, adjacency and
topographic effects is accomplished in sequence, stratified by the same SCM product generated at first
stage from TOARF values. More acronyms in this figure: AOT = aerosol optical thickness, DEM = digital
elevation model, LUT = look-up table.
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To overcome structural limitations in system design of existing open source or commercial
software products for EO image radiometric Cal (correction, in general), such as Sen2Cor, ATCOR,
LEDAPS and LaSRC, a viable alternative is an inherently ill-posed atmospheric, topographic, adjacency
and BRDF effect correction system architecture sketched as in Figure 12 [13,82,83], to be considered
as the third original contribution of this review section. The estimation from an input numeric
variable, starting from EO sensory data equivalent to DNs provided with no physical meaning,
of an output numeric variable provided with a physical meaning of increasing quality, such as EO
data-derived TOARF, SURF and spectral albedo values featuring increasing levels of radiometric
Cal quality, requires as additional input, at each stage of the EO image enhancement flow chart,
a categorical (nominal) variable belonging to a preliminary SCM automatically generated from the
EO image radiometrically corrected at the previous stage in the workflow. In other words, equivalent
to two sides of the same coin, categorical variables (e.g., SCMs at increasing levels of mapping
accuracy and semantics) and continuous variables (e.g., TOARF, SURF and spectral albedo values)
should be estimated from raw EO imagery (coded as dimensionless DNs, provided with no physical
meaning) alternately and hierarchically [13,107,147–149]. It means that, in an EO image pre-processing
workflow conceived of as a hierarchical hybrid inference system, such as the stratified topographic
correction (STRATCOR) algorithm proposed in [13,107], categorical variables of hierarchically
increasing quality in semantics and accuracy are estimated from (hierarchically enhanced) continuous
variables, where a priori knowledge is required in addition to data to make an inherently ill-posed
data classification problem better posed for numerical solution [13,33,82,83,118]. This hierarchical
classification approach alternates with a numeric variable estimation stage of hierarchically increasing
radiometric quality, which is conducted on a categorical (stratified, masked, class-conditional) basis,
where data stratification is required to make the inherently ill-posed radiometric correction stage,
either atmospheric, topographic, adjacency or BRDF effect correction, better posed for numeric
solution [13,33,82,83,107,118], see Figure 12.
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Figure 12. Ideal ESA EO Level 2 product generation design as a hierarchical alternating sequence
of: (A) hybrid (combined deductive and inductive) radiometric enhancement of multi-spectral (MS)
dimensionless digital numbers (DNs) into top-of-atmosphere reflectance (TOARF), surface reflectance
(SURF) values and spectral albedo values corrected in sequence for (1) atmospheric, (2) adjacency,
(3) topographic and (4) BRDF effects, and (B) hybrid (combined deductive and inductive) classification
of TOARF, SURF and spectral albedo values into a sequence of ESA EO Level 2 scene classification
maps (SCMs), whose legend (taxonomy) of community-agreed land cover (LC) class names, in addition
to quality layers cloud and cloud–shadow, increases hierarchically in semantics and mapping accuracy.
An implementation in operating mode of this EO image pre-processing system design for stratified
topographic correction (STRATCOR) is presented and discussed in [13,82,83,107]. In comparison with
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this desirable system design, let us consider that, for example, the existing Sen2Cor software toolbox,
developed by ESA to support a Sentinel-2 sensor-specific Level 2 product generation on the user
side [11,12,44], adopts no hierarchical alternating approach between MS image classification and
MS image radiometric enhancement. Rather, ESA Sen2Cor accomplishes, first, one SCM generation
from TOARF values based on a per-pixel (spatial context-insensitive) prior spectral knowledge-based
decision tree. Next, a class-conditional MS image radiometric enhancement of TOARF into SURF values
corrected for atmospheric, adjacency and topographic effects is accomplished in sequence, stratified by
the same SCM product generated at first stage from TOARF values, see Figure 11.

As the fourth original contribution of this review section, it is worth recalling here that TOARF,
SURF and surface albedo values, estimated as intermediate or final data products by an ESA EO Level
2 product generator and whose physical domain of change is 0.0–1.0, can be rescaled to the discrete
and finite range {0, 255} according to an unsigned char data coding expression, e.g., byte(SURF/255. +
0.5) where operator byte() truncates any decimal part of a number whose data type is float. If byte
coded into range {0, 255}, then TOARF, SURF and surface albedo values, whose physical range is
0.0–1.0, are affected by a quantization (discretization) error equal to (Max −Min)/number of bins/2
(due to rounding to the closest integer, either above or below) = (1.0 − 0.)/255/2. = 0.002 = 0.2%, to be
considered negligible. It means that, in addition to providing DNs with a physical unit of radiometric
measure, where DNs in EO Level 0 up to Level 2 imagery are typically coded as 16-bit unsigned short
integer [139–143,163], radiometric Cal of DNs into TOARF, SURF and surface albedo values at either
EO Level 1 or Level 2 imagery allows pixel coding as 8-bit unsigned char, with a 50% save in memory
storage at the cost of a 0.2% quantization error. This observation, though straightforward, is neither
obvious nor trivial. In practice, for example, the Planet Surface Reflectance (SR) Product [163] and
the U.S. Landsat ARD format [139–143], coded as a 16-bit unsigned short integer, can be transcoded
into an 8-bit unsigned char, affected by a quantization error as low as 0.2%, with a 50% save in
memory storage. For comparison purposes, it is worth recalling here that when per-image metadata
files of radiometric parameters (e.g., gain, offset, acquisition time, etc.) are available to transform,
first, DNs into top-of-atmosphere radiance (TOARD) values, based on a band-specific gain and offset
metadata parameter pair, with TOARD values ≥ 0, and, next, to transform TOARD values into TOARF
values belonging to range 0.0–1.0, it is well known that a typical approximation of the sun-Earth
distance to 1 independent of the image-specific acquisition time typically causes TOARF estimation
errors of about 3–5% [67,143]. Despite common practice, where the sun-Earth distance estimation is
oversighted by large portions of the RS community, in [143] a community-agreed standardization of
the sun-Earth distance estimation in radiometric Cal methodologies was recommended for improved
harmonization/interoperability of multi-sensor multi-temporal EO big data cubes.

