
 International Journal of

Geo-Information

Article

Change Detection in Coral Reef Environment Using
High-Resolution Images: Comparison of
Object-Based and Pixel-Based Paradigms

Zhenjin Zhou 1,2 , Lei Ma 1,2,* , Tengyu Fu 1,2, Ge Zhang 1,2,3, Mengru Yao 1,2

and Manchun Li 1,2

1 School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
mg1627117@smail.nju.edu.cn (Z.Z.); anythinganytime@foxmail.com (T.F.);
mg1527116@smail.nju.edu.cn (G.Z.); mengru.yao@foxmail.com (M.Y.); limanchunnju@163.com (M.L.)

2 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University,
Nanjing 210023, China

3 Shenzhen Urban Planning & Land Resource Research Center, Shenzhen 518028, China
* Correspondence: maleinju@gmail.com; Tel.: +86-182-5195-2382

Received: 28 July 2018; Accepted: 29 October 2018; Published: 12 November 2018
����������
�������

Abstract: Despite increases in the spatial resolution of satellite imagery prompting interest
in object-based image analysis, few studies have used object-based methods for monitoring
changes in coral reefs. This study proposes a high accuracy object-based change detection
(OBCD) method intended for coral reef environment, which uses QuickBird and WorldView-2
images. The proposed methodological framework includes image fusion, multi-temporal image
segmentation, image differencing, random forests models, and object-area-based accuracy
assessment. For validation, we applied the method to images of four coral reef study sites in the
South China Sea. We compared the proposed OBCD method with a conventional pixel-based change
detection (PBCD) method by implementing both methods under the same conditions. The average
overall accuracy of OBCD exceeded 90%, which was approximately 20% higher than PBCD.
The OBCD method was free from salt-and-pepper effects and was less prone to images misregistration
in terms of change detection accuracy and mapping results. The object-area-based accuracy
assessment reached a higher overall accuracy and per-class accuracy than the object-number-based
and pixel-number-based accuracy assessment.

Keywords: coral reef; change detection; very high resolution; object-based method; random forests

1. Introduction

Coral reefs are among the most productive and diverse ecosystems on earth. They provide a series
of ecological goods and services for mankind [1], and they are often described as “tropical rainforests
of the sea” [2]. However, despite their value, coral reefs globally are facing a crisis [3]. Large swathes of
coral reefs have been degraded by overfishing, coastal development, shipping, and climate change [4].
Therefore, it is necessary to improve dynamic monitoring of coral reefs including reef islands, such that
coral reef resources can be managed and protected effectively [5].

Remote sensing technology offers the advantages of synoptic perspective, frequent sampling,
and easy accessibility. Given the special geographical locations and distribution of coral reefs,
remote sensing technology is used commonly as the preferred tool for dynamic monitoring of their
changes [6–8]. Landsat satellite images have been used most frequently in remote sensing based
studies of coral reefs because they are cost-effective and of adequate accuracy for coarse descriptions
of habitat [9]. What’s more, most previous studies have employed pixel-based post-classification
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methods for coral reef change detection. However, because of the limitations of medium-resolution
sensors such as Landsat and SPOT, it is difficult to distinguish coral reef geomorphological dynamics
from sea level rise [10], and to detect changes on the scale of a few meters in coral reef habitats [11].
With continued refinement of the spatial resolution of satellite imagery, conventional per-pixel methods
have been found susceptible to a number of challenges in relation to change detection, including image
misregistration [6,12] and salt-and-pepper effects [13,14]. Coral reef images, lack of distinct and stable
texture features, are difficult to be accurately registered to each other [15], which makes the traditional
pixel-based approach less promising in coral reef change detection using high-resolution images.

Recent years have seen an increase in the number of studies using object-based image analysis
(OBIA) [13]. OBIA has also been applied in coral reef environment, from geomorphological mapping
to benthic community discrimination [16–18]. OBIA represents an effective combination of both the
contextual analysis of visual interpretation and the quantitative analysis of the pixel-based method [19].
It has been proven that image registration error greatly affects the per-pixel change detection accuracy
while the object-based method is less sensitive to image misregistration [20,21]. However, to the best
of our knowledge, few studies have used object-based change detection (OBCD) methods in coral reef
change detection. Generally, there are two possible strategies for OBCD methods: post-classification
comparison and multi-temporal image object analysis [22]. The essence of the post-classification
comparison approach lies in the initial classification, i.e., images acquired at different times are
classified individually and then overlaid in order to reveal changes that have occurred from one
period to another. Although this approach can provide “from-to” change information, the change
detection accuracy depends on the performance of the initial image classification and differences in the
segmentation of time series images could induce sliver changes [23]. In multi-temporal image object
analysis, multi-date images are segmented simultaneously to ensure the segmentations are spatially
consistent, and changes are usually identified via statistical or threshold methods [24,25]. However,
the outputs of such methods are simply “changed or unchanged” binary images that lack precise
information on the types of change [26]. Given all these facts above, in this study, direct multi-date
image classification using a machine learning algorithm was conducted on coral reef image objects to
process large quantities of attribute features autonomously and provide information on the specific
changes as well.

Since the original proposal of OBIA, numerous studies have compared pixel-based and
object-based paradigms, mainly in cropland mapping, rural-urban land cover classification,
plant mapping, etc. [27–29]. But, only a few of them concentrated on coral reef environment.
Benfield et al. [30] compared an object-oriented nearest neighbor classifier and a pixel-based maximum
likelihood classifier in coral reef mapping for the very first time, and found that the OBIA method
yielded higher accuracy in mapping coral reef habitats. Phinn, Roelfsema, and Mumby [17] assigned
categories to coral reef image objects by setting membership rules iteratively and then compared the
object-based analysis with a supervised pixel-based classification. However, these studies focused
on coral reef mapping and classification rather than coral reef change detection. Besides, they
adopted diverse approaches to compare pixel-based and object-based paradigms, which are sometimes
site-specific or rely on the datasets (i.e., data distribution) [31].

