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Abstract: Urban land use and transportation are closely associated. Previous studies have
investigated the spatial interrelationship between street centralities and land use intensities using
land cover data, thus neglecting the social functions of urban land. Taking the city of Shenzhen,
China, as a case study, we used reclassified points of interest (POI) data to represent commercial,
public service, and residential land, and then investigated the varying interrelationships between
the street centralities and different types of urban land use intensities. We calculated three global
centralities (“closeness”, “betweenness”, and “straightness”) as well as local centralities (1-km, 2-km,
3-km, and 5-km searching radiuses), which were transformed into raster frameworks using kernel
density estimation (KDE) for correlation analysis. Global closeness and straightness are high in the
urban core area, and roads with high global betweenness outline the skeleton of the street network.
The spatial patterns of the local centralities are distinguished from the global centralities, reflecting
local location advantages. High intensities of commercial and public service land are concentrated
in the urban core, while residential land is relatively scattered. The bivariate correlation analysis
implies that commercial and public service land are more dependent on centralities than residential
land. Closeness and straightness have stronger abilities in measuring the location advantages
than betweenness. The centralities and intensities are more positively correlated on a larger scale
(census block). These findings of the spatial patterns and interrelationships of the centralities and
intensities have major implications for urban land use and transportation planning.
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1. Introduction

Urban land use and transportation are two crucial subsystems within urban systems that
mutually interact and influence each other [1–4]. Urban roads facilitate socioeconomic activities
taking place on urban land, and urban land use, in turn, influences the travel behavior of citizens [5–7].
Urban socioeconomic activities and land use are never evenly distributed in self-organized cities nor
planned cities, and urban roads are the same. Therefore, the spatial correlation between urban land
use and urban roads has long been a major research interest of urban researchers and planners [8–10].

Street networks, composed of urban roads, are called the skeleton of a city [11]. A street
network is a typical complex network with two different representations, duel representation
and primal representation, which can be characterized and quantified by metrics and topological
measurements [12,13]. Centrality is a fundamental concept in graph theory and network science,
which identifies the most important vertices within a graph, for instance, the key infrastructure nodes in
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urban street networks [14,15]. Street centrality captures location advantages in a city and plays a crucial
role in shaping the intraurban variation of urban structures and land uses [16]. Previous studies have
examined the interrelationship between different centrality indicators (“betweenness”, “closeness”,
and “straightness”) and economic activities or general land uses intensities within a city [17–19].
For example, Wang et al. [16] analyzed the relationship between street centralities and land use
intensities, which are represented by population densities and employment densities. We seek to
further understand how street centralities specifically influence different types of urban land use,
such as commercial land, residential land, and industrial land.

However, to the best of our knowledge, there are few studies focusing on the influence of centrality
indicators on different types of urban land use. Rui and Ban (2014) found variant correlations between
different centralities and land use types in Stockholm using land-cover data [20]. Chaudhuri and
Clarke [21] used land-cover data (urban areas, natural areas, agricultural land use, and water bodies)
to investigate the spatiotemporal dynamics of the coupling between land use (change) and street
networks. However, land cover data can only quantify the spatial extent of land use and cannot
characterize the intensity of land use. Urban land use can be differentiated either by their physical
properties or social functions [22,23]. Remote sensing has long been used to acquire the physical
properties of land use and to classify land into land cover types [24], which neglects knowing the social
functions of urban land use [22]. Emerging types of big data, such as mobile phone data, points of
interest (POI), trajectories, and social media data, have been used to acquire fine urban land use
classifications [22,25–31], providing solutions for acquiring different types of urban land use.

A point of interest (POI) is a specific point location, referring to all geographical entities that can
be abstracted as points. Previous studies have suggested that POI data is capable of describing land
use at a disaggregated level and has a finer grain than a conventional land use map [32]. Using POI
data can not only identify the types of urban land use, but also their intensities. In this study, taking the
city of Shenzhen, China, as a case study, we use points of interest (POI) to represent different urban
land use types and their intensities, namely, commercial land, public service land, and residential land.
We focus on the distinguished interrelationships between street centralities and different urban land
use intensities.