3. Related Works in Cloud and Cloud–Shadow Quality Layers Detection

Cloud and cloud–shadow quality layers detection (see Figures 13 and 14) in operating mode
(refer to Section 2) is considered an open problem to date by the RS community [61–63]. Provided
with a relevant survey value, this Section critically reviews standard cloud/cloud–shadow detectors,
available either open source or free-of-cost, at the Marr five levels of abstraction of an information
processing system (refer to Section 1) [13,19,76,82,83].
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Figure 14. Adapted from [55]. Sun-cloud-satellite geometry for arbitrary viewing and illumination
conditions. Left: Actual 3D representation of the Sun/cloud/cloud–shadow geometry. Cloud height,
h, is a typical unknown variable. Right: Apparent Sun/cloud/cloud–shadow geometry in a 2D soil
projection, with ag = h · tanφβ, bg = h · tanφµ.

In the last decade, many different cloud/cloud–shadow detection algorithms have been presented
in the RS literature [12,13,43–60], to be input with either a single-date MS image or an MS image
time-series typically acquired by either one EO spaceborne/airborne MS imaging sensor or a single
family of MS imaging sensors, e.g., the Landsat family of spaceborne MS imaging sensors.

Predated by a long history of deductive (physical model-based) convolutional neural networks
(CNNs), consisting of “handcrafted” multi-scale 2D spatial filter banks developed since the early
1980s for multi-scale image analysis (encoding, decomposition) [13,76,87–104], synthesis (decoding,
reconstruction) [94] and classification (understanding) [76,95], the recent hype about end-to-end
inductive learning-from-data DCNNs in CV applications [34–38] is progressively affecting the
RS discipline, in spite of increasing disillusionment in the AI community [13,30,64,88,165–169].
For example, an increasing number of DCNN applications for cloud detection can be found in
the RS literature, such as [42]. However, to our best knowledge, only one application of DCNNs
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to the simultaneous (joint) detection of cloud and cloud–shadow phenomena exists to date, where
cloud-shadow detection is affected by very low mapping quality indicators [35].

To explain this fact, a non-trivial understanding of the information/knowledge representation
in DCNNs is required, according to the Marr five levels of understanding of an information
processing system (refer to Section 1) [13,19,76,82,83]. In inductive learning-from-data DCNNs [34–38],
2D spatial filter profiles are learned end-to-end from supervised image examples whereas a
priori knowledge is encoded by design based on heuristics, a.k.a. trial-and-error. In more
detail (refer to Section 2), the whole set of DCNN architectural metaparameters, specifically,
number of layers, number of convolutional filters per layer, filter size, inter-filter stride,
subsampling filter size, subsampling inter-filter stride, etc., is user-defined based on empirical
criteria. Unfortunately, inductive learning-from-data algorithms, including DCNNs, are affected
by inherent limitations [2,13,30,33,40,41,64,88,165–167] and known failure modes [168,169], including
the following. Suitable for learning complex correlations between input and output features, inductive
learning-from-data systems are unable to learn representations of causality (cause–effect relationships,
dependency), known that “correlation does not imply causation and vice versa” [13,19,30,33,64,65].
This limitation implies that, first, integration of a priori knowledge about the physical real-world
onto a DCNN architecture is typically not a straightforward task because, in DCNNs, information
representation pertains mainly to (largely opaque, unknown a priori) correlations between input and
output features. Second, DCNNs thus far have shown no self-organizing capability, e.g., based on
combinations of cooperative with competitive learning-from-data policies [170], suitable for developing
a syntactic hierarchical system [19,30], structured as a network of specialized subnetworks [13], in
agreement with the engineering principles of modularity, hierarchy and regularity considered necessary
for scalability in structured system design [39]. In the words of Marcus, “the core problem, at least at
present, is that deep learning learns correlations between sets of features that are themselves “flat” or
non-hierarchical, as if in a simple, unstructured list, with every feature on equal footing. Hierarchical
structures (e.g., syntactic trees that distinguish between main clauses and embedded clauses in a
sentence) are not inherently or directly represented in such systems, and as a result deep learning
systems are forced to use a variety of proxies that are ultimately inadequate, such as the sequential
position of a word presented in a sequences” [30].

Our straightforward, but not trivial conjecture (refer to Section 1) was that joint cloud and
cloud–shadow detection is a typical example of physical model-based cause–effect relationship
expected to be very difficult to solve by inductive machine learning-from-examples algorithms,
including DCNNs [34] designed for semantic segmentation [37] and instance segmentation [38]
(excluding DCNNs for object detection by rounding box localization, such as [36], inapplicable per
se to the cloud/cloud-detection problem of interest, pertaining to the domain of so-called semantic
segmentation problems), which are typically suitable for learning complex correlations between input
and output features, but unable to discover inherent representations of causality.

