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Abstract: Understanding ecological patterns and response to climate change requires unbiased
data on species distribution. This can be challenging, especially in biodiverse but extreme
environments like the Himalaya. This study presents the results of the first ever application of
Unmanned Aerial Systems (UAS) imagery for species-level mapping of vegetation in the Himalaya
following a hierarchical Geographic Object Based Image Analysis (GEOBIA) method. The first
level of classification separated green vegetated objects from the rest with overall accuracy of 95%.
At the second level, seven cover types were identified (including four woody vegetation species).
For this, the suitability of various spectral, shape and textural features were tested for classifying
them using an ensemble decision tree algorithm. Spectral features alone yielded ~70% accuracy
(kappa 0.66) whereas adding textural and shape features marginally improved the accuracy (73%)
but at the cost of a substantial increase in processing time. Contrast in plant morphological traits
was the key to distinguishing nearby stands as different species. Hence, broad-leaved versus fine
needle leaved vegetation were mapped more accurately than structurally similar classes such as
Rhododendron anthopogon versus non-photosynthetic vegetation. Results highlight the potential and
limitations of the suggested UAS-GEOBIA approach for detailed mapping of plant communities and
suggests future research directions.

Keywords: species mapping; Unmanned Aerial Systems; hierarchical GEOBIA; Himalaya; treeline
ecotone; random forest; Langtang National Park

1. Introduction

Species composition of vegetation assemblages is a critical parameter for accessing biodiversity
and ecosystem health [1,2]. Therefore, species-level maps of vegetation can provide useful information
for monitoring ecosystem health and dynamics in terrestrial ecosystems [3]. Such maps can
be of tremendous value especially for areas with high biodiversity that are expected to face a
disproportionately higher impact of climate change. Generating an accurate map of vegetation
composition at stand level is, however, a challenging task compared to broad scale vegetation
characterization with remote sensing, which has emerged over the last few decades as an important
tool for biodiversity monitoring [4,5]. For the Himalayan region, space-borne coarse to medium spatial
resolution imagery has been utilized for broad biodiversity characterization and assessment [6,7],
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for assessing forest degradation and changes in cover [8–11] and for land use/land cover mapping and
monitoring [12–14]. Whereas such studies provide understanding of ecological patterns and processes
at the regional to landscape scale, characterizing the ecological dynamics at finer scales (e.g., individual
tree or stand level) has been infeasible due to the lack of spatial detail in the data. Empirical studies
worldwide and in the Himalaya demonstrate that spatial size distribution of trees in a community is
an important indicator of growth, competition, and habitat heterogeneity [15–17]. Thus, stand level
mapping of tree-species can provide information about vegetation that would otherwise be impossible;
this information possesses higher accuracy and precision in explaining diversity patterns in forests,
quantifying carbon stocks, detecting post disturbance vegetation recovery, wildlife habitat assessment
and understanding climate change impacts.

The Himalaya is an excellent example of an understudied biodiversity hotspot that benefits
tremendously with spatially explicit maps of biodiversity for monitoring and assessment of climate
change impact [18]. Although the availability of very high resolution (VHR) data (pixel size < 5 m)
from various space-borne multi-spectral sensors (e.g., IKONOS, Quickbird, GeoEye, WV-2 and 3,
RapidEye, Dove) has made it possible to characterize vegetation at the tree-stand level in various
ecosystem types worldwide [19–22], the use of VHR data for ecological research in the Himalaya is
nearly non-existent. Recent studies as well as governmental organizations (e.g., Planning commission
of India) have stressed the urgent need for fine scale monitoring of Himalayan vegetation, particularly
at the high elevation treeline ecotone by utilizing VHR imagery [18]. Situated between montane
forest and alpine vegetation, the treeline ecotone represents the upper limit of forest on a mountain.
The Himalaya has the highest and, biologically, one of the most diverse treeline ecotones in the
world [23]. Unfortunately, the impact of climate change is projected to be disproportionately high
along the Himalayan treeline ecotone due to their high sensitivity to changing temperature and
precipitation patterns, leading to significant ecological changes [24,25]. We found only one study by
Chhetri [26] that visually interpreted GeoEye imagery in combination with a digital elevation model to
explore spatial patterns and the composition of treeline vegetation for part of Nepal Himalaya. Lack of
VHR imagery-based ecological research in the Himalaya could be attributed to challenges including the
following: (i) freely available data is mostly lacking; (ii) VHR imagery require terrain correction, and,
unfortunately three-dimensional ground control points (GCPs) that are required for orthorectification
to remove terrain effects are generally not available; (iii) cloud cover is another significant issue that
limits use of VHR imagery in the Himalayan setting [18]; (iv) the pixel size of VHR imagery (~2 m)
may not be sufficient to individually detect tree and shrub species that are much smaller in size at
higher elevations (compared to the trees/shrubs of same species at lower elevation) due to climatic
adaptation [27]. Although manned airborne remote sensing using hyperspectral cameras is capable
of species level characterization of vegetation [28,29], such datasets are available only for selected
geographical areas and to the best of our knowledge, not available for the Himalayan region.