The primary objectives of this study are: (1) to propose a multi-temporal OBCD method combined
with random forests (RF) and directly recognize changes and change types in coral reef study sites
using high-resolution satellite images; (2) to compare the effectiveness of OBCD and pixel-based change
detection (PBCD) method in coral reef change detection, using both point-based accuracy assessment
and geometric accuracy assessment. We selected four coral reef study sites in the Spratly Islands of
the South China Sea, and we acquired QuickBird and WorldView-2 satellite images as experimental
data. The remainder of this paper is organized as follows: Section 2 gives detailed information on
both study sites and data set, and elaborates on the methodology of this study; Section 3, Section 4,
and Section 5 respectively present the results, discussion, and conclusions.
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2. Materials and Methods

2.1. Study Area

The South China Sea, which encompasses an area of more than 3 million km2, is the western
margin of the Pacific Ocean and the third largest marginal sea in the world. The coastal areas of the
South China Sea and its archipelagoes (e.g., the Spratly Islands) provide highly favorable conditions
for the growth and development of coral reefs. This region supports 571 known species of reef coral,
a richness in biodiversity comparable with that of the Coral Triangle [32]. However, in recent years,
the reef islands within this region have undergone complex changes due to both the construction of
artificial islands and the effects of natural factors. Therefore, monitoring and studying of the changes
in the coral reef environment are very important for marine conservation and management. In this
study, we chose Taiping Island, Zhongye Island, and two segments of Barque Canada Reef as study
sites (Figure 1), and we monitored dynamics of the reef islands and of the benthic coral habitats.
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Figure 1. Four coral reef study sites: (a,b) QuickBird satellite images of Taiping Island and Zhongye
Island (Bands 3, 2, and 1 in RGB); (c,d) WorldView-2 satellite images of Barque Canada Reef (Bands 5,
3, and 2 in RGB), where red rectangles indicate the two study sites in Barque Canada reef.
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Zhongye Island (11◦03′6′ ′ N, 114◦17′12′ ′ E) is of triangular shape, covering an area of roughly
0.372 km2. Zhongye Island has a long history of habitation by fishermen. The island is covered by
tropical coastal forests, grasslands, beaches formed by the accretion of carbonate sands and coral
shingles, buildings, and roads.

Taiping Island (10◦22′37′ ′ N, 114◦21′57′ ′ E), located in the northern central region of the Spratly
Islands, is a long and narrow island with East-West alignment. The length of the island is approximately
1.4 km and its width is about 0.4 km. Its terrain is low and flat with elevations ranging from 4.0 to
6.0 masl. The land cover types on Taiping Island are similar with Zhongye Island.

Barque Canada Reef (8◦10′50′ ′ N, 113◦17′41′ ′ E) is an ovular reef that is 33-km long and 5-km wide
at its maximum. Its overall area is approximately 66.4 km2 (of which reef flat accounts for 49.5 km2),
making it one of the largest of the Spratly Islands. The broad and shallow reef lagoon in the middle of
Barque Canada Reef (depth: 1.5–3.0 m) is one of the most important fisheries in the Spratly Islands.
Two parts of Barque Canada Reef were selected as study sites for this work. Detailed information (i.e.,
area of different surface types) of all study sites has been illustrated in Table A1 in Appendix A.

2.2. Data Set and Image Preprocessing

The focus of this study is bi-temporal change detection, so images with pronounced changes
between two different times were needed. However, due to the special marine environment and the
monsoonal climate [33], the satellite images of the study sites suffered a lot from cloud and aerosol.
We have tried to select cloud-free and high-quality images with the data acquisition month close to
each other (an interval less than 2 months) in case of pseudo changes or detection errors. Finally,
six satellite images over the four study sites were selected as the best available cloud-free scenes,
including QuickBird images of Taiping Island acquired in April 2004 and February 2010, QuickBird
images of Zhongye Island acquired in April 2005 and June 2010, and WorldView-2 images of Barque
Canada Reef acquired in May 2013 and July 2015 (Table 1).

Table 1. Satellite images’ information specific to the study sites.

Parameter Zhongye Island Taiping Island Barque Canada Reef

Data
22 April 2005 14 April 2004 20 May 2013
8 June 2010 20 February 2010 24 July 2015

Sensor QuickBird QuickBird WorldView-2

Spatial resolution (m) MS 1: 2.4 MS: 2.4 MS: 2.0
PAN 2: 0.6 PAN: 0.6 PAN: 0.5

Spectral band (µm)

Blue: 0.45–0.52
Green: 0.52–0.60
Red: 0.63–0.69

Near IR: 0.76–0.90

Blue: 0.45–0.52
Green: 0.52–0.60
Red: 0.63–0.69

Near IR: 0.76–0.90

Coastal: 0.400–0.450
Blue: 0.450–0.510

Green: 0.510–0.580
Yellow: 0.585–0.625

Red: 0.630–0.690
Red Edge: 0.705–0.745

NIR1: 0.770–0.895
NIR2: 0.860–1.040

1 MS: multispectral. 2 PAN: panchromatic.

Radiometric correction was firstly conducted for all the images, which is a critical pre-process for
change detection. In this study, the digital number values of the satellite images were firstly converted
to physically meaningful top-of-atmosphere radiances via radiometric calibration toolbox, following
which they were transformed into surface reflectance, using a MODTRAN-based atmospheric
algorithm, Fast Line-of-Sight Atmospheric Analysis of Spectral Hyper-cubes (FLAAH) module
developed by Spectral Science, Inc., Burlington, NJ, USA. [34]. A further description of atmospheric
correction process is provided by the user’s guide [35]. The Gram–Schmidt algorithm was used to fuse
the low-resolution multispectral bands with the high-resolution panchromatic band, which resulted
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in synthetic data with high spatial detail and spectral diversity [36]. For each study site, the image
from the earlier time point was registered to the one from the later time point using the ENVI
Image Registration Workflow tool, which achieved a registration error of <2 pixels. In this process,
tie points were generated automatically according to the geographical coordinates of the images, and a
first-order polynomial transformation and nearest neighbor resampling were applied to the earlier
image. The accuracy of monitoring and mapping of shallow-water coral reefs is usually compromised
by variable water depths. To overcome the influence of bottom reflectance, a kind of depth-invariant
index was proposed for water column correction [37]. However, as the study sites of Barque Canada
Reef are reasonably shallow (depth: 1.5–3.0 m), water column correction was deemed unnecessary in
such case [38]. Furthermore, as the focus of this study was on the detection of relative changes between
two periods, the effects of water depth were deemed negligible.

All the six remote sensing images were interpreted visually by digitalizing and classifying the
whole scenes. Then, we overlaid two digitalized images of each study site and generated a new
layer. In the generated layer, polygons with attributes from two different times were defined as “no
change” or as a certain change category according to its types in two different times. The definition
rules of two reef islands are shown in Table 2 and those of Barque Canada Reef are shown in Table 3.
In the reef islands, change categories include vegetation deterioration, vegetation growth or plantation,
coastal accretion, sea level rise or coastal erosion, and others. The “others” category refers to changes
related to buildings and infrastructure construction, e.g., house building, runway or road construction,
coastal harbor construction, etc. Areas without surface type change were categorized as “no change”.
In the Barque Canada Reef study sites, changes refer to alterations in species assemblages and in
their associated substrata extent [39]. These changes were categorized as aquatic vegetation growth,
algae growth, reef sediments extension, and algae degradation. Areas without habitat type change were
categorized as “no change”. After defining the change categories, the overlaid layer of each study site
was used as reference data for sampling in both OBCD and PBCD methods and for object-area-based
accuracy assessment. The area and proportion of each change category in all study sites are displayed
in Tables A2 and A3 in Appendix A.

Table 2. Change category definition of Zhongye Island and Taiping Island.