This conjecture is perfectly confirmed by experimental conclusions reported in [35] (pp. 32,33)
where the quote is: “The main problem of DCNN-based classification is cloud–shadow, e.g., in an image
object-based Intersection over Union, IoU, for image object-based classification quality measure assessment
in range 0.0–1.0, class cloud–shadow scored as low as IoU = 0.0212 in the validation image set at
hand”. Predicted by theory, these experimental results prove a posteriori the well-grounded nature of
our first-principles in the AI⊃ CV domains. These expected results reveal that, based on knowledge of
inference first-principles, specifically, induction, deduction and abduction [19,22,24], and in agreement with
the increasing disillusionment of the AI community about deep learning-from-data [13,30,64,88,165–169],
the RS community should avoid exploring dead-end solutions where AI ⊃ CV algorithms, originally
developed by other communities in the cognitive science domain (see Figure 2), such as increasingly
popular DCNNs [34–38], are adopted as black-boxes by RS scientists and practitioners for detecting
cloud and cloud–shadow cause–effect-relationships in multi-sensor EO imagery at large-scale. Based
on this rationale, although considered state-of-the-art by the mainstream CV and RS audience, DCNN
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solutions [34–38] are excluded from any further review in this paper, focused on the joint detection of cloud
and cloud–shadow quality layers featuring an inter-layer cause–effect relationship.

For comparison purposes, three popular computer programs available either open source or
free-of-cost for cloud/cloud–shadow detection in spaceborne MS imagery are critically reviewed
hereafter, see Table 5.

• The single-date multi-sensor FMask open source algorithm [58], originally developed for
single-date 30 m resolution 7-band (from visible blue, B, to thermal InfraRed, TIR) Landsat-5/7/8
MS imagery, which includes a thermal band as key input data requirement. FMask was recently
extended to 10 m/20 m resolution Sentinel-2 MS imagery [59], featuring no thermal band, and to
Landsat image time-series (multiTemporal Mask, TMask) [60]. The potential relevance of FMask
is augmented by considering that CFmask, an Fmask program version transcoded into the C
programming language for increased efficiency, is adopted for cloud, cloud–shadow and snow/ice
classification by the LEDAPS and LaSRC algorithms for atmospheric correction in the U.S. Landsat
ARD product [139–143]. Unfortunately, CFMask is affected by known artifacts [63]. Moreover,
in a recent comparison of cloud and cloud–shadow detectors, those implemented in LEDAPS
scored low among alternative solutions [62].

• The single-date single-sensor ESA Sen2Cor prototype processor, capable of automated atmospheric,
adjacency and topographic effect correction and SCM product generation, including cloud and
cloud–shadow detection (refer to the SCM legend shown in Table 1), whose input is an ESA EO Level
1 image, radiometrically calibrated into TOARF values, originally acquired at Level 0 (in dimensionless
DNs provided with no radiometric unit of measure) by the ESA Sentinel-2 Multi-Spectral Instrument
(MSI) exclusively. The ESA Sen2Cor prototype processor is distributed free-of-cost by ESA to be
run on the user side [11,12]. Hence, it does not satisfy the ESA EO Level 2 product requirements
specification proposed in Section 1. ESA Sen2Cor incorporates capabilities of the ATCOR commercial
software toolbox [71–73], see Figure 11. ESA Sen2Cor is affected by known artifacts [44,47,61], which
may be inherited at least in part from ATCOR.

• The multi-date multi-sensor MAJA, developed and run by CNES/CESBIO/DLR [46,48]. Starting
from its name, MAJA incorporates capabilities of the ATCOR commercial software toolbox [71–73].
MAJA is affected by known artifacts [47,61], which may be inherited at least in part from ATCOR.

Table 5 compares the Sen2cor, MAJA and FMask computer programs at three-of-five levels of
understanding of an information processing system proposed by Marr, specifically, information/knowledge
representation, system design (architecture) and algorithm (refer to Section 1) [13,19,76,82,83]. For the sake
of brevity, Table 5 omits comparisons of alternative algorithms at the two levels of understanding known
as outcome/process requirements specification and implementation (refer to Section 1).
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Table 5. Comparison of alternative joint cloud and cloud–shadow detection algorithms at three levels of understanding of an information processing system proposed
by Marr, specifically, information/knowledge representation, system design (architecture) and algorithm (refer to Section 1) [13,19,76,82,83].

Acronyms
Digital number (featuring no
physical meaning) = DN.
Top-of-atmosphere
reflectance—TOARF.
Surface reflectance—SURF, where
TOARF ⊃ SURF, because TOARF
≈ SURF + atmospheric noise +
topographic noise.
Inductive—I.
Deductive—D.
Hybrid—Combined I + D = H.
1D Pixel-based (spatial
context-insensitive and spatial
topology non-preserving) —P.
1D Object-based (spatial
context-sensitive, but spatial
topology non-preserving) —O.
2D image analysis (spatial
context-sensitive and spatial
topology-preserving) —2D.
Yes: Y.
No: N.

Multi-spectral
(MS) Sensor(s)

Radiometric
calibration

Spatial
resolution

Spectral
resolution

Single-date (S) or
Multi-temporal (MT)

Land cover (LC) class detection,
in addition to classes cloud and

cloud–shadow, if any
Cloud detection Cloud–shadow detection

Acronyms:
TOARF or SURF,

refer to cell at
top left

Acronyms:
Visible Blue,
Green, Red =

B, G, R.
Near InfraRed

(IR) = NIR.
Medium IR

= MIR.
Thermal IR

= TIR.