2. Study Area and Data

2.1. Study Area

Shenzhen, located in the south of China, is one of the youngest megacities in China (Figure 1).
Thanks to China’s Open Policy reform, Shenzhen has experienced rapid growth over the past few
decades. In 2016, the permanent resident population in Shenzhen was 12 million, with a gross domestic
product (GDP) of approximately 300 billion USD [33]. There are ten districts in Shenzhen, namely:
Luohu, Futian, Nanshan, Yantian, Baoan, Longgang, Longhua, Guangming, Pingshan, and Dapeng
(Figure 1), among which Luohu, Futian, Nanshan, and Yantian are the four initial special economic
zones in Shenzhen [34]. Presently, Futian and Luohu are the downtown areas and Nanshan is the
high-technology zone in Shenzhen City [35].

Shenzhen is not built on China’s vast plains, but instead around hills along the coastline (Figure 1).
Restricted by its special terrain, Shenzhen implemented a multicluster urban master plan at the
beginning of its establishment [32,35]. In each urban cluster, planners have assigned and designed
employment and residential areas to minimize commuting across clusters. Under such circumstances,
the roads carrying commuting across clusters are particularly important in the street network.
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Figure 1. Location of Shenzhen City in China and its spatial extent. 

2.2. Street Network 

Street centralities’ characterization heavily relies on the high-quality data of urban roads. 
OpenStreetMap, which uses edits and updates of roads across the world done by volunteers, can be 
a vital approach for acquiring urban roads, and has been successfully used in other studies [36–40]. 
Nevertheless, there are two obstacles (typology and file format) in building a street network using 
OpenStreetMap road data. Recently, Boeing has developed a useful toolbox (OSMnx) based on 
Python programming, which can easily download a street network from OpenStreetMap, check and 
correct the network topology, and analyze the street networks [38]. Specifically, this toolbox produces 
nodes only at locations where roads intersect, thus excluding overpasses and tunnels. This process 
results in a nonplanar graph, while most of the previous studies simplify the street networks as planar 
networks [38]. 

We used OSMnx to download the drivable urban roads in Shenzhen City on 8 February 2018 [38]. 
There are 28,064 nodes (intersections) and 41,789 edges (links between two intersections) in the street 
network. The road length (length of edges) and kernel density of the nodes (using kernel density 
estimation (KDE) in a default searching radius) are presented in Figure 2a,b, respectively. The road 
length varies from 0.2 m to 13.6 km, with a mean of 223.1 m. The total length of the roads is 9323 km, 
and the average road density in Shenzhen is 4.67 km/km2 (the land area in Shenzhen City is 1997 
km2). The length of the edges is relatively short in the core area, while long edges are roads across 
districts (Figure 2a). A high density of nodes are concentrated in the core area (Futian, Nanshan, and 
Luohu districts) (Figure 2b). In the following section, we analyzed the correlation between the street 
centralities and land use intensities in Shenzhen, excluding the Dapeng district, because of the sparse 
roads there (Figure 2a). 

Figure 1. Location of Shenzhen City in China and its spatial extent.

2.2. Street Network

Street centralities’ characterization heavily relies on the high-quality data of urban roads.
OpenStreetMap, which uses edits and updates of roads across the world done by volunteers, can be
a vital approach for acquiring urban roads, and has been successfully used in other studies [36–40].
Nevertheless, there are two obstacles (typology and file format) in building a street network using
OpenStreetMap road data. Recently, Boeing has developed a useful toolbox (OSMnx) based on Python
programming, which can easily download a street network from OpenStreetMap, check and correct
the network topology, and analyze the street networks [38]. Specifically, this toolbox produces nodes
only at locations where roads intersect, thus excluding overpasses and tunnels. This process results
in a nonplanar graph, while most of the previous studies simplify the street networks as planar
networks [38].

We used OSMnx to download the drivable urban roads in Shenzhen City on 8 February 2018 [38].
There are 28,064 nodes (intersections) and 41,789 edges (links between two intersections) in the
street network. The road length (length of edges) and kernel density of the nodes (using kernel
density estimation (KDE) in a default searching radius) are presented in Figure 2a,b, respectively.
The road length varies from 0.2 m to 13.6 km, with a mean of 223.1 m. The total length of the roads is
9323 km, and the average road density in Shenzhen is 4.67 km/km2 (the land area in Shenzhen City
is 1997 km2). The length of the edges is relatively short in the core area, while long edges are roads
across districts (Figure 2a). A high density of nodes are concentrated in the core area (Futian, Nanshan,
and Luohu districts) (Figure 2b). In the following section, we analyzed the correlation between the
street centralities and land use intensities in Shenzhen, excluding the Dapeng district, because of the
sparse roads there (Figure 2a).
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Figure 2. Spatial distribution of the road net and road lengths in Shenzhen City (a) and density of 
nodes in Shenzhen City (b). The nodes density used the kernel density estimation (KDE) in a default 
searching radius. 