The recent advent of imagery acquired using Unmanned Aerial Systems (UAS) is overcoming the
challenges posed by VHR imagery. UAS are very flexible in usage, are rapidly and easily deployed for
data collection, can be easily carried to diverse locations and are not limited by cloudy skies. The UAS
sensor can generally provide much finer spatial resolution data (<10 cm). However, the spatial coverage
of the UAS mission will still be much smaller than the HRS swath area. Although hyperspectral sensors
have been miniaturized sufficiently to be carried on a UAS and are being utilized for vegetation
mapping [30,31], they are generally heavy and expensive systems and are challenging to carry on
smaller consumer grade UAS.

Yet, another challenge of using UAS data relates to interpretation of the pixel itself. The pixel
size of UAS-derived imagery is generally <10 cm which may result in high within class variance
compared to between class variance in reflectance [32,33]. Therefore, pixel-wise classification is
sub-optimal for UAS derived data. Geographic Object Based Image Analysis (GEOBIA) approach
has been utilized as an alternative for analyzing UAS imagery, where the imagery is first segmented
into objects representing a relatively homogeneous group of pixels. Segmentation is followed by
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sample selection and classification of segments into classes of interest [34]. GEOBIA approach-based
classification has lower likelihood of ‘salt-and-pepper’ speckle, which is often an issue with per-pixel
analysis and GEOBIA also offers the possibility to include neighborhood, geometric and textural
variables in improving classification of features [35]. GEOBIA-based tree species classification of UAS
derived imagery has shown potential in recent studies [36,37] and it needs to be extensively tested for
under-explored areas such as the Himalaya.

Determining optimal classification feature space is an important pre-classification step and has
been investigated by previous studies using hyperspectral imagery for species level mapping of
vegetation [29]. Following GEOBIA, the availability of hundreds of features (e.g., spectral, geometrical,
textural, and contextual) makes feature space selection a time-consuming and subjective process [34].
Due to the large data size of UAS imagery, inclusion of higher/larger number of features may
significantly increase processing time and inclusion of more features may not necessarily increase
the mapping accuracy. Therefore, finding the most suitable classification features that maximize the
mapping accuracy using the UAS + GEOBIA approach in the context of mountain vegetation mapping
needs to be investigated for practical applicability of this data and method for species level mapping
over larger areas.

This study is the first ever application of UAS remote sensing for vegetation mapping in the
Himalaya. While UAS remote sensing applications for vegetation characterization have been conducted
in other ecosystems such as the African savanna [38], temperate grasslands [39] and tropical forests [40],
such applications for studying mountain vegetation are currently very few. In the Himalaya, a handful
of UAS photogrammetric applications focusing on studying glacier dynamics [41] have been conducted,
while UAS application for studying vegetation properties remains untested. The present study utilized
data collected from a multi-spectral sensor (i.e., Parrot Sequoia) [42] to map tree and shrub species
along the treeline ecotone in the Nepal Himalaya. Specifically, the objectives of this study are: (a) map
the tree and shrub species of the treeline ecotone using multi-spectral UAS imagery and assess mapping
accuracy, and (b) determine the optimal image parameters (spectral, geometric, textural matrices) for
mapping tree species at treeline ecotone in the Himalaya.

2. Materials and Methods

2.1. Study Area

The site for this study was located at 28.10◦ N, 85.3905◦ E and was inside Langtang National Park
in central Nepal (Figure 1). Within the 0.81 ha study area the highest and lowest elevation recorded
were 3791 m and 3766 m above mean sea level respectively and are part of the treeline ecotone.
Abies spectabilis was a major treeline forming species while a tall shrub Rhododendron campanulatum
was the spatially most dominant woody species followed by small shrubby species such as
Rhododendron anthopogon and Berberis sp. Phenology of Rhododendron species appears to be highly
sensitive to climate warming [43,44]. Therefore, these species have the potential to be used as indicator
species for monitoring climate change impacts. Climate data from the nearest weather station showed
that the average monthly total rainfall was highest in August (172.76 mm) and lowest in December
(2.57 mm). Mean monthly temperature of the hottest (July) and coldest (December) month was
9.5 ◦C and −0.1 ◦C, respectively [45]. The understory was characterized by bare soil/rocky outcrops
and non-photosynthetic vegetation (NPV) in the form of dry twigs and woody vegetation branches,
possibly as a result of extraction of fuel wood by the local population and grazing by domesticated
animals of nearby settlements.
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Figure 1. (a) Study area location in Nepal Himalaya showing elevation range; (b) location of study 
area within Langtang National Park, Nepal; (c) field vegetation sampling locations overlaid on 
multispectral orthomosaic for the study area created from UAS imagery; and (d) ground control point. 