Acronyms: I, D
or H, refer to cell

at top left

Acronyms: P, O
or 2D, refer to
cell at top left

Acronyms: I, D
or H, refer to cell

at top left

Acronyms: P, O
or 2D, refer to
cell at top left

Acronyms: I, D
or H, refer to cell

at top left

Acronyms: P, O
or 2D, refer to
cell at top left

Spatial search of
cloud–shadow
pixels starting

from cloud
candidates

Proposed approach, AutoCloud+

All MS past,
present and

future, airborne
or spaceborne,
whether or not
provided with

radiometric
calibration

metadata files

DN or TOARF or
SURF or

surface albedo
Any

From B, G, R,
NIR, MIR to TIR,
including Cirrus
band (depending
on the available

spectral
channels).

S

H, with LC
classes: Water,

Shadow, Bare soil,
Built-up,

Vegetation, Snow,
Ice, Fire, Others

P + O + 2D H P + O + 2D H P + O + 2D Y

Sen2Cor (including all cloud
probability classes) Sentinel-2 MSI TOARF 10 m

B, G, R, NIR, MIR
to TIR, including

Cirrus band.
S

D, with LC
classes: Water,

Bare soil,
Vegetation, Snow

P D P D P Y

MAJA

Formosat2,
LANDSAT 5/7/8,

SPOT 4/5,
Sentinel 2,
VENµS.

TOARF 5.3 to 30 m

From B, G, R,
NIR, MIR to TIR,
including Cirrus
band (depending
on the available

spectral channels)

MT

D, with LC
classes: Water,

Bare soil,
Vegetation, Snow

P D P D P Y

FMask

Landsat-7/8
(with thermal

band) and
Sentinel-2
(without

thermal band)

TOARF 10 to 30 m

From B, G, R,
NIR to MIR, plus

TIR when
available (in

Landsat imagery)

S

D, with LC
classes: Clear

land, clear water,
snow.

P D
P + contextual to
remove isolated

pixels
H

P + O, due to
segmentation

(partitioning) of
the cloud layer

in the
image-domain

Y

ATCOR-4 [72] Airborne,
spaceborne

TOARF or SURF
or spectral albedo Any

From B, G, R,
NIR to MIR,

including Cirrus
band (depending
on the available

spectral
channels). No

TIR is exploited.

S

D, with LC
classes: Water,
Land, Haze,
Snow/Ice

(depending on
the available

spectral channels)

P

H (D + I, e.g.,
I = image-wide

histogram-based
analytics)

P H P N
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The first observation stemming from Table 5 is that Sen2cor and MAJA employ deductive
(top-down, prior knowledge-based) inference, exclusively, to map MS imagery onto LC classes,
in addition to mapping quality layers cloud and cloud–shadow. This is in contrast with biological
cognitive systems [108], where hybrid inference combines deductive and inductive inference to take
advantage of each and overcome their shortcomings [2,13,40,41,82,83], refer to Section 2.

The second observation driven from Table 5 is that the Sen2cor, MAJA and FMask computer programs
employ 1D image analysis algorithms exclusively, either pixel-based, i.e., spatial context-insensitive
and spatial topology non-preserving, or spatial context-sensitive (e.g., image object-based or local
window-based), but spatial topology non-preserving (non-retinotopic) [13,87,88,96,170]. In CV programs,
1D image analysis is a methodological (structural) drawback because perceptual evidence proves
that, in vision, primary spatial topological information (e.g., adjacency, inclusion, etc.) and spatial
non-topological information (e.g., spatial distance, angle measure) components dominate secondary
color information [23], which is the sole information available at the imaging sensor’s spatial resolution,
i.e., at the pixel level of spatial analysis, refer to Section 2 [13]. Intuitively, 1D image analysis algorithms are
invariant to permutations in the 1D vector data sequence generated from a (2D) image, where image is
synonym for 2D gridded data set, see Figure 15 [34]. In short, 1D analysis of (2D) imagery is affected by a
loss in data dimensionality.
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Figure 15. Example of 1D image analysis, which is spatial topology non-preserving (non-retinotopic)
in a (2D) image-domain [13,87,88,96,170]. Intuitively, 1D image analysis is insensitive to permutations
in the input data set [34]. Synonym for 1D analysis of a 2D gridded data set, 1D image analysis is
affected by spatial data dimensionality reduction. The (2D) image at left is transformed into the 1D
vector data stream (sequence) shown at bottom, where vector data are either pixel-based or spatial
context-sensitive, e.g., local window-based. This 1D vector data stream means nothing to a human
photo interpreter. When it is input to either an inductive learning-from-data classifier or a deductive
learning-by-rule classifier, the 1D vector data sequence is what the classifier actually sees when
watching the (2D) image at left. Undoubtedly, computers are more successful than humans in 1D
image analysis. Nonetheless, humans are still far more successful than computers in 2D image analysis,
which is spatial context-sensitive and spatial topology-preserving (retinotopic) (see Figure 16).
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Viable alternative to 1D image analysis is 2D image analysis, which is spatial context-sensitive
and spatial topology-preserving (retinotopic) [13,87,88,96,170], i.e., it is sensitive to permutations
in the order of presentation of the input 2D data set [34], see Figure 16. In our understanding,
2D spatial topology-preserving mapping is the fundamental basis of success of multi-scale 2D spatial
filter banks for image analysis (encoding, decomposition), synthesis (decoding, reconstruction) and
classification (understanding), either deductive/physical model-based [13,76,87–104] or end-to-end
inductive learning-from-data, such as DCNNs [34–38].
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Figure 16. 2D image analysis is synonym for spatial context-sensitive and spatial topology-preserving
(retinotopic) feature mapping in a (2D) image-domain [13,87,88,96,170]. Intuitively, 2D image analysis is
sensitive to permutations in the input data set [34]. Activation domains of physically adjacent processing
units in the 2D array of convolutional spatial filters are spatially adjacent regions in the 2D visual field.
Provided with a superior degree of biological plausibility in modelling 2D spatial topological and
spatial non-topological information components, distributed processing systems capable of 2D image
analysis, such as deep convolutional neural networks (DCNNs), typically outperform traditional 1D
image analysis approaches. Will computers ever become as good as humans in 2D image analysis?