2.3. Points of Interest (POI) 

We collected the POI data in Shenzhen City from Amap (https://www.amap.com/) on 28 
February 2018, with a total of 611,122 records. These POIs are divided into 15 primary categories and 
81 subcategories. The numbers and proportions of POIs in the 15 primary categories are presented in 
Figure 3. The core function of a city is to provide urban residents with housing and employment, as 
well as public services. On the other hand, from the perspective of urban land functions, the most 
important land types are commercial land, residential land, and industrial land. Unfortunately, the 
POI data we obtained cannot accurately identify the industrial land in Shenzhen City (Figure 3). 
Therefore, we summarized the POI data into three categories, namely, commercial and business 
facilities, residential sites, and administration and public services (see detailed information in Figure 3). 
We used the three categories of POIs to represent commercial land, residential land, and public 
service land, respectively (Figure 3). 
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Figure 2. Spatial distribution of the road net and road lengths in Shenzhen City (a) and density of
nodes in Shenzhen City (b). The nodes density used the kernel density estimation (KDE) in a default
searching radius.

2.3. Points of Interest (POI)

We collected the POI data in Shenzhen City from Amap (https://www.amap.com/) on
28 February 2018, with a total of 611,122 records. These POIs are divided into 15 primary categories
and 81 subcategories. The numbers and proportions of POIs in the 15 primary categories are presented
in Figure 3. The core function of a city is to provide urban residents with housing and employment,
as well as public services. On the other hand, from the perspective of urban land functions, the most
important land types are commercial land, residential land, and industrial land. Unfortunately,
the POI data we obtained cannot accurately identify the industrial land in Shenzhen City (Figure 3).
Therefore, we summarized the POI data into three categories, namely, commercial and business
facilities, residential sites, and administration and public services (see detailed information in Figure 3).
We used the three categories of POIs to represent commercial land, residential land, and public service
land, respectively (Figure 3).
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3. Methods

3.1. Street Centrality Measures

Centrality plays a crucial role in understanding the structural properties of the complex relational
network [15]. The multiple centrality assessment (MCA) method has been broadly used to analyze
urban street networks based on primal graphs, in which the road intersections are turned into nodes,
and the connections between the nodes have been turned into edges [16,18,19,41]. There are three
centrality indicators, namely, the closeness centrality, betweenness centrality, and straightness centrality,
which have been widely used in related studies [16,18–20].

Closeness centrality (CC) quantifies to what extent a node (i) is close to all of the other nodes along
the shortest paths of the network, which is defined as follows:

CC
i =

N − 1
N
∑

i=1;j 6=1
dij

(1)

where N is the total number of nodes in the network and dij is the shortest path length between node i
and j.

Betweenness centrality (CB) quantifies the centrality of a node (i) by counting how many times the
node (i) is traversed by the shortest paths of all of the pairs of nodes in the network, which is defined
as follows:

CB
i =

1
(N − 1)(N − 2)

N

∑
j = 1; k = 1;

j 6= k 6= i

njk(i)
njk

(2)

where njk is the number of shortest paths between nodes j and k, and njk(i) is the number of these
shortest paths that traverse node i.

Straightness centrality (CS) quantifies the extent of a deviation of the distance from the shortest
path and the straight line between node i and j, which is defined as follows:

CS
i =

1
N − 1

N

∑
j=1;j 6=k

dEucl
ij

dij
(3)

where dEucl
ij is the Euclidean distance between node i and j. A higher straightness centrality (Cs) of

node (i) means a better directness to the node, resulting a higher commuting efficiency.
We calculated these centrality indicators at each node using urban network analysis tools [41],

which can be executed as a toolbox in a GIS software. The centrality indicator of a node is largely
affected by the searching radius. The default searching radius is infinite, and when calculating a node’s
centrality indicator, the arithmetic will traverse all of the nodes in the road network, resulting in global
centralities. Local centralities with specific searching radiuses (1 km, 2 km, 3 km, and 5 km) are also
calculated, which will be presented in the discussion section.