2.2. UAS Flight Missions and Ground Control Points 

A consumer-grade Phantom-3 professional multirotor UAS (DJI Inc., Shenzhen, China) was used 
to carry a Parrot sequoia camera (MicaSense Inc., Seattle, WA, USA). Sequoia is a narrow band multi-
spectral camera that acquires images in four wavelength bands at a resolution of 1.2 million pixels 
and has a global shutter rather than a rolling shutter (Table 1). The sequoia comes with a sunshine 
sensor which is mounted on top of the UAS (Figure 2c) and records irradiance in the same wavelength 
bands as the camera [42]. This information is utilized to calculate per-pixel reflectance values by 
accounting for the variability in ambient light conditions during the UAS mission [46]. UAS images 
were acquired on 16 June 2017 between 11 AM and noon under cloudy weather. To minimize the 
impact of terrain variability, the images were acquired in two flights missions each with separate 
launching location/height (Figure 1c). UAS data acquisition for both the missions were conducted in 
an automated manner using the Micasense Atlas Flight application with predefined parameters (i.e., 
flying height: 30 m above ground, velocity: 3 m/s and forward/side overlap of 80 percent). The two 
flights resulted in a total of 1240 geotagged images (310 images × 4 spectral bands) taken from near-
nadir viewing geometry. Flights were conducted at stable illumination and fixed camera settings, 
aiming to acquire images at uniform conditions. Photos of a calibrated reflectance panel produced by 
the camera manufacturer (Figure 2a) were acquired immediately after the UAS flights. The average 
reflectance values of this panel for each waveband of the camera were utilized for calculating per-
pixel reflectance. 

  

Figure 1. (a) Study area location in Nepal Himalaya showing elevation range; (b) location of study area
within Langtang National Park, Nepal; (c) field vegetation sampling locations overlaid on multispectral
orthomosaic for the study area created from UAS imagery; and (d) ground control point.

2.2. UAS Flight Missions and Ground Control Points

A consumer-grade Phantom-3 professional multirotor UAS (DJI Inc., Shenzhen, China) was
used to carry a Parrot sequoia camera (MicaSense Inc., Seattle, WA, USA). Sequoia is a narrow band
multi-spectral camera that acquires images in four wavelength bands at a resolution of 1.2 million
pixels and has a global shutter rather than a rolling shutter (Table 1). The sequoia comes with a sunshine
sensor which is mounted on top of the UAS (Figure 2c) and records irradiance in the same wavelength
bands as the camera [42]. This information is utilized to calculate per-pixel reflectance values by
accounting for the variability in ambient light conditions during the UAS mission [46]. UAS images
were acquired on 16 June 2017 between 11 AM and noon under cloudy weather. To minimize the
impact of terrain variability, the images were acquired in two flights missions each with separate
launching location/height (Figure 1c). UAS data acquisition for both the missions were conducted in an
automated manner using the Micasense Atlas Flight application with predefined parameters (i.e., flying
height: 30 m above ground, velocity: 3 m/s and forward/side overlap of 80 percent). The two flights
resulted in a total of 1240 geotagged images (310 images × 4 spectral bands) taken from near-nadir
viewing geometry. Flights were conducted at stable illumination and fixed camera settings, aiming to
acquire images at uniform conditions. Photos of a calibrated reflectance panel produced by the camera
manufacturer (Figure 2a) were acquired immediately after the UAS flights. The average reflectance
values of this panel for each waveband of the camera were utilized for calculating per-pixel reflectance.
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Table 1. Camera and flights parameters used in this study.

Camera Properties Values

Wavelength bands/central wavelength Green (550 nm), Red (660 nm),
Red Edge (735 nm), NIR (790 nm)

Focal length 4.0 mm
Image resolution 1280 × 960 pixels

Imager size 4.8 mm × 3.6 mm
Horizontal FOV 61.9◦

Vertical FOV 48.5◦

Radiometric resolution/format 12 bit/TIFF
Flying height 30 m (above ground level)

Resulting GSD 1.8 cm
Study area considered in 2 flights 0.81 ha

Prior to the UAS flights, five Ground Control Points (GCPs) in the form of bull’s eye targets were
deployed in the imaged area (example shown in Figures 1 and 2). The three-dimensional co-ordinates
(WGS 84, UTM zone 45N) were determined with a Trimble GeoXH 6000 handheld GPS connected to a
Zephyer 2 antenna [47] mounted on a monopod (average positional accuracy < 0.5 m). GCPs were
occupied for 15 min each (5 s interval) and received error correction from GAGAN, an operational
satellite-based augmentation system (SBAS) [48]. As a post-processing step to reduce uncertainty in
GCPs location; spatial mean was calculated from the 180 logged positions (over 15 min) to determine
the accurate 3-D position of each GCP.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 16 

 

Table 1. Camera and flights parameters used in this study. 