The fundamental difference between 1D image analysis and 2D image analysis with regard
to spatial topology-preserving (retinotopic) feature mapping [13,87,88,96,170] is at the basis of a
proposed revision of the loose GE(OBIA) paradigm [10] into a more restrictive definition of EO
imagery for Geographical Sciences (EO4GEO), synonym for 2D analysis of EO (2D) imagery for
GISCience applications [129,130], see Figure 17.
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Figure 17. EO for Geographical Sciences (EO4GEO, EO4GIScience) framework, meaning EO big
data analytics in operating mode for GIScience applications, constrained by 2D (retinotopic, spatial
topology-preserving) image analysis in cognitive science [129]. EO4GEO is more restrictive than
the traditional GEOBIA paradigm, formalized in 2006 and 2014 as a viable alternative to 1D spatial
context-insensitive (pixel-based) image analysis [9,10,130].

At the Marr two lowest levels of understanding of an information processing system, i.e.,
algorithm and implementation (refer to Section 1) [13,19,76,82,83], it is interesting to investigate
the ESA Sen2Cor’s static (non-adaptive to data, prior knowledge-based) per-pixel spectral rule-based
decision tree implementation for automated ESA EO Level 2 SCM product generation [12]. The same
considerations driven from the Sen2Cor’s spectral knowledge-based decision tree implementation for
SCM generation hold for the LEDAPS, LaSRC and ATCOR spectral knowledge-based decision trees,
implemented for pixel-based pre-classification as necessary-but-not-sufficient pre-condition to make
inherently ill-posed atmospheric and/or topographic correction algorithms better posed for numerical
solution [32,33], see Section 2. According to Richter and Schläpfer [71,72], “pre-classification as part of
the atmospheric correction has a long history, e.g., in the NASA’s processing chain for MODIS” [57].

First, in the interdisciplinary domain of cognitive science [18,77–81], it was highlighted that static
(non-adaptive to data, prior knowledge-based) spectral rule-based decision trees aim at a mutually
exclusive and totally exhaustive (hyper)polyhedralization of a MS reflectance (hyper)space, equivalent
to (numeric) color space discretization into color names belonging to a categorical variable, known
as color vocabulary [13–15]. Within the domain of cognitive science (see Figure 2), color naming was
deeply investigated by linguistics. Central to this consideration is Berlin and Kay’s landmark study of
a “universal” inventory of eleven basic color (BC) words in twenty human languages: black, white,
gray, red, orange, yellow, green, blue, purple, pink and brown [171]. Suitable for color naming of MS
imagery, MS reflectance (hyper)space (hyper)polyhedralization is difficult to think of and impossible to
visualize when the MS data space dimensionality is superior to three, see Figure 18. This is not the case
of basic color (BC) names adopted in human languages [171], whose mutually exclusive and totally
exhaustive perceptual polyhedra, neither necessarily convex nor connected, are intuitive to think of
and easy to visualize in a 3D monitor-typical red-green-blue (RGB) data cube [172], see Figure 19.
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Figure 18. Examples of land cover (LC) class-specific families of spectral signatures [17] in top-of-
atmosphere reflectance (TOARF) values, which include surface reflectance (SURF) values as a special
case in clear sky and flat terrain conditions [173], i.e., in general, TOARF ⊇ SURF, where TOARF
≈ SURF (depicted as an ideal “noiseless” spectral signature in red) + atmospheric and topographic
noise. A within-class family of spectral signatures (e.g., dark-toned soil) in TOARF or SURF values
forms a buffer zone (hyperpolyhedron, envelope, manifold, joint distribution), depicted in light green.
Like a vector quantity has two characteristics, a magnitude and a direction, any LC class-specific MS
manifold is characterized by a multivariate shape and a multivariate intensity information component.
In the RS literature, typical prior knowledge-based spectral decision trees for MS reflectance space
hyperpolyhedralization into a finite and discrete vocabulary of MS color names, such as Sen2Cor’s [12],
MAJA’s [46,48], ATCOR’s [71,72], LEDAPS’ [139,140,146] and LaSRC’s [139,140,160], typically adopt
either a multivariate analysis of spectral indexes or a logical (AND, OR) combination of univariate
variables, such as scalar spectral indexes or spectral channels, considered mutually independent.
A typical spectral index is a scalar band ratio or band-pair difference equivalent to an angular
coefficient of a tangent to the spectral signature in one point. It is well known that infinite functions
can feature the same tangent value in one point. In practice, no spectral index or combination
of spectral indexes can reconstruct the multivariate shape and multivariate intensity information
components of a spectral signature. As a viable alternative to traditional static (non-adaptive to data)
spectral rule-based decision trees found in the RS literature, the Satellite Image Automatic Mapper
(SIAM)’s prior knowledge-based spectral decision tree [13–15,82,83,107,118,132,133,161,162,174] adopts
a convergence-of-evidence approach to model any target family (ensemble) of spectral signatures,
forming a hypervolume of interest in the MS reflectance hyperspace, as a combination of multivariate
shape information with multivariate intensity information components. For example, as shown above,
typical spectral signatures of dark-toned soils and typical spectral signatures of light-toned soils form
two MS envelopes in the MS reflectance hyperspace that approximately share the same multivariate
shape information component, but whose pair of multivariate intensity information components
does differ.
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Figure 19. Adapted from [172]. Unlike a MS reflectance space hyperpolyhedralization difficult to
think of and impossible to visualize when the number of channels is superior to three, an RGB data
cube polyhedralization is intuitive to think of and straightforward to display. For example, based on
psychophysical evidence, human basic color (BC) names can be mapped onto a monitor-typical RGB
data cube. Central to this consideration is Berlin and Kay’s landmark study of a “universal” inventory
of eleven BC words in twenty human languages: black, white, gray, red, orange, yellow, green, blue,
purple, pink and brown [171].