3.2. Kernel Density Estimation (KDE)

As the calculation of street centralities is based on nodes (points), and POI data is also the
point data, which are unevenly distributed, we need centralities and land use intensities across
the whole study area in order to perform a correlation analysis. Among the numerous methods of
spatial smoothing and spatial interpolation, kernel density estimation (KDE) has been commonly
used to transform the results of street centralities and land use intensities into continuous raster
frameworks [17,18]. KDE is a nonparametric way to estimate the probability density function of a
random variable. In GIS, KDE uses the density within a range (window) of each observation in order
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to calculate the value at the center of the window by weighting nearby observations more than distant
observations based on a kernel function [17]. The definition of the equation and a detailed explanation
of KDE can be found in a previous relevant paper [17].

We used KDE to acquire the raster frameworks of the centrality indicators and POI-based urban
land use intensities. We first used the default searching radius of the KDE method in ArcGIS10.2,
which is the shortest of the width or height of the output extent in the output spatial reference divided
by 30. In this study, the searching radius in KDE ranges from 1145 m (for commercial and business
facilities) to 1400 m (for residential sites). We calculated the urban land use intensities under different
searching radiuses in KDE (1 km, 2 km, 3 km, and 5 km). The centrality indicators and land use
intensities under different searching radiuses in KDE are highly correlated. Thus, we only compare the
correlations between the centrality indicators and land use intensities using the raster frameworks
under the default searching radius in KDE. The use of the default searching radius in KDE is to avoid
any confusion with the searching radiuses in the calculation of the local centralities. The cell size for
the output raster dataset is defined as the default value in ArcGIS10.2, which is the shorter of the width
or height of the output extent in the output spatial reference divided by 250. In this study, the height of
the output extent is shorter, which is approximately 45 km, resulting in a cell size of approximately
180 m.

After acquiring raster frameworks, we used the 1 km grid and subdistricts (census blocks) in
Shenzhen to summarize the centrality indicators and land use intensities. Then, we used the Pearson’s
correlation analysis to investigate the correlation between the street centralities and land use intensities.
We first presented the results of correlation analysis using a 1 km grid (N = 1621), and we compared
that with the correlation results using census blocks (N = 58) in order to check the influences of the
units in the correlation analysis. The overall flowchart of this study is shown in Figure 4.
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4. Results

4.1. Spatial Patterns of Street Centralities

We first calculated three global centrality indicators at each node using urban network analysis
tools [41]. Then, the centralities of the edges are summarized using the average of the centralities of
the two nodes linking to this edge [16]. The spatial distributions of the three centrality indicators using
KDE in the default searching radiuses are presented in Figure 5. The frequency distributions of the
three centralities indicators at the node level are presented in Figure 6.
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Global closeness centrality (Glob CC) presents a concentric ring form, which decreases from the
center to the outside (Figure 5a). The highest value of Glob CC in the core area reflects the location
advantage within the whole network (Figure 5a). The results of KDE show that high values of Glob CC

are concentrated in the urban core area, namely, the Futian, Luohu, and Nanshan Districts (Figure 5b).
In Longhua District, which is relatively far from the urban core area, there is also a high-value area of
Glob CC. This is the Foxconn Technology Park, where urban roads are dense and have a high Glob Cc

(Figure 5b).
The spatial patterns of global betweenness centralities (Glob CB) are obviously different from those

of Glob CC. Most of the roads show a very low Glob CB (Figures 5c and 6b), and only important roads
have a high Glob CB, which can be more clearly seen in the KDE results (Figure 5d). Shennan Avenue
and North Ring Avenue are the east–west arteries, playing an important role in connection within
the core urban area; thus, the two roads present a high Glob CB. Other highways or expressways
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connecting different urban clusters also have a high Glob CB. Those roads with a low Glob CB are
not predominant in the whole network, but they could have important connections in the local areas.
This dynamic will be reflected in the local centralities.

Global straightness centralities (Glob CS) are high in the core urban area and in the northeast
and west of the city. The typical road length in the urban core areas is short, partly resulting in the
relatively high Glob CS. In contrast to the frequency distribution of Glob CB, more nodes have a higher
Glob CS (Figure 6b,c). The KDE result shows that a high Glob CS is concentrated in the core urban
area, similar to the spatial pattern of Glob CC.

4.2. Spatial Distributions of Urban Land Use Intensities

We used the reclassified POI data to represent the following three types of urban land use:
commercial land, public service land, and residential land. We used KDE to generate the land use
intensity raster frameworks shown in Figure 7. The frequency distributions of land use intensities in a
1 km grid are shown in Figure 8.