Surface Type in Time 1 Surface Type in Time 2 Change Category

Vegetation

Buildings and infrastructures
Vegetation deteriorationBare land

Beach
Ocean Sea level rise or coastal erosion

Beach
Buildings and infrastructures Others

Ocean Sea level rise or coastal erosion
Vegetation vegetation growth or plantation

Ocean
Buildings and infrastructures Others

Beach Coastal accretion
Vegetation Vegetation growth or plantation

Buildings and infrastructures Vegetation Vegetation growth or plantation
Bare land Others

Bare land

Beach Coastal accretion
Ocean Sea level rise or coastal erosion

Vegetation Vegetation growth or plantation
Buildings and infrastructures Others
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Table 3. Change category definition of Barque Canada Reef.

Habitat Type in Time 1 Habitat Type in Time 2 Change Category

Sand Algae-dominated Algae growth
Sand Aquatic vegetation Aquatic vegetation growth

Rubble-dominated Coral-dominated Reef sediments extension
Algae-dominated Sand Algae degradation

A detailed schematic of all experimental procedures including image preprocessing has been
presented in Figure 2. Compared to PBCD, the OBCD method includes an additional key step of image
segmentation, which is described in detail in Section 2.3.1. Finally, the change detection performances
of the two methods are compared in terms of the overall accuracy (OA), Producer’s accuracy (PA),
User’s accuracy (UA), Kappa coefficient (KA), and Z-test.
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2.3. Object-Based Coral Reef Change Detection

2.3.1. Multi-Temporal Segmentation

Image segmentation is at the core of the OBIA method because the object obtained from image
segmentation is the basic unit used for image classification or change detection. Thus, the quality
of image segmentation is correlated strongly with the accuracy of image classification and change
detection [40]. Multiresolution segmentation is a regional merging algorithm that forms an image object
starting from a single pixel. At each step, a pair of small image objects will be selected for merging
into a larger object or not based on a homogeneity criterion that is defined by the scale parameter
(SP), color/shape weight, and smoothness/compactness weight. As the SP determines the average
size of the image objects according to the heterogeneity within the object, the SP selection is crucially
important [41]. Based on the rate of change of local variance (ROC-LV) concept [42], an automatic tool
called “Estimate of Scale Parameter” (ESP) has been proposed as particularly suitable for replacing
the subjective trial-and-error method in SP selection [43,44]. The local variance (LV) value reflects the
heterogeneity within an object. Its value increases incrementally with the increasing segmentation
scale up to a point, at which the ROV-LV reached a peak. The SP at this point is considered the
optimal segmentation scale and the object obtained from the segmentation approximates the actual
ground object.

In this work, segmentation was conducted on all images of different dates simultaneously after
stacking all sets of the spectral bands. This multi-temporal image segmentation approach unifies the
object boundaries of all sequential images, minimizing sliver errors and delineating objects that are
composed of spatially adjacent pixels with similar spectral properties over time [19,45].

The ESP tool has been programmed in CNL within the eCognition® Developer 9.0 environment.
The ESP2 plugin in eCognition® Developer 9.0 was used to perform multiresolution segmentation in a
hierarchical manner with default scale increments of 1, 10, and 100 and a step size of 1. The values
of shape weight and compactness weight were set as 0.1 and 0.5, respectively. ROC-LV curves were
produced using standalone software. As an example, the optimal segmentation scale of Zhongye
Island was established as 13, as was shown in Figure 3.
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Figure 3. Rate of change of local variance (ROC-LV) curve of multiresolution segmentation of Zhongye
Island images.

2.3.2. Object Feature Selection and Calculation

Each image object has its own spectral, spatial, and textural features that are fundamental elements
in human interpretation of color photographs [46]. The state of each object at different time points
can be described using a given set of features [47]. In Equation (1), St1 represents the state (or land
cover type) of an object at time t1, and F1, F2, . . . Fn is the feature set of t1. St2 represents the state (or
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land cover type) of an object at time t2, and F1’, F2’, . . . Fn’ is the feature set of t2. ∆S is the difference
between the features of the object at t1 and t2. Using feature differences to train the change detection
model halves the dimensionality of the dataset and reduces the necessary computations [48].

St1 =


F1

F2

F3
...

Fn

St2 =


F′1
F′2
F′3
...

F′n

∆S =


F1 − F′1
F2 − F′2
F3 − F′3

...
Fn − F′n

 (1)

After multi-temporal segmentation, the objects in the segmented images have consistent
geometries and sizes between different times. Hence, only the spectral and textural features of each
object were considered for change detection. For better recognition of changes in vegetation and water
bodies, the Normalized Difference Vegetation Index (NDVI) [49] and Normalized Difference Water
Index (NDWI) [50] were calculated as additional feature bands for both Taiping Island and Zhongye
Island using band algebra. The object features of both Zhongye Island and Taiping Island included the
mean values and standard deviations of the blue, green, red, near infrared, NDVI, and NDWI bands.
Haralick texture features including GLCM homogeneity, GLCM contrast, GLCM dissimilarity, GLCM
entropy, GLCM Ang. 2nd moment, GLCM correlation, GLDV Ang. 2nd moment, GLDV entropy,
and GLDV contrast [51]. As the study sites on Barque Canada Reef were located in shallow water,
we calculated only the mean values and standard deviations of the three visible bands, i.e., the blue,
green, and red bands that can penetrate shallow water [30], together with the nine Haralick texture
features. All these features were calculated in eCognition® Developer 9.0.

2.3.3. Sampling Changed Objects

In order to implement stratified random sampling, we first labelled all segmented objects using
a maximum overlay rule with reference layer, where all changes or no changes are depicted for
individual study site (see Section 2.2). Each segmented object was defined as the class displayed in the
reference layer that covered the majority area of this object. Subsequently, all segmented objects were
divided into groups according to their change types. Then, each stratum was randomly sampled with
the same training set ratio of 30%. For Zhongye Island, 902 segmented objects were selected for training
samples. For Taiping Island, 1101 segmented objects were selected for training samples. The training
samples of the two study sites in Barque Canada Reef were 2843 and 3436 image objects, respectively.
The remaining 70% objects were used as validation samples. Sample numbers of each change category
have been displayed in Tables A4 and A5. As the sampled units were polygonal objects, there could
have been variety in the training sample objects’ size. Therefore, we made appropriate adjustments to
the sampling results through visual observation, such that the training samples were representative
both in change type and in size.