Camera Properties Values 

Wavelength bands/central wavelength 
Green (550 nm), Red (660 nm),  

Red Edge (735 nm), NIR (790 nm) 
Focal length 4.0 mm 

Image resolution 1280 × 960 pixels 
Imager size 4.8 mm × 3.6 mm 

Horizontal FOV 61.9° 
Vertical FOV 48.5° 

Radiometric resolution/format 12 bit/TIFF 
Flying height 30 m (above ground level) 

Resulting GSD 1.8 cm 
Study area considered in 2 flights 0.81 ha 

Prior to the UAS flights, five Ground Control Points (GCPs) in the form of bull’s eye targets were 
deployed in the imaged area (example shown in Figures 1d and 2). The three-dimensional co-
ordinates (WGS 84, UTM zone 45N) were determined with a Trimble GeoXH 6000 handheld GPS 
connected to a Zephyer 2 antenna [47] mounted on a monopod (average positional accuracy < 0.5 m). 
GCPs were occupied for 15 min each (5 s interval) and received error correction from GAGAN, an 
operational satellite-based augmentation system (SBAS) [48]. As a post-processing step to reduce 
uncertainty in GCPs location; spatial mean was calculated from the 180 logged positions (over 15 
min) to determine the accurate 3-D position of each GCP. 

 

Figure 2. (a) Calibration panel used for estimating surface reflectance; (b) Sequoia camera that acquires
images at fixed wavelengths including red-edge and near-infrared; (c) the entire UAS setup with remote
and tablet used for mission planning; and (d) setting up ground control points (GCPs) prior to UAS
mission in the treeline ecotone in Langtang national park (image date June, 2016). Also labeled are the
woody species mapped in this study.
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2.3. Field Survey and Identifying Vegetation Classes

Field data collection was conducted simultaneously with UAS flights. Within the study area,
the location of 57 individual woody plants in total were recorded using the Trimble GeoXH 6000
system described earlier (2 min occupancy). Four major woody plant species identified in the
study site were Abies spectabilis, Rhododendron campanulatum, Rhododendron anthopogon and Berberis sp.
(Figure 2d). These four species along with herbaceous ground vegetation (grass, forbs, mosses, etc.)
were photosynthetically active/green vegetation. Other cover types identified include bare soil/rocks
and non-photosynthetic vegetation (NPV) were combined under and non-green vegetation class and
sample locations representing them were also collected during field work.

2.4. Image Processing

An overview of data collection and analysis workflow is shown in Figure 3. The UAS-derived
images, GCP coordinates and images of the calibrated reflectance panel were brought into
Pix4Dmapper Pro software (Lausanne, Switzerland) for processing via Structure-from-Motion (SfM).
Following a standardized workflow, we selected the Ag Multispectral image processing template
for processing [49]. The processing yielded an orthomosaic map, reflectance map and Normalized
difference Vegetation Index (NDVI) for the study area with a ground sampling distance of 1.8 cm.
Both orthomosaic and reflectance outputs are corrected for perspective error using a digital surface
model (DSM). However, color balancing is applied on the orthomosaic to adjust the intensity of colors
and produce a visually pleasing result. The reflectance bands are produced without any color balancing
and the pixel values more accurately represent a target spectral reflectance [49]. Therefore, for detailed
vegetation and cover type mapping this study utilized the reflectance bands.
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Figure 3. Workflow of data collection, pre-processing and analysis to produce a species
classification map.

2.5. Geographic Object Based Image Analysis (GEOBIA)

2.5.1. Segmentation and Level 1 Classification

The four reflectance bands and NDVI were stacked and multiplied by a scale factor of 10,000 and
converted to a 16 bit unsigned integer to reduce data volume. A hierarchical GEOBIA was implemented
into a eCognition Developer 9.2 (Trimble Inc., Sunnyvale, CA, USA) [50] that involved two steps:
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image segmentation and object classification. We first applied the multi-resolution segmentation (MRS)
which generated objects by merging several pixels together based on relative homogeneity criteria [50].
This criteria is defined by setting values for the scale, shape/color and compactness/smoothness
parameters. To generate smaller but spectrally pure objects, MRS was performed using a smaller
scale factor (i.e., 50) and the red-edge (RE) band and the NDVI were given higher weights (1.5 and 2
respectively) to focus on photosynthetically active green vegetation. These values were deemed optimal
after visually comparing results of several trial iterations. In the first classification, green vegetated
objects were distinguished from other objects (bare soil/rock, non-photosynthetic vegetation) using
NDVI thresholding where the optimal threshold was visually determined using the ‘feature view’ tool
within eCognition Developer (Figure 4b).
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2.5.2. Feature Space Selection and Level 2 Classification