Compared to the spatial patterns of the centrality indicators, high intensities of urban land use
are more concentrated in smaller areas (Figure 7). Specific to the three types of POI-based urban
land use intensities, there are also apparent disparities in their spatial patterns. The intensities of
commercial land and public services land are extremely concentrated in the following two urban
areas: the Luohu–Futian area and Nanshan–Baoan area (Figure 7a,b). In contrast, the agglomeration of
residential land is not as obvious as the other two, and its spatial distribution is relatively scattered.
In addition to the centralized distribution of residential land in the core urban area, Longhua and
Longgang, which are relatively far from the core urban area, also have a large amount of residential
land (Figure 7c).
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4.3. Correlations between Street Centrality and Land Use Intensity

We summarized the street centralities and land use intensities in each 1 km grid. Scatter plots
of street centralities and land use intensities excluding the grids with zero values of centralities
or intensities are presented in Figure 9. The straight line is the linear regression line between the
street centralities and land use intensities. Overall, the street centralities and land use intensities
are positively correlated. We used a bivariate correlation analysis (Pearson’s r) to test the degree of
correlation between the street centralities and land use intensities using SPSS 21. We also calculated
the Pearson’s r of the logarithmic form of centralities or land use intensities. The results of the bivariate
correlation analysis are presented in Table 1.
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Figure 9. Scatter plots of street centralities and land use intensities. The same vertical column shares
the same centrality indicator: Closeness, Betweenness, and Straightness, from left to right, respectively.
The same horizontal row shares the same land use intensity: commercial land, public service land,
and residential land, from top to bottom, respectively. The straight lines are linear regression lines.
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Table 1. Pearson’s r between global street centralities and land use intensities in a 1 km grid.

Centralities Comm # Publ # Resi # Ln(Comm) Ln(Publ) Ln(Resi)

Glob CC 0.670 ** 0.701 ** 0.585 ** 0.679 ** 0.677 ** 0.648 **
Glob CB 0.343 ** 0.350 ** 0.381 ** 0.386 ** 0.374 ** 0.391 **
Glob CS 0.665 ** 0.700 ** 0.540 ** 0.733 ** 0.729 ** 0.668 **

Ln(Glob CC) 0.428 ** 0.463 ** 0.428 ** 0.737 ** 0.725 ** 0.694 **
Ln(Glob CB) 0.360 ** 0.375 ** 0.381 ** 0.456 ** 0.441 ** 0.447 **
Ln(Glob CS) 0.426 ** 0.461 ** 0.400 ** 0.753 ** 0.738 ** 0.684 **

# Comm, Publ, and Resi mean commercial land, public service land, and residential land, respectively. ** p < 0.01.

Generally, the street centralities and land use intensities are significantly correlated in all four
forms (x~y, Lnx~y, x~Lny, and Lnx~Lny), and their logarithmic forms (Lnx~Lny) show the highest
correlation (Table 1). The street centralities have varying impacts on the different types of urban land
use. From the perspective of centralities, Glob CC and Glob CS have a higher Pearson’s r with land
use intensities than that of Glob CB, which implies that the intensities of urban land use are more
dependent on the Glob CC and Glob CS of the street network. As previously mentioned, Glob CB

measures the nodes that play key roles in connecting the entire street network, and the nodes with
an important connectivity may not be active places for socioeconomic activities, which leads to the
relatively low correlation between the Glob CB and urban land use intensities.

In terms of different urban land use, commercial land and public service land have higher
Pearson’s r values with centralities than that of residential land. Compared with the centralized
distribution of commercial land and public service land, the spatial distribution of residential land is
scattered, resulting in a lower correlation with street centralities.

5. Discussion

5.1. Local Street Centralities

To test the correlation between the local street centralities and the land use intensities,
we calculated three centrality indicators for each code under different searching radiuses of 1 km, 2 km,
3 km, and 5 km. The spatial distributions of the KDE of the local centralities are presented in Figure 10.
Generally, the spatial patterns of the local centralities are different from those of the global centralities.
The local centralities show the location advantage of the nodes within a local area. In particular,
the local CB measures the connectivity of a road within a local area, whose spatial patterns are more
scattered compared to global CB. The high values of local CC and local CS are mainly concentrated in
the core area, but there are also obvious locally high values far from the core area (Figure 10). With the
increase in the searching radius in the centralities calculations, the spatial pattern of the centralities is
closer to the global centralities pattern, thus showing a transformation of local characteristics to the
overall features.