2.3.4. Recognizing Changed Objects Using the RF Algorithm

The RF algorithm [52] is a powerful ensemble learning technique that has been used widely
in remote sensing image classification [53,54]. Its superiority to other machine learning methods
(e.g., decision tree classifier, neural network classifier, maximum likelihood classifier, etc.) has been
demonstrated in a number of earlier studies [53,55,56]. In a lot of studies, RF classifier performed
equally well to SVMs in terms of classification accuracy and training time [57–59], but RF was
acknowledged more user-friendly for the number of user-defined parameters required by RF classifiers
is less than the number required for SVMs and easier to define [60]. The RF algorithm has not only
been applied successfully in pixel-based image analyses, but has also shown great promise in the
OBIA method for its high accuracy [61] and robustness to training sample reduction and feature
selection [62,63]. Therefore, the RF algorithm was adopted in the current work.
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The RF algorithm was implemented in the RandomForest package in the R environment [64].
The input predictive variables were difference values of object features between two time points,
including the difference of mean values and standard deviations of the blue, green, red, near infrared,
NDVI, and NDWI bands, the Haralick texture features, as was mentioned above. The predicting result
was the change category. Before training a RF model, two primary parameters of RF algorithm need
to be defined: the number of trees ntree and the number of split variable parameters mtry. A review
of RF application in remote sensing concluded that in most studies, the errors stabilize before ntree
value reaches 500, so the default value of 500 for ntree is an acceptable value [65]. The other parameter
mtry is the number of prediction variables used in each node to make the tree grow. According to
Rodriguez-Galiano, et al. [66], a RF is not sensitive to the value of mtry as the generalization error
converges from the value of approximately 100 trees. Moreover, it was found that using a univariate
RF algorithm could produce good accuracy and save computation time [52]. Therefore, this paper set
ntree as 500 and set mtry as 1. In this study, four separate RF models were established to detect changes
in four study sites.

2.4. Pixel-Based Coral Reef Change Detection

The same fundamental procedures (e.g., stratified random sampling and RF change detection)
were used in the PBCD method, with the exception of image segmentation. Here the basic unit of
the PBCD method is a pixel rather than an object. Therefore, we directly sampled the pixels labelled
by the reference layer for each category, and each stratum was randomly sampled with the same
training set ratio as object-based method. Subsequently, the training samples and validation samples
of each change category were collected based on the same proportion as object-based method (still
30% training samples and 70% validation samples for each category). In this process, a total number
of 42,276 pixels and 69,846 pixels were selected in Taiping Island and Zhongye Island, respectively.
A total number of 460,960 pixels and 459,120 pixels were selected in Barque Canada Reef Site 1 and Site
2. The sample numbers of each change category in all the study sites have been shown in Tables A6
and A7. The pixel-based RF change detection models were also trained and constructed using the
RandomForest package in the R environment with the parameter ntree set as 500 and the parameter
mtry set as 1. For Zhongye Island and Taiping Island, the pixel value difference of the blue, green,
red, near infrared, NDVI, and NDWI bands was input as predictive variables to predict change types.
For the study sites on Barque Canada Reef, the pixel value difference of the blue, green, and red bands
was chosen as predictive variables. Ultimately, we obtained change detection results for the entire
image of each study site with the aid of RF change detection models.

2.5. Accuracy Assessment and Statistical Comparisons

2.5.1. Confusion Matrix Based on Pixel Number, Object Number, and Object Area

For each of the four study sites, three confusion matrices were created based on pixel number,
object number, and object area in order to calculate the OA, PA, UA, and Kappa coefficient. In the
PBCD method, the values in the rows and columns of the confusion matrices refer to pixel numbers.
To analyze quantitatively the classification quality of object-based methods, Laliberte and Rango [67]
considered each object as an element, and generated confusion matrices based on the object numbers.
However, this method was deemed spatially implicit [68]. Thematic accuracy and completeness as
well as geometric quality and integrity were suggested prerequisites for comprehensive analysis of
object-based classification quality [69]. Whiteside, et al. [70] proposed an area-based validation method,
in which reference layer R is superimposed on the change detection product C. Their overlap, |Ci∩Ri|
represents the correctly identified part of change type i, whereas |Ci∩¬Ri| represents the commission
part of change type i and |¬Ci∩Ri| is the omission part of change type i. In this case, the values
in the rows and columns of the confusion matrices refer to the areas of these parts. In this work,
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a pixel-number-based confusion matrix was used to assess the PBCD accuracy, whereas confusion
matrices based on object number and object area were used to assess the OBCD accuracy.

2.5.2. Statistical Hypothesis Test for PBCD and OBCD Accuracy Assessment

To determine whether the RF change detection models in the PBCD and OBCD methods yielded
significantly better results than random ones, a Z-test was performed on the Kappa coefficient of each
confusion matrix. In addition, the Kappa coefficients of the OBCD and PBCD confusion matrices were
analyzed using a Z-test. This was performed to check for significant differences between the accuracies
of the two methods [71] in order to determine whether the OBCD method was significantly superior.

Here, K1 and K2 denote the KA coefficients of the two confusion matrices, while var (K1) and var
(K2) denote the variances of K1 and K2, respectively. The Z-test statistic for testing the significance of a
single confusion matrix is calculated as follows:

Z1 =
K1√

var(K1)
(2)

where Z1 is a standard normal deviate. The null and alternative hypotheses are formulated as follows:
H0: K1 = 0, H1: K1 6= 0; H0 is rejected if Z ≥ Zα/2, where a/2 is the confidence level.

The Z-test statistic for testing whether two independent confusion matrices are significantly
different can be expressed as

Z12 =
|K1 − K2|√

var(K1) + var(K2)
(3)

where Z12 is a standard normal deviate. The null and alternative hypotheses are formulated as follows:
H0: (K1 − K2) = 0, H1: (K1 − K2) 6= 0; H0 is rejected if Z ≥ Zα/2.

At the 95% (99%) confidence level, the critical value would be 1.96 (2.58). For a single confusion
matrix test, a value of the Z statistic > 1.96 means the result is significant (i.e., better than random) at
the 95% confidence level. For a test between two confusion matrices, a value of the Z statistic > 1.96
means the results are significantly different, i.e., one method outperformed the other.

3. Results

3.1. Visual Examination of PBCD and OBCD Maps

The outputs of the change detection methods for the four study sites are shown in Figures 4
and 5. Visual comparison revealed that both the OBCD and the PBCD methods were able to recognize
changed areas and change types. Nonetheless, the OBCD method appeared to outperform the PBCD
method. Specifically, the OBCD maps were not affected severely by salt-and-pepper effects and very
few unchanged areas were misidentified as changed.
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3.1.1. An Observation of PBCD Maps

The changed areas recognized by the PBCD method were irregular clusters of pixels. Furthermore,
pixels of various change types were distributed sporadically within the areas of certain other change
types. For example, the areas of “vegetation deterioration” detected on both Taiping Island and
Zhongye Island also contained scattered pixels of the “others” change type. We also found that
PBCD frequently detected unchanged areas as changed. On both Taiping Island and Zhongye Island,
the surrounding stable (unchanged) marine areas were identified as “vegetation growth or plantation”,
“vegetation deterioration”, and “others”. A proportion of unchanged forest on Zhongye Island was
identified as “vegetation deterioration” and “others”, while central areas of Taiping Island, where no
change occurred, were detected mostly as “vegetation growth or plantation”. The PBCD method
presented the worst visual accuracy for both study sites of Barque Canada Reef. In Barque Canada
Reef Site 1, large areas of “no change” type were misidentified as “aquatic vegetation growth” and
“algae growth”, while substantial proportions of “no change” areas in Barque Canada Reef Site 2 were
misidentified as “aquatic vegetation growth”.