Before the detailed classification of vegetated objects, a spectral difference segmentation (SDS)
was performed only on the objects classified as green vegetation in level 1 classification. SDS merges
neighboring objects if the difference in their spectral mean is below a given threshold (i.e., the objects
are spectrally similar) [51]. Again, the optimal SDS parameters were determined by visually comparing
results of several iterations. The resulting merged objects better represented the vegetation structure
(e.g., a single tree stand represented by less than five objects after SDS compared to more than
20 objects before SDS) (Figure 4c). Training and validation objects for detailed classification at level 2
were selected by (i) intersecting surrounding image objects with specific sample for each class and
(ii) including more objects in the neighborhood of field identified samples by visually confirming their
cover type. This process resulted in the selection of a total of 386 sample objects, of which 240 (60%)
were used for training and the remaining were used for accuracy assessment.

To determine the suitability of different classification features, this study performed three
classifications at level 2 with the following three sets of features: only spectral features, spectral
features + geometric/shape features and spectral features + geometric/shape features + textural
features (Table 2). For each classification, the best features were selected using the Feature Space
Optimization (FSO) and are shown in Table 3. The FSO tool calculates an optimum feature combination
based on class samples and is available within eCognition. FSO evaluates the Euclidean distance in
the feature space between the samples of all classes and selects a feature combination resulting in the
best class separation distance, which is defined as the largest of the minimum distances between the
least separable classes [50].

Level 2 classification was achieved using the random trees classifier (also called Random Forest)
implemented within eCognition [52]. The random trees classifier builds multiple decision trees from
bootstrap samples of the reference data. Each decision tree uses a random subset of training data and a
random subset of input predictor variables. Roughly 2/3 of the data are sampled with replacement
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while 1/3 are withheld from tree construction (also called ‘out-of-the-bag’ or OOB samples). OOB
samples are used to calculate the difference between predicted versus observed samples based on
which error matrix is calculated.

Final class prediction is determined by majority voting based on the ensemble of trees. Random
trees also calculate the measure of variable importance based on a random permutation of the input
variables, and the effect of the permutation is quantified for each variable by the change in the OOB
error [52]. Those variables important for separating classes show significant change in OOB error.
Variable importance plot was generated and interpreted to determine the relative importance of feature
variables. Classification accuracy was accessed using independent sample objects reserved for each
class. Error matrices were calculated based on the number of objects per class without considering
object size. Accuracy matrices reported include class-wise user’s (UA) and producer’s accuracy (PA),
overall accuracy (OA) and kappa statistic (Tables 4 and 5).

Table 2. Definition of the selected features that were used in image classification.

Feature Description

Mean layer value The mean value represents the mean brightness of an image object within a single band

Standard deviation The standard deviation of all pixels which form an image object within a band

Spectral indices
Normalized Difference Vegetation Index (NDVI) calculated as (NIR-red)/(NIR + red);
Green Index (GI) calculated as (NIR-green)/(NIR + green); Red Edge Index (REI)
calculated as (NIR-red edge)/(NIR + red edge)

Maximum difference
Minimum mean value of an object subtracted from its maximum value. The means of
all bands belonging to an object are compared with each other and the result is divided
by the brightness [50].

Shape

Border index: Describes how jagged an image object is, the more jagged, the higher its
border index. Shape Index: a measure of overall shape complexity and it is calculated
from the border length feature of the image object divided by four times the square
root of its area [50].

Texture after
Haralick

GLCM (grey level co-occurrence matrix) calculated after Haralick, Shanmugam, and
Dinstein [53] describes how different combinations of pixel values occur within an
object; used features (using the mean of all layers).

Table 3. Selected optimal feature used for classification; 1 optimal feature space with only spectral
features, 1,2 optimal feature space with spectral + shape features and 1,2,3 optimal feature space with
spectral + shape+ textural features.