In vision, where a (2D) image-domain and a 4D geospatial-temporal scene-domain co-exist,
see Figure 6, a community-agreed discrete and finite vocabulary of MS color names, pertaining to a
MS color space in the image-domain, such as the eleven BC names proposed by Berlin and Kay in the
image-domain of visible bands RGB [171], see Figure 19, should never be confused with a vocabulary
of classes of real-world objects in the scene-domain, such as a discrete and finite legend of LC classes.
Color names provide a categorical (nominal) representation of the numeric photometric variable
associated as attribute to any LC class belonging to a discrete and finite LC class legend. Encoded as a
categorical variable, a color attribute of a (categorical) LC class should never be confused with the LC
class it belongs to. On the hand, the same color name can be shared by several LC classes. On the other
hand, a single LC class can feature several color names as photometric attribute [14,15]. For example,
Adams et al. correctly observed that discrete spectral endmembers typically adopted in hyper-spectral
image interpretation “cannot always be inverted to unique LC class names” [175]. This commonsense
knowledge is sketched in Table 6, where set A = DictionaryOfColorNames with cardinality |A| = a =
ColorVocabularyCardinality = 11 and set B = LegendOfObjectClassNames with cardinality |B| = b =
ObjectClassLegendCardinality = 3. Between the vocabulary A of color names in the image-domain
and the vocabulary B of LC classes in the scene-domain there is a binary relationship, R: A⇒ B, subset
of the 2-fold Cartesian product A × B, i.e., R: A⇒ B ⊆ A × B, where A 6= B in general. The Cartesian
product A × B is a set whose elements are ordered pairs of each instance of set A combined with
each instance of set B. Hence, the size of the Cartesian product A × B is rows × columns = a × b,
where a 6= b in general. Noteworthy, Cartesian product A × B 6= FrequencyCount(A × B), where
FrequencyCount(A × B) is known as two-way contingency table, association matrix, cross tabulation,
bivariate table, bivariate frequency table (BIVRFTAB) or confusion matrix [13,176–180].
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Table 6. Example of a binary relationship R: A⇒ B ⊆ A × B from set A = DictionaryOfColorNames,
with cardinality |A| = a = ColorVocabularyCardinality = 11, and the set B = LegendOfObjectClassNames,
with cardinality |B| = b = ObjectClassLegendCardinality = 3, where A× B is the 2-fold Cartesian product
between sets A and B. The Cartesian product of two sets A× B is a set whose elements are ordered pairs.
The size of A× B is rows× columns = a× b. The dictionary LegendOfObjectClassNames is a superset
of the typical taxonomy of land cover (LC) classes adopted by the RS community. “Correct” entry-pairs
(marked with

√
) must be: (i) selected by domain experts based on a hybrid combination of deductive prior

beliefs with inductive evidence from data and (ii) community-agreed upon, to be used by members of the
community [14,15].

Target classes of individuals (entities in a conceptual model for
knowledge representation built upon an ontology language)

Class 1, Water body Class 2, Tulip flower Class 3, Italian tile roof

Basic color
(BC) names

black
√

blue
√ √

brown
√ √ √

grey
green

√ √

orange
√

pink
√

purple
√

red
√ √

white
√

yellow
√

In spite of this commonsense knowledge, see Table 6, and in contrast with the unquestionable
true fact that, in vision, primary spatial information dominates secondary color information in
both the image-domain and the scene-domain [13–15,23], see Section 2, prior knowledge-based
spectral decision trees for MS color space hyperpolyhedralization into color names implemented
by the RS community typically assume that the vocabulary A of color names in the image-domain
and the vocabulary B of LC classes in the scene-domain do coincide in cardinality, semantics and
order of presentation. If hypothesis A = B holds true, then the binary relationship R: A ⇒ B ⊆
A × B 6= FrequencyCount(A × B) becomes a bijective (injective and surjective) function, while
the two-way confusion matrix FrequencyCount(A × B) becomes square, where the main diagonal
guides the interpretation process [14,15]. This is the case of the LC map legend of an SCM product
generated as output by a static decision tree of spectral rules implemented by the ATCOR software
toolbox, see Tables 3 and 4, and by the Sen2Cor software toolbox, see Table 1, where there is one
spectral rule (or OR-combination of spectral rules) per LC class and vice versa. The unrealistic
assumption that categorical variable A = DictionaryOfColorNames, with cardinality |A| = a =
ColorVocabularyCardinality, coincides with categorical variable B = LegendOfObjectClassNames,
with cardinality |B| = b = ObjectClassLegendCardinality, is undertaken at the abstract level of
system understanding known as information/knowledge representation, which is typically considered
one cornerstone of success of an information processing system [13,19,76,82,83]. This unrealistic
assumption heavily affects all subsequent levels of abstraction, specifically, system design, algorithm
and implementation (refer to Section 1), in agreement with the well-known information principle
known as garbage in, garbage out (GIGO), synonym for error propagation through an information
processing chain [14,15]. This error propagation effect affecting CV ⊃ EO-IU applications increases as
the imaging sensor’s spatial resolution becomes finer, such as in EO high spatial resolution (HR, in
range 1 m–30 m) and very high spatial resolution (VHR, < 1 m) image understanding tasks [17].