3.1.2. An Observation of OBCD Maps

In stark contrast to the PBCD method, the OBCD method produced much cleaner and neater
change detection maps with the polygon as its basic analysis unit. Of the four study sites, the change
detection map of Zhongye Island was found most similar with its reference layer, although minor
changes such as vegetation growth on narrow paths were not detected well. The change detection
map for Taiping Island was also satisfactory, except that some unchanged marine areas to the north of
the reef island were misidentified as “vegetation deterioration” shown as conspicuous orange patches.
Patches of unchanged area in eastern parts of Barque Canada Reef Site 1were misidentified as “algae
growth”, while a scattering of unchanged polygons in the middle of Barque Canada Reef Site 2 were
detected as “aquatic vegetation growth”. The results revealed that the primary weakness of the OBCD
method was that there were discrepancies between the boundaries of its change detection units (image
objects) and the polygonal boundaries in the reference layer, which delimited the actual change extent.
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3.2. Quantitative Evaluations of PBCD and OBCD Performances

3.2.1. PBCD and OBCD Accuracy Assessment

Three confusion matrices based on pixel number, object number, and object area were used
to assess the accuracy of each change detection result. Figure 6 illustrates the OAs and the Kappa
coefficients of the OBCD and PBCD methods for each study site. Tables 4–7 display all the confusion
matrices. It was found that the OAs of OBCD, either object-number or object-area based, were greatly
higher than those of PBCD for all the study sites. Meanwhile, the object-area-based OA was a little
bit higher than the object-number-based OA. The average OA of OBCD over the four study sites was
>90%, i.e., approximately 20% higher than the average OA of PBCD (69.72%). The OBCD method was
effective for the reef islands and coral reef habitats change detection, achieving OAs > 90%, except for
Taiping Island, whose OA was only slightly >85%. The accuracy assessment results revealed that the
PBCD method did worse in benthic coral reef environment than in reef islands. This was particularly
reflected in the PBCD Kappa coefficients of the two reef islands and the Barque Canada Reef study sites.
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The PBCD results of all the study sites indicated that the UAs for all change types (except
“no change”) were <60%, i.e., the commission errors of PBCD were >40%. In Barque Canada Reef
study sites, except for “no change” category, the other change categories got greatly worse pre-class
UAs. For example, the UA of “reef sediments extension” type was only 24.9% in Barque Canada
Reef Site 1 while the “no change” type got a high UA (99.3%). Although per-class UAs of certain
categories in object-number-based accuracy assessment were higher than those of pixel-number-based
accuracy assessment, some of the rest categories got even lower UAs. In the object-area-based accuracy
assessment, the UAs of all the other change types were lower than “no change” type. Nonetheless,
per-class UAs of all change categories were higher than those obtained from the object-number-based
and pixel-number-based confusion matrices. What’s more, the area-based assessment produced a
much more balanced per-class UAs of all change categories. For example, in Taiping Island, area-based
UAs of all change categories approximated 70%. For the Barque Canada Reef study sites, UAs of all
change categories were greatly improved and much closer to each other.

In the change detection results of the two reef island sites, the “others” category consistently
displayed the lowest accuracy. Many changes in the “others” category were identified erroneously
as “no change”, “vegetation deterioration”, or “vegetation growth or plantation”. For Zhongye
Island, the UA of the “others” type was relatively low, i.e., the PBCD method had a UA of 2.9%.
In the validation samples of object-number-based accuracy assessment, not a single “other” category
object was correctly recognized. The confusion matrices of the OBCD method revealed that “aquatic
vegetation growth” and “algae growth” were difficult to distinguish from one another, because the
UAs of the OBCD method for “aquatic vegetation growth” and “algae degradation” were relatively
low, and the object-number-based accuracy was even lower than the object-area-based accuracy.
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Table 4. Confusion matrices of PBCD and OBCD results for Zhongye Island.

Zhongye Island Reference

Pixel Number Coastal Accretion No Change Others Sea Level Rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 768 423 27 0 119 14 1351
No change 84 17,882 42 18 311 821 19,158

Others 52 1499 55 3 108 157 1874
Sea level rise or coastal erosion 55 272 5 416 62 0 810

Vegetation deterioration 66 1305 15 3 1113 46 2548
Vegetation growth or plantation 33 1552 25 6 71 2165 3852

Total 1058 22,933 169 446 1784 3203 29,593
PA (%) 72.6 78 32.5 93.3 62.4 67.6
UA (%) 56.9 93.3 2.9 51.4 43.7 56.2

Object Number Coastal Accretion No change Others Sea level rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 28 56 0 0 1 0 85
No change 10 2193 4 2 11 15 2235

Others 0 0 0 0 0 0 0
Sea level rise or coastal erosion 0 11 0 24 0 0 35

Vegetation deterioration 1 28 1 0 36 0 66
Vegetation growth or plantation 0 98 0 0 0 50 148

Total 39 2386 5 26 48 65 2569
PA (%) 71.8 91.9 0 92.3 75 76.9
UA (%) 32.9 98.1 0 68.6 54.6 33.8

Object Area (m2) Coastal Accretion No Change Others Sea level Rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 5598.2 5030.4 40.1 1.0 339.0 171.2 11,179.9
No change 1575.5 548,933.2 474.1 465.3 6150.1 7051.3 564,649.3

Others 2.1 162.3 904.0 0.0 57.5 38.4 1164.3
Sea level rise or coastal erosion 107.8 1162.9 2.4 4866.3 21.0 0.0 6160.4

Vegetation deterioration 75.4 5054.5 29.6 0.0 9404.8 71.9 14,636.2
Vegetation growth or plantation 175.9 13,293.7 129.7 0.0 180.1 12,129.0 25,908.3

Total 7534.8 573,636.9 1580.0 5332.5 16,152.5 19,461.8 623,698.4
PA (%) 74.3 95.7 57.2 91.3 58.2 62.3
UA (%) 50.1 97.2 77.6 79 64.3 46.8
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Table 5. Confusion matrices of PBCD and OBCD results for Taiping Island.