Spectral Shape Texture

Mean Green 1,2 Asymmetry GLCM homogeneity 3

Mean Red 1,2,3 Border Index 2 GLCM contrast
Mean Red edge 3 Compactness GLCM dissimilarity 3

Mean NIR 1,2,3 Rectangular fit GLCM entropy 3

Standard deviation Green 1,2,3 Roundness GLCM angular 2nd moment
Standard deviation Red 1,2,3 Shape Index 2,3 GLCM mean 3

Standard deviation Red edge Density GLCM Standard deviation
Standard deviation NIR 1,2,3 GLCM correlation

Maximum difference 2,3

Mean NDVI 1,2,3

Mean GI
Mean REI 1,3

Standard deviation NDVI 1,2,3

Standard deviation GI 1

Standard deviation REI 1,2,3
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3. Results

Results of level 1 classification showed that about 65% of the mapped area was under green
vegetation (Figure 5). The overall accuracy achieved for level 1 was 95.2% (Table 4), confirming
that NDVI thresholding of objects by determining the optimal threshold value is simple yet an
effective strategy for separating green vegetated objects from others (Figure 5a); this level of accuracy
was observed by previous studies as well [54]. Further visual examination of level 1 classification
results confirmed that some green vegetated objects with low vegetation density (dominated by
Rhododendron anthopogon) had mean NDVI values below the threshold and resulted in false negative
error (when classification erroneously predicted a low vegetation as non-vegetation object).

Based on the feature space selection method explained earlier, three optimized feature spaces
were used that produced three classification outputs at level 2. Table 2 provides feature definitions
and Table 3 lists all feature types that were used as candidate features and the numbering scheme
explains if they were found to be optimal and used in final classification. Optimal features space
using only spectral features consisted of 11 features. When both spectral and shape features were
utilized, the optimal feature space consisted of 12 features (with only one shape feature) and when
all three features (spectral + shape + texture) were utilized, the optimal feature space consisted of
16 features (11 spectral + 1 shape + 4 textural features). Results of level 2 classification using three
sets of features show that the overall classification accuracy increased with the number and type
of features used for classification. Highest overall accuracy (73%) and kappa (0.68) were obtained
when all three feature types (spectral, shape, texture) were used. However, the accuracy with three
feature types was not substantially higher compared to using just spectral features (accuracy of 70.77%)
(Figure 5 and Table 5).

Per-class accuracy for level 2 results suggested that among green vegetation, Abies spectabilis
was mapped with highest accuracy (100% UA), followed by Rhododendron campanulatum (85% UA),
Rhododendron anthopogon (66% UA) and Berberis sp. (55% UA). Among non-green vegetated classes,
bare soil/rock achieved 78% UA and non-photosynthetic vegetation was mapped at 69% UA.
Spatial analysis show that Rhododendron campanulatum was spatially the most dominant cover type
(31%) followed by Rhododendron anthopogon (25%) while Berberis sp. and Abies spectabilis were
spatially least dominant (covering 3% and 2% area, respectively). Due to their larger spatial coverage,
the inaccuracies in the mapping of the two Rhododendron species have higher ecological implications
for monitoring treeline vegetation compared to others (e.g., Abies spectabilis) that are mapped at much
higher accuracies.

Mapping accuracy was lower for Rhododendron anthopogon than Rhododendron campanulatum,
and visual analysis showed that Rhododendron anthopogon was either misclassified as NPV or
grass and bare soil was mistakenly classified as Rhododendron anthopogon. A possible explanation
for this misclassification is the structural similarity between NPV and Rhododendron anthopogon
(dwarf Rhododendron with dark green-to-brown small leaves and small shrubby structure). Although
Rhododendron campanulatum was mapped with relatively higher accuracy, it was also misclassified as
Rhododendron anthopogon. Visual analysis confirmed that this misclassification occurred in areas where
Rhododendron campanulatum was immediately surrounded by dense Rhododendron anthopogon as the
understory/below layer.
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The best accuracy achieving classification for level 2 (Figure 5d) used 16 features. The variable
importance plot (Figure 6) depicts 15 of these features in order of decreasing importance for
discriminating vegetation at species level using multi-spectral UAS imagery. Mean NDVI at object
level was the most important feature variable for level 2 classification. Furthermore, the presence of
13 spectral features among the top 15 features underscores the finding that spectral features alone
provide an acceptable level of mapping accuracy. Adding shape and texture features improves the
accuracy marginally. However it should be noted that classification using only spectral features was
much faster (~6 min) compared to that using textural features (~50 min).
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Table 4. Confusion matrix for level 1 classification achieved using NDVI thresholding.

Cover Type Green Vegetation Others Total Producer’s Accuracy
(1-Omission Error)

Green vegetation 95 3 98 97%
Others 4 44 48 92%
Total 99 47 146 -

User’s accuracy
(1-comission error) 96% 94% - 95.2%

Table 5. Confusion matrix for level 2 classification achieved using random trees and all features
(spectral + shape + texture).

Cover Type Rhodo
Camp.

Rhodo
Antho.

Berberis
sp.