In addition to the unrealistic assumption that vocabularies of color names and vocabularies of LC
class names coincide at the level of system understanding of information/knowledge representation,
the implementation of the Sen2Cor’s spectral rules for MS reflectance space hyperpolyhedralization
into MS color names appears inadequate to define mutually exclusive and totally exhaustive
hyperpolyhedra, where each hyperpolyhedron is a multivariate data distribution (joint probability).
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First, the ESA Sen2Cor algorithm models each joint probability by means of a single spectral rule
as an and/or-combination of univariate distributions. It assumes a joint distribution is equivalent to a
product of univariate distributions, which holds true if and only if univariate variables are mutually
independent. This assumption is completely unrealistic when modeling manifolds of LC class-specific
spectral signatures sampled at a discrete and finite set of spectral bands. These spectral band values
are not statistically independent because they are LC class-dependent. In general, multivariate data
statistics are more informative than a combination of univariate data statistics. For example, maximum
likelihood data classification, accounting for multivariate data correlation and variance (covariance),
is typically more accurate than parallelepiped data classification whose rectangular decision regions,
equivalent to a concatenation of univariate data constraints, poorly fit multivariate data in the presence
of bivariate cross-correlation [27]. As a typical example of this critical point, see Table 4, showing the
SPECL decision tree instantiation proposed by the ATCOR software toolbox, where each spectral rule
is implemented as a logical combination of univariate statistics.

Second, in the Sen2Cor’s spectral rule-based decision tree a spectral rule implementation typically
adopts many spectral indexes in the definition of each hyperpolyhedron equivalent to a MS color name.
Like a vector quantity has two characteristics, a magnitude and a direction, any LC class-specific MS
manifold is characterized by a multivariate shape and a multivariate intensity information component,
see Figure 18. A spectral index, implemented as either a band difference or a band ratio, is conceptually
equivalent to the angular coefficient of a tangent to the spectral signature in one point. It is well
known that infinite functions can pass through the same point with the same angular coefficient.
It means that, although appealing due to its conceptual and numerical simplicity [2], any scalar
spectral index, equivalent to a spectral slope, is a MS shape descriptor independent of the MS
intensity. It is unable per se to represent either the multivariate shape information component or
the multivariate intensity information component of a MS signature [13]. In other words, no spectral
index or combination of spectral indexes provides a lossless reconstruction of the multivariate shape
and multivariate intensity information components of a spectral signature [13–15]. Because of this
spectral information loss, the number of scalar spectral indexes proposed in the RS literature is
ever increasing [2], in the unrealistic attempt to extract a more informative scalar variable from a
multivariate spectral signature. In some published works, the misuse of spectral indexes reaches its
peak when, to simplify a multivariate spectral signature both conceptually and numerically, the number
of univariate spectral indexes extracted from the spectral signature is superior to the number of spectral
bands; in this no-win situation, no MS data compression is accomplished while a loss in spectral
information is guaranteed. As a typical example of this second critical point, see Table 4, showing the
SPECL decision tree instantiation proposed by the ATCOR software toolbox where several band ratios
are employed for modeling a MS hyperpolyhedron of interest in the MS data hyperspace.

4. Conclusions

For the sake of readability this paper is divided in two. To highlight the importance of a “universal”
AutoCloud+ CV software for systematic cloud and cloud–shadow quality layers detection in multi-sensor,
multi-angular and multi-temporal EO big data cubes, the present Part 1 discloses AutoCloud+ in a
broad context of systematic ESA EO Level 2 product generation at the ground segment [11,12] or space
segment [84,85,144,163], whose necessary-but-not-sufficient pre-condition is cloud/cloud–shadow quality
layers detection in operating mode (refer to Section 2). The subsequent Part 2 (see Supplementary Materials)
copes with the AutoCloud+ CV software system requirements specification, information/knowledge
representation, system design, algorithm, implementation and preliminary experimental results.

Original contributions and main conclusions of the present Part 1 are summarized hereafter.
Conceptual in nature and pertaining to the interdisciplinary domain of cognitive science [18,77–81],

see Figure 2, our working hypothesis is the first original contribution of this RTD study, see Figure 4 and
Equation (1). Working hypothesis (1) postulates that systematic ESA EO Level 2 product generation in
operating mode [11,12], whose part-of is cloud and cloud–shadow quality layer detection, is necessary-but-
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not-sufficient pre-condition for multi-sensor multi-temporal and multi-angular EO big data cube analytics
as part-of the GEO-CEOS visionary goal of a GEOSS [5], never accomplished to date by the RS community.
The general notion of GEOSS encompasses open sub-problems, such as semantic content-based image
retrieval (SCBIR) + semantics-enabled information/knowledge discovery (SEIKD) = artificial general
intelligence (AI) for Data and Information Access Services (AI4DIAS) at the ground segment. Dependence
relationship (1) means that the GEOSS open problem, together with its still-unsolved (open) sub-problems
of SCBIR and SEIKD, cannot be accomplished until the necessary-but-not-sufficient pre-condition of CV
⊃ EO image understanding (EO-IU) in operating mode, specifically, systematic ESA EO Level 2 product
generation featuring cloud/cloud–shadow quality layers detection, is fulfilled in advance.