Taiping Island Reference

Pixel Number Coastal Accretion No Change Others Sea Level Rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 2552 1159 284 3 410 53 4461
No change 153 21,155 453 26 1092 538 23,417

Others 76 724 1188 5 747 27 2767
Sea level rise or coastal erosion 24 759 200 708 237 131 2059

Vegetation deterioration 49 2423 461 36 4435 80 7484
Vegetation growth or plantation 41 4623 625 56 338 3021 8704

Total 2895 30,843 3211 834 7259 3850 48,892
PA (%) 88.2 68.6 37 84.9 61.1 78.5
UA (%) 57.2 90.3 42.9 34.4 59.3 34.7

Object Number Coastal Accretion No Change Others Sea Level Rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 60 37 6 0 0 0 103
No change 5 1479 45 4 48 33 1614

Others 0 5 30 2 7 0 44
Sea level rise or coastal erosion 0 3 0 5 0 0 8

Vegetation deterioration 1 34 39 1 179 1 255
Vegetation growth or plantation 0 38 1 0 0 42 81

Total 66 1596 121 12 234 76 2105
PA (%) 90.9 92.7 24.8 41.7 76.5 55.3
UA (%) 58.3 91.6 68.2 62.5 70.2 51.9

Object Area (m2) Coastal Accretion No Change Others Sea Level Rise or
Coastal Erosion

Vegetation
Deterioration

Vegetation Growth or
Plantation Total

Coastal accretion 14,814.0 3941.3 480.3 4.3 0.0 14.4 19,254.2
No change 1681.9 531,685.4 8714.4 647.4 16,714.3 11,431.4 570,874.9

Others 100.1 2496.6 17,754.6 187.6 3472.3 476.3 24,487.5
Sea level rise or coastal erosion 1.5 484.7 31.6 1791.2 0.1 0.0 2309.1

Vegetation deterioration 103.0 14,283.9 9323.4 182.7 60,621.0 368.9 84,882.8
Vegetation growth or plantation 60.9 6555.8 597.7 0.0 341.5 13,696.1 21,252.1

Total 16,761.5 559,447.6 36,902.0 2813.2 81,149.3 25,987.1 723,060.5
PA (%) 88.4 95 48.1 63.7 74.7 52.7
UA (%) 76.9 93.1 72.5 77.6 71.4 64.5
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Table 6. Confusion matrices of PBCD and OBCD results for Barque Canada Reef Site 1.

Barque Canada Reef Site 1 Reference

Pixel Number Reef Sediments Extension Aquatic Vegetation Growth Algae Degradation Algae Growth No Change Total

Reef sediments extension 3289 0 111 31 9802 13,233
Aquatic vegetation growth 97 988 169 2595 58,638 62,487

Algae degradation 631 35 1100 354 17,922 20,042
Algae growth 26 68 25 11,380 56,983 68,482

No change 190 7 101 849 157,281 158,428
Total 4233 1098 1506 15,209 300,626 322,672

PA (%) 77.7 90 73 74.8 52.3
UA (%) 24.9 1.6 5.5 16.6 99.3

Object Number Reef Sediments Extension Aquatic Vegetation Growth Algae Degradation Algae Growth No Change Total

Reef sediments extension 67 0 3 0 55 125
Aquatic vegetation growth 0 4 0 0 4 8

Algae degradation 0 0 7 0 10 17
Algae growth 0 8 1 189 389 587

No change 4 4 7 51 5832 5898
Total 71 16 18 240 6290 6635

PA (%) 94.4 25 38.9 78.8 92.7
UA (%) 53.6 50 41.2 32.2 98.9

Object Area (m2) Reef Sediments Extension Aquatic Vegetation Growth Algae Degradation Algae Growth No Change Total

Reef sediments extension 16,801.0 0.0 385.3 8.8 10,975.3 28,170.3
Aquatic vegetation growth 0.0 4283.2 0.0 446.8 1715.5 6445.5

Algae degradation 0.0 0.0 4202.0 125.3 2392.5 6719.8
Algae growth 9.8 1538.2 378.0 56,388.9 82,227.6 140,542.5

No change 3503.6 1654.2 3041.3 16,045.6 2,044,158.7 2,068,403.3
Total 20,314.3 7475.6 8006.5 73,015.3 2,141,469.5 2,250,281.3

PA (%) 82.7 57.3 52.5 77.2 95.5
UA (%) 59.6 66.5 62.5 40.1 98.8
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Table 7. Confusion matrices of PBCD and OBCD results for Barque Canada Reef Site 2.

Barque Canada Reef Site 2 Reference

Pixel Number Reef Sediments Extension Aquatic Vegetation Growth Algae Growth No Change Total

Reef sediments extension 5356 36 0 13,995 19,387
Aquatic vegetation growth 8 6919 648 39,685 47,260

Algae growth 0 1519 3240 939 5698
No change 252 1803 137 246,847 249,039

Total 5616 10,277 4025 301,466 321,384
PA (%) 95.4 67.3 80.5 81.9
UA (%) 27.6 14.6 56.9 99.1

Object Number Reef Sediments Extension Aquatic Vegetation Growth Algae Growth No Change Total

Reef sediments extension 102 0 0 206 308
Aquatic vegetation growth 0 167 17 187 371

Algae growth 0 10 42 19 71
No change 0 14 2 7253 7269

Total 102 191 61 7665 8019
PA (%) 100 87.4 68.9 94.6
UA (%) 33.1 45 59.2 99.8

Object Area (m2) Reef Sediments Extension Aquatic Vegetation Growth Algae Growth No Change Total

Reef sediments extension 27,893.8 0.0 0.0 39,508.3 67,402.0
Aquatic vegetation growth 0.0 94,803.5 2853.3 51,576.4 149,233.2

Algae growth 0.0 2788.3 18,071.5 3957.3 24,817.0
No change 0.0 5759.0 467.5 3,000,580.8 3,006,807.2

Total 27,893.8 103,350.7 21,392.3 3,095,622.7 3,248,259.5
PA (%) 100 91.7 84.5 96.9
UA (%) 41.4 63.5 72.8 99.8
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3.2.2. Z-Test Results of the Accuracy Assessment

As shown in Table 8, the Z-test values of all the individual confusion matrices (especially the
area-based OBCD confusion matrices) far exceeded 2.58 (p ≤ 0.01) and 1.96 (p ≤ 0.05), indicating that
the RF algorithm combined PBCD and OBCD methods are both feasible and effective, and that the
change detection results were significantly better than random results. Comparisons between the
object-number-based OBCD assessment result and the PBCD assessment result revealed no significant
differences for Zhongye Island (|Z| = 0.60 < 1.69), but the Z-test values for the other study sites were
much larger than 2.58 (p ≤ 0.01) and 1.96 (p ≤ 0.05). Comparing the object-area-based assessment
results and the pixel-number-based results, the Z-test values for all study sites were far greater than
2.58 (p ≤ 0.01) and 1.96 (p ≤ 0.05), i.e., the object-area-based accuracy was significantly higher than
that of PBCD.

Table 8. Z-test results of individual confusion matrix and two confusion matrices.

|Z| 1 Zhongye
Island

Taiping
Island

Barque Canada Reef

Site 1 Site 2

PBCD Pixel-number-based individual 178.36 102.84 63.41 135.87

OBCD

Object-number-based individual 38.67 18.64 24.55 32.12
OBCD vs. PBCD 7.40 0.60 17.60 14.38

Object-area-based individual 802.98 335.37 488.63 880.72
OBCD vs. PBCD 60.47 19.36 175.99 165.59

1 |Z| ≥ 2.58 (1.69) denotes significant at the 99% (95%) confidence level.