Abies
Spec. Grass NPV Bare

Soil/Rock Total Producer’s
Accuracy

Rhodo camp. 41 8 1 0 0 1 0 51 80%
Rhodo antha. 5 32 2 0 6 5 2 52 57%
Berberis sp. 1 0 5 0 1 2 0 9 55%
Abies spec. 1 0 0 6 0 1 0 8 75%

Grass 0 2 1 0 15 3 0 21 71%
NPV 0 3 0 0 1 29 3 36 80%
Bare

soil/rock 0 3 0 0 1 1 18 23 78%

Total 48 48 9 6 24 42 23 146 -
User’s

accuracy 85% 66% 55% 100% 62% 69% 78% - 73%
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4. Discussion

The GEOBIA approach using multispectral UAS data has shown the potential for achieving
species-level mapping for the Himalayan treeline ecotone. The exploratory work in finding the
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optimal segmentation approach (i.e., multi-resolution segmentation followed by spectral difference
segmentation) and parameters (e.g., scale, shape and compactness criteria) helped in creating objects
that were realistic in representing the spatial variability in the shape and size of the considered classes
observed in the field (e.g., relatively larger and smooth canopy of Rhododendron campanulatum versus
smaller size and compact shape of NPV and soil/rock surface).

The aim of species-level mapping was achieved with varying accuracy for different
species. Certain classes could be mapped with better accuracy because of their morphological
contrast. Broadleaved versus fine needle leaved species could be mapped with higher
accuracies (e.g., Abies spectabilis and Berberis sp.) compared to structurally similar classes
(e.g., Rhododendron anthopogon versus NPV).

When using spectral, spatial and textural features, we show that the spectral features contributed
the most to a higher accuracy of species level mapping. Spectral features alone yielded ~70%
accuracy because the species that were mapped were not only taxonomically different but also
structurally different, allowing more accurate classification with spectral features. For example,
Rhododendron campanulatum is much taller (mean height 1.5 m) than Rhododendron anthopogon
(mean height 0.45 m), and has different architecture of branching and different types of leaves;
Abies spectabilis is fine needle leaved, whereas Berberis sp. is broadleaved. Including texture and
shape features improves the accuracy marginally, but substantially increases the computational time
(nearly 20 times, i.e., from 5 min to about an hour). This can easily scale up to massive computational
requirements for mapping over a larger area, as has been reported in previous studies [55]; importantly,
inclusion of texture variables has a disproportional effect on computational requirements. It should
be noted that the species diversity in our mapping space is not very high and it remains to be tested
if variable importance and mapping accuracy will change if either species diversity increases or the
study area becomes bigger.

This study opens up possibilities for future ecological research in the Himalaya, based on the
invaluable capability of UAS as a tool for providing VHR data that can be useful for ecological
monitoring in remote and inaccessible areas. Our results improve upon previous studies that utilized
ecological niche models based on the probability of the occurrence approach to map the potential
distribution of selected Himalayan species [56,57] instead of the direct classification approach.

As the UAS platform and sensors are becoming cheaper and more sophisticated, future studies
should test the suitability of better cameras (e.g., Micasense RedEdge-M and Altum, Gamaya
Hyperspectral) [58] as well as UAS platforms that fly for a longer duration to cover larger areas
and have vertical take-off and landing capability for data collection mountainous terrain (e.g., FireFLY
6 Pro) [59]. Also, the effects of mission parameters (e.g., flying height, percent overlap) and changing
terrain (especially in Himalaya with considerable slope) on resultant map quality needs to be tested to
establish a framework for quality UAS imagery collection. Our experience from doing exploratory
UAS missions in Langtang Himalaya with varying parameters indicates that the effect of slope and
terrain can be minimized by diving the study area into more than one flight and keeping high overlap
in images (>80%). However, even with these parameter settings, some edge area of the mission may
lack sufficient overlap and would create artifacts which induce inaccuracies in classification output.

Given the potential of UAS data for ecological monitoring, the number of studies using GEOBIA
for UAS images analysis is expected to increase. However, for achieving usable accuracies using
GEOBIA substantial visual interpretation of objects is required to optimize segmentation parameters,
and this can be a challenge in practical applications of GEOBIA over large areas. Therefore,
among the possibilities for GEOBIA technique refinement, there is scope for developing algorithms
that semi-automatically evaluate the outputs of multiple segmentations and are able to determine the
most optimal segmentation parameters for users with limited human interpretation e.g., Reference [60].
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5. Conclusions and Future Work