The second original contribution of the present Part 1 is both conceptual and pragmatic in the
definition of RS best practices, which is the focus of efforts made by intergovernmental organizations
such as GEO and CEOS. In more detail, the ESA EO Level 2 product definition is regarded as baseline
information primitive (unit of EO data-derived information) eligible for use as “augmented” (enhanced)
EO Analysis Ready Data (ARD) format, to be adopted as horizontal policy for standardization
purposes by a “seamless innovation chain” needed for a new era of Space 4.0 [66], see Figure 8.
Such an “augmented” EO ARD definition is more restrictive (in terms of output product requirements
specification), more informative (in terms of physical and conceptual/semantic quality of numeric and
categorical output products, respectively), but more difficult to be inferred from EO sensory data than
existing U.S. Landsat ARD [139–143] and CEOS ARD for Land (CARD4L) format definitions [138].
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AI: Artificial general Intelligence
AI4DIAS: Artificial Intelligence for Data and Information Access Services (at the ground segment)
AI4Space: Artificial Intelligence for Space (segment)
ARD: Analysis Ready Data (format)
ATCOR: Atmospheric/Topographic Correction commercial sofwtare product
AVHRR: Advanced Very High Resolution Radiometer
BC: Basic Color
BIVRFTAB: Bivariate Frequency Table
Cal: Calibration
Cal/Val: Calibration and Validation
CBIR: Content-Based Image Retrieval
CEOS: Committee on Earth Observation Satellites
CESBIO: Centre d’Etudes Spatiales de la Biosphère
CFMask: C (programming language version of) Function of Mask
CLC: CORINE Land Cover (taxonomy)
CNES: Centre national d’études spatiales
CNN: Convolutional Neural Network
CORINE: Coordination of Information on the Environment
CV: Computer Vision
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DCNN: Deep Convolutional Neural Network
DEM: Digital Elevation Model
DIAS: Data and Information Access Services
DLR: Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)
DN: Digital Number
DP: Dichotomous Phase (in the FAO LCCS taxonomy)
DRIP: Data-Rich, Information-Poor (syndrome)
EO: Earth Observation
EO-IU: EO Image Understanding
EO-IU4SQ: EO Image Understanding for Semantic Querying
ESA: European Space Agency
FAO: Food and Agriculture Organization
FIEOS: Future Intelligent EO imaging Satellites
FMask: Function of Mask
GEO: Intergovernmental Group on Earth Observations
GEOSS: Global EO System of Systems
GIGO: Garbage In, Garbage Out principle of error propagation
GIS: Geographic Information System
GIScience: Geographic Information Science
GUI: Graphic User Interface
IGBP: International Global Biosphere Programme
IoU: Intersection over Union
IU: Image Understanding
LAI: Leaf Area Index
LC: Land Cover
LCC: Land Cover Change
LCCS: Land Cover Classification System (taxonomy)
LCLU: Land Cover Land Use
LEDAPS: Landsat Ecosystem Disturbance Adaptive Processing System
MAACS: Multisensor Atmospheric Correction and Cloud Screening
MAJA: Multisensor Atmospheric Correction and Cloud Screening (MACCS)-Atmospheric/Topographic
Correction (ATCOR) Joint Algorithm
mDMI: Minimally Dependent and Maximally Informative (set of quality indicators)
MHP: Modular Hierarchical Phase (in the FAO LCCS taxonomy)
MIR: Medium InfraRed
MODIS: Moderate Resolution Imaging Spectroradiometer
MS: Multi-Spectral
MSI: (Sentinel-2) Multi-Spectral Instrument
NASA: National Aeronautics and Space Administration
NIR: Near InfraRed
NLCD: National Land Cover Data
NOAA: National Oceanic and Atmospheric Administration
NP: Non-deterministic Polynomial
OBIA: Object-Based Image Analysis
OGC: Open Geospatial Consortium
OP: Outcome (product) and Process
OP-Q2I: Outcome and Process Quantitative Quality Index
QA4EO: Quality Accuracy Framework for Earth Observation
Q2I: Quantitative Quality Indicator
RGB: monitor-typical Red-Green-Blue data cube
RMSE: Root Mean Square Error
RS: Remote Sensing
RTD: Research and Technological Development
SCBIR: Semantic Content-Based Image Retrieval
SCM: Scene Classification Map
SEIKD: Semantics-Enabled Information/Knowledge Discovery
Sen2Cor: Sentinel 2 (atmospheric, topographic and adjacency) Correction Prototype Processor
SIAM™: Satellite Image Automatic Mapper™
STRATCOR: Stratified Topographic Correction
SURF: Surface Reflectance
TIR: Thermal InfraRed
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TM (superscript): (non-registered) Trademark
TMask: Temporal Function of Mask
TOA: Top-Of-Atmosphere
TOARD: TOA Radiance
TOARF: TOA Reflectance
UAV: Unmanned Aerial Vehicle
UML: Unified Modeling Language
USGS: US Geological Survey
Val: Validation
VAPS: Value-Adding information Products and Services
VQ: Vector Quantization
WGCV: Working Group on Calibration and Validation
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