4. Discussion

4.1. Pros and Cons of the Proposed OBCD Method

The proposed OBCD method segmented images from two different times together and then
trained RF models using difference of object features to predict change category. The advantages
of this method are evident. First, since change categories were defined in advance, changed areas
and the corresponding change categories can be directly recognized using a one-step supervised
classification. Secondly, the RF algorithm has high computational speed and helps optimizing the
classification model by using only the input object features as predictive variables [65] compared to
traditional rule-based method or pixel-based method. Changes can be detected in a more automatic
way than with the membership rules method, which sets individual threshold values of classification
rules iteratively based on expert knowledge and by visually comparing the image objects with field
data [17,18]. Moreover, the algorithm running time of OBCD is obviously shorter than that of PBCD.
In the PBCD method, the training sample size generally amounts to tens of thousands of pixels,
while the training sample size for the OBCD method were only tens or hundreds of objects. Therefore,
the average running time of the RF model for PBCD is about hundreds of seconds, while RF model
building and change prediction could be accomplished within seconds for the OBCD method (not
shown here). Thirdly, the method also achieved a high change detection accuracy (over 85%) for all
the coral reef study sites, which confirms a good transferability of this workflow.

The proposed method also has some weakness. Small or indistinct changes cannot be easily
detected due to the multi-temporal segmentation, where these changes may be merged into large
objects in the segmentation process [72]. Despite the high overall accuracy, there was a great
difference between per-class accuracy. Expect for the “no change” category, accuracies of other
change categories were not as high as the accuracy recommended for creating an inventory of
resources for management [73]. The imbalance of samples may have influence on the per-class accuracy.
Classification trees suffer from unbalanced sample sizes because the largest number of samples tend to
determine the class label [74]. On the other hand, challenges in respect of the quantity and quality of the
training samples also affect the performance of the supervised classification [75]. In the reef island sites,
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the “others” category always had the lowest accuracy, while the “no change” type, which accounted
for the largest area of each study site, gained the highest accuracy. Changes of the “others” type relate
to human development and reconstruction activities. Buildings and infrastructures on reef islands take
various shapes and forms with distinctive spectral and textural properties, which greatly increased
the uncertainty of the training samples in the supervised change detection. In addition, the number
of training samples of “others” type obtained via proportional stratified sampling was quite small
because of the limited extent of the changes. For example, in Taiping Island, the training samples of
“others” type were 52 objects for object-based change detection and 357 pixels for pixel-based method
as the area of “others” change type occupied only 4.98% of the entire study site. By contrast, there were
684 training objects and 13,218 training pixels of “no change” type.

4.2. The Superiority of the OBCD Method to the PBCD Method

A comparison of PBCD and OBCD showed that object-based paradigm is superior to the
pixel-based paradigm for detecting changes from very-high-resolution satellite images of coral reefs.
The OA of the OBCD method was about 20% greater than the PBCD method, similar to the findings
derived by Benfield et al. [30] in their coral reef classification study. Cleve et al. [76] also found that
the object-based classification approach provided a 17.97% higher OA than the pixel-based approach
in wildland–urban interface classification. However, studies based on medium-resolution satellites
such as Landsat and SPOT, concluded that the results achieved by pixel-based methods are acceptable,
with no significant difference from the object-based methods [28,31]. As the spatial resolution of
remote sensing imagery continues to improve, within-class spectral heterogeneities increase as well,
which greatly affect the accuracy of conventional pixel-based methods. In this study, this problem
was manifested in the form of severe salt-and-pepper effects and numerous misidentified pixels in the
PBCD maps. The PBCD method recognizes changes based solely on pixel values, which are susceptible
to interference from other factors. Factors including light conditions, tree shade, vegetation phenology,
etc. might induce changes in the spectral features of pixels, thus leading to the detection of spurious
changes. By comparison, the OBCD method analyzes the overall properties of all pixels within an
object. Thus, changes of individual pixels have minimal impact on the general features of an object,
making the OBCD method more robust and reliable.

4.3. Application of PBCD and OBCD Methods in Multiple Coral Reef Study Areas

The complicated formation process and the special location render coral reef islands
spatiotemporally dynamic [77] and vulnerable to climate change and sea level rise [78]. Much attention
has been paid to the dynamics of atoll islands. Historical aerial photographs or satellite images with
different spatial resolution over a period of time were usually rectified to each other and digitalized to
investigate the stability of vegetated cays or islands [79]. However, in most cases, atoll islands have a
paucity of distinct and stable features for ground control points, rendering georeferencing of images
problematic [80]. Besides, differing resolution or quality of time series images may affect the accuracy
of the image registration and shoreline interpretation, and thus impact change detection accuracy.
In our study, the proposed OBCD method was less prone to image misregistration than the PBCD
method, as was observed from both the generated map and the accuracy. Using the PBCD method,
pixels between neighboring segments tended to be misclassified, generating an obvious dividing line
with a width of several pixels (Figure 7). Using the OBCD method, registration error did not cause
fragmented objects. According to Chen, Zhao, and Powers [21], when the registration error is relatively
small (e.g., lower than 3 pixels), the size of image objects slightly increased, because small objects were
merged into the neighboring image-objects. Since misregistration had a low impact on object size and
shape for most areas, the change detection accuracy would remain at a high level.

For the Barque Canada Reef study sites, it was found that PBCD methods were less suitable for
coral reef community at a coarse scale, due to the serious salt and pepper effects in the change detection
maps. In addition, it was found challenging to distinguish “aquatic vegetation growth” and “algae
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growth”. Seagrass and algae may have similar textural features and similar spectral characteristics
using only the red, green, and blue bands. It has been suggested that hyperspectral data could provide
for a more detailed and accurate classification or change detection of reef biotic systems, because it can
provide rich information on the reflectance properties of algal and seagrass communities [81].
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4.4. Object-Number-Based and Object-Area-Based Accuracy Assessment

In this work, we used two different accuracy assessment methods to evaluate the OBCD results.
The object-area-based assessment of OBCD got a slightly higher OA than the object-number-based
assessment and a greatly higher OA than the pixel-number-based assessment. Besides, the per-class
accuracy of each change category was higher and more balanced in the object-area-based assessment.
Although the OA of the object-number-based assessment was also greatly higher than the per-pixel
results, the per-class accuracy did not show superiority. Two main reasons may account for all the
findings above. First, in the object-based paradigm, image segmentation inevitably results in mixed
objects; thus, once an object is misidentified, the object-number-based change detection accuracy will
be lowered significantly, especially for change types with a small number of total samples. Second,
the average size of correctly identified objects might be bigger than objects of incorrectly identified
objects in almost all classes [82], so the final overall accuracy of object-area-based assessment was
higher than the object-number-based accuracy. If the classified objects are imported to GIS for a further
spatial analysis, both the thematic and geometric accuracy assessment are necessary and important.
The object-area-based assessment is essentially a comprehensive evaluation of image segmentation
and change detection, which is not only influenced by the classification algorithm, but also strongly
relates to the segmentation means. Therefore, more combinations of classification algorithms and
segmentation means need to be further explored.