To the best of our knowledge, this study is the first ever application of multi-spectral UAS imagery
for individual tree-level vegetation mapping in the Himalaya with the goal of identifying species.
By testing the usefulness of features related to spectral, shape and texture attributes of vegetation
in maximizing the accurate identification of species, we present the most optimal and parsimonious
model for classification. The Himalayan vegetation, particularly at the treeline ecotone, exhibits a
wide range in vegetation composition and structure and is increasingly responsive to environmental
impacts and climate change. Understanding the ecological processes and community response requires
data collection that should be unbiased and be able to generalize at the landscape level. However,
that is a challenging task for the alpine Himalayan communities because of (1) the dramatically
heterogeneous topography, environment and community structure on the mountain slopes requiring
adequate sampling of vegetation in space, and, (2) the formidable challenges of staying longer in the
study site for adequate sampling. We show that data collection using UAS images and field data in
areas along the treeline ecotone in the Himalaya has the potential to increase time efficiency and lead to
vegetation maps with acceptable accuracy at the species level. This study is, therefore, a step forward in
developing valuable future mechanisms to monitor vegetation diversity for a highly understudied yet
ecologically important biodiversity hotspots. The classification results of the UAS imagery depend on
a number of factors including type of camera, spatial resolution of images, environmental conditions,
appropriate pre-processing, vegetation physiognomy, and more. Therefore, future studies in the
Himalaya would require adequate ground truthing for calibration and validation of models with
semi-automated classification. With all that, a reasonably accurate model of classification of UAS
imagery offers an efficient, cost effective method of vegetation species mapping that can be of value
for extreme environments like the Himalaya. In summary, UAS and GEOBIA presents us with an
unpresented opportunity of scaling up vegetation mapping by many orders of magnitude compared
to traditional sampling. This immediately means a more generalizable understanding of ecological
processes and responses can emerge out of UAS data.
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3. Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A.
Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186,
64–87. [CrossRef]

4. Turner, W. Sensing biodiversity. Science 2014, 346, 301–302. [CrossRef] [PubMed]

http://dx.doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2016.08.013
http://dx.doi.org/10.1126/science.1256014
http://www.ncbi.nlm.nih.gov/pubmed/25324372


ISPRS Int. J. Geo-Inf. 2018, 7, 445 14 of 16

5. Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol.
2003, 18, 299–305. [CrossRef]

6. Chawla, A.; Kumar, A.; Lal, B.; Singh, R.; Thukral, A.K. Ecological Characterization of High Altitude
Himalayan Landscapes in the Upper Satluj River Watershed, Kinnaur, Himachal Pradesh, India. J. Indian
Soc. Remote Sens. 2012, 40, 519–539. [CrossRef]

7. Munsi, M.; Areendran, G.; Ghosh, A.; Joshi, P. Landscape characterisation of the forests of Himalayan
foothills. J. Indian Soc. Remote Sens. 2010, 38, 441–452. [CrossRef]

8. Mishra, N.B.; Mainali, K.P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic
change and human drivers. Sci. Total Environ. 2017, 587, 326–339. [CrossRef] [PubMed]

9. Lele, N.; Joshi, P. Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of
forest cover changes in North-East India during 1972–1999. Environ. Monit. Assess. 2009, 156, 159. [CrossRef]
[PubMed]

10. Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping deforestation
and forest degradation patterns in western Himalaya, Pakistan. Remote Sens. 2016, 8, 385. [CrossRef]

11. Krishnaswamy, J.; John, R.; Joseph, S. Consistent response of vegetation dynamics to recent climate change
in tropical mountain regions. Glob. Chang. Biol. 2014, 20, 203–215. [CrossRef] [PubMed]

12. Chakraborty, A.; Sachdeva, K.; Joshi, P. Mapping long-term land use and land cover change in the central
Himalayan region using a tree-based ensemble classification approach. Appl. Geogr. 2016, 74, 136–150.
[CrossRef]

13. Gilani, H.; Shrestha, H.L.; Murthy, M.; Phuntso, P.; Pradhan, S.; Bajracharya, B.; Shrestha, B. Decadal land
cover change dynamics in Bhutan. J. Environ. Manag. 2015, 148, 91–100. [CrossRef] [PubMed]

14. Uddin, K.; Shrestha, H.L.; Murthy, M.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B.
Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90.
[CrossRef] [PubMed]

15. Niklas, K.J.; Midgley, J.J.; Rand, R.H. Tree size frequency distributions, plant density, age and community
disturbance. Ecol. Lett. 2003, 6, 405–411. [CrossRef]

16. Sundriyal, R.; Sharma, E.; Rai, L.; Rai, S. Tree structure, regeneration and woody biomass removal in a
sub-tropical forest of Mamlay watershed in the Sikkim Himalaya. Vegetatio 1994, 113, 53–63. [CrossRef]

17. Gairola, S.; Sharma, C.; Ghildiyal, S.; Suyal, S. Regeneration dynamics of dominant tree species along an
altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya. J. For. Res. 2012, 23, 53–63.
[CrossRef]
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