5. Conclusions

As image registration is critical but challenging in coral reef change detection because of
the deficiency of distinct and stable texture features as well as ground control points, in this
work, we proposed an RF-combined object-based framework for change detection in coral reef
environment and we applied this framework to multiple coral reef study sites in the South China Sea.
The combination of multi-temporal object-based analysis and the RF algorithm not only recognized
changed areas, but also offered information about the corresponding change types. The OBCD method
achieved a high accuracy in coral reef environment with a good transferability over various study sites.
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Through a comparison analysis, it was found that the OBCD method significantly outperformed the
PBCD method. The OBCD method did not suffer from salt-and-pepper effects and it was less sensitive
to image misregistration than the PBCD method. Therefore, the OBCD method is more suitable for
coral reef environment monitoring. The object-area-based assessment of OBCD produced a higher
OA than both the object-number-based assessment and the pixel-number-based assessment. Besides,
per-class accuracy of the object-area-based assessment was higher and more balanced. For further GIS
analysis or statistical analysis, the object-area-based accuracy assessment should be considered.

There were some shortcomings of this work. Given the high cost of field data collection, we had to
visually interpret digitized high-resolution remote sensing images to obtain the reference layers. Thus,
the change detection scale of this study was relatively coarse and the classification system of the change
types was simple, especially for the Barque Canada Reef study sites. In future work, this framework
could be tested on other coral reef images with rich validation information to realize change detection
on finer scales with finer classification systems.
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Appendix A

Table A1. The area and proportion of reef island surface and coral reef habitats.

Zhongye Island

Types Area in 2005 (m2)
Proportion in 2005

(%) Area in 2010 (m2)
Proportion in 2010

(%)

Buildings and
infrastructures 154,819.86 24.85 145,485.35 23.35

Ocean 237,918.29 38.18 237,576.74 38.13
Bare land 35,529.86 5.70 35,064.84 5.63

Beach 20,092.13 3.22 26,716.40 4.29
Vegetation 174,709.09 28.04 178,225.91 28.60

Sum 623,069.23 100.00 623,069.23 100.00

Taiping Island

Types Area in 2004 (m2)
Proportion in 2004

(%) Area in 2010 (m2)
Proportion in 2010

(%)

Buildings and
infrastructures 67,932.38 9.17 127,455.08 17.20

Ocean 323,486.86 43.65 313,509.64 42.31
Bare land 34,235.36 4.62 42,485.03 5.73

Beach 37,762.43 5.10 50,523.22 6.82
Vegetation 277,608.10 37.46 207,052.17 27.94

Sum 741,025.13 100.00 741,025.13 100.00
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Table A1. Cont.

Barque Canada Reef Site 1

Types Area in 2013 (m2)
Proportion in 2013

(%) Area in 2015 (m2)
Proportion in 2015

(%)

Algae-dominated 117,799.30 5.23 316,069.08 14.04
Lagoon 235,411.50 10.46 7519.96 0.33
Ocean 462,830.44 20.56 220,900.08 9.81

Coral-dominated 270,640.08 12.02 241,113.99 10.71
Sand 400,262.34 17.78 485,582.71 21.57

Rubble-dominated 763,992.35 33.94 225,862.78 10.03
Aquatic

vegetation — — 753,887.39 33.49

Sum 2,250,936.00 100.00 2,250,936.00 100.00

Barque Canada Reef Site 2

Types Area in 2013 (m2)
Proportion in 2013

(%) Area in 2015 (m2)
Proportion in 2015

(%)

Algae-dominated 11679.00 0.36 33,324.13 1.03
Ocean 715,696.91 22.03 720,942.45 22.19

Coral-dominated 551,229.00 16.97 500,371.97 15.40
Rubble-dominated 868,028.67 26.72 892,846.00 27.48

Sand 1,102,457.99 33.93 1,000,743.93 30.80
Aquatic

vegetation — — 100,863.09 3.10

Sum 3,249,091.57 100.00 3,249,091.57 100.00

Table A2. The area and proportion of all change categories in Zhongye Island and Taiping Island.

Change Categories
Zhongye Island Taiping Island

Area (m2) Proportion (%) Area (m2) Proportion (%)

Coastal accretion 13,485.46 2.16 16,761.46 2.26
No change 517,984.69 83.13 577,412.20 77.92

Others 1490.03 0.24 36,902.00 4.98
Sea level rise or coastal erosion 5327.20 0.85 2813.15 0.38

Vegetation deterioration 39,262.32 6.30 81,149.28 10.95
Vegetation growth or plantation 45,519.53 7.31 25,987.05 3.51

Sum 623,069.23 100.00 741,025.13 100.00

Table A3. The area and proportion of all change categories in Barque Canada Reef.

Change Categories
Barque Canada Reef Site 1 Barque Canada Reef Site 2

Area (m2) Proportion (%) Area (m2) Proportion (%)

Algae growth 73,015.26 3.24% 21,655.81 0.67
Aquatic vegetation growth 7475.63 0.33% 100,852.41 3.10
Reef sediments extension 20,314.33 0.90% 30,428.52 0.94

Algae degradation 8006.50 0.36% — —
No change 2,141,469.54 95.16% 3,096,154.87 95.29

Sum 2,250,281.25 100.00% 3,249,091.60 100.00

Table A4. The object sample numbers of all change categories in Zhongye Island and Taiping Island.

Change Categories
Zhongye Island Taiping Island

Training Validation Training Validation

Coastal accretion 17 39 28 66
No change 1023 2386 684 1596

Others 2 5 52 121
Sea level rise or coastal erosion 11 26 5 12

Vegetation deterioration 21 48 100 234
Vegetation growth or plantation 28 65 33 76

Sum 1101 2569 902 2105
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Table A5. The object sample numbers of all change categories in Barque Canada Reef.

Change Categories
Barque Canada Reef Site 1 Barque Canada Reef Site 2

Training Validation Training Validation

Algae growth 103 240 40 93
Aquatic vegetation growth 7 16 128 299
Reef sediments extension 30 71 69 161

Algae degradation 8 18 — —
No change 2695 6290 3199 7466

Sum 2843 6635 3436 8019

Table A6. The pixel sample numbers of all change categories in Zhongye Island and Taiping Island.

Change Categories
Zhongye Island Taiping Island

Training Validation Training Validation

Coastal accretion 453 1058 1241 2895
No change 9828 22,933 13,218 30,843

Others 72 169 357 834
Sea level rise or coastal erosion 191 446 1376 3211

Vegetation deterioration 765 1784 3111 7259
Vegetation growth or plantation 1373 3203 1650 3850

Sum 12,683 29,593 20,954 48,892

Table A7. The pixel sample numbers of all change categories in Barque Canada Reef.

Change Categories
Barque Canada Reef Site 1 Barque Canada Reef Site 2

Training Validation Training Validation

Algae growth 6518 15,209 1725 4025
Aquatic vegetation growth 471 1098 4404 10,277
Reef sediments extension 1814 4233 2407 5616

Algae degradation 645 1506 — —
No change 128,840 300,626 129,200 301,466

Sum 138,288 322,672 137,736 321,384
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