We also summarized the local street centralities in the 1 km grid and analyzed their correlations
between the local centralities under different searching radiuses and urban land use intensities. Due to
the similar degree of correlation in the different forms (Table 1), we only tested the linear correlation
between the local centralities and intensities in this study (Table 2). The linear correlation coefficients
between the global centralities and land use intensities are also included in Table 2 for comparison.
The correlations between local CC (local CB) and the land use intensities show a decreasing trend as
the searching radius increases from 1 km to 5 km, while the correlations between local CS and the land
use intensities tend to increase as the searching radius increases (Table 2).

In comparisons of the global and local centralities, local CC
1km is more correlated with the

intensities of the commercial land and public service land than global CC, but it is opposite for the
residential land. Global CB has a higher correlation with land use intensities, indicating the higher
impact on the urban land use intensities compared to local CB. However, local CS has a higher
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correlation with urban land use intensities. In summary, the optimal scales of correlation between
the commercial land and the three centralities are local CC

1km, global CB, and local CS
5km, which are

shared by public service land. The optimal scales of correlation between the residential land and the
three centralities are global CC, global CB, and local CS

5km. These Pearson’s r values under the optimal
scales are in bold in Table 2.
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2 km, 3 km, and 5 km. The same vertical column shares the same centrality indicator: Closeness,
Betweenness, and Straightness, from left to right, respectively. The same horizontal row shares the
same searching radius: 1 km, 2 km, 3 km, and 5 km, from top to bottom, respectively.

Table 2. Pearson’s r between local street centralities and land use intensities in the 1 km grid.

Centralities Comm # Publ Resi

Global CC ## 0.675 ** 0.706 ** 0.592 **
Local CC

1km 0.698 ** 0.734 ** 0.541 **
Local CC

2km 0.654 ** 0.688 ** 0.501 **
Local CC

3km 0.597 ** 0.629 ** 0.452 **
Local CC

5km 0.316 ** 0.344 ** 0.255 **

Global CB 0.405 ** 0.413 ** 0.433 **
Local CB

1km 0.296 ** 0.325 ** 0.264 **
Local CB

2km 0.248 ** 0.272 ** 0.232 **
Local CB

3km 0.215 ** 0.239 ** 0.201 **
Local CB

5km 0.195 ** 0.223 ** 0.169 **

Global CS 0.669 ** 0.703 ** 0.549 **
Local CS

1km 0.733 ** 0.771 ** 0.563 **
Local CS

2km 0.740 ** 0.779 ** 0.563 **
Local CS

3km 0.744 ** 0.783 ** 0.565 **
Local CS

5km 0.747 ** 0.785 ** 0.569 **
# Comm, Publ, and Resi mean commercial land, public service land, and residential land, respectively.
## Global centralities are also included for the convenience of comparison. ** p < 0.01.
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5.2. Effect of Statistical Units

To test the impact of the different statistical units on the correlation between the street centralities
and land use intensities, we summarized the street centralities and land use intensities using the
Shenzhen subdistrict administrative units (census blocks). The spatial distributions of the street
centralities and land use intensities at the census block level are shown in Figure 11. We only calculated
the linear correlation between the street centralities and urban land use intensities under the optimal
scales, which are presented in Table 3. Dapeng District is excluded from the correlation analysis for
consistency, resulting in 58 census blocks in total.

The street centralities in the census blocks show an apparent concentration of high centralities
in the core area (blue ellipses) in Figure 11a,c,e. The high intensities of commercial land and public
service land are also concentrated in the core urban area (Figure 11b,d). However, for residential
land, the Longhua and Minzhi blocks have high intensities, which are away from the core urban
area (Figure 11f). Urban land intensities in Nanshan Disctrict (red circles), the high-technology zone,
are relatively low compared to the Futian and Luohu districts, the initial special economic zones.
The results of the correlation analysis show that the street centralities and urban land use intensities at
the subdistrict level have a higher Pearson’s r compared with that in the 1 km grid (Tables 2 and 3).
The subdistricts that have a larger scale than the 1 km grid and can eliminate local noise, resulting in a
higher degree of correlation.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 15 

 

5.2. Effect of Statistical Units 

To test the impact of the different statistical units on the correlation between the street 
centralities and land use intensities, we summarized the street centralities and land use intensities 
using the Shenzhen subdistrict administrative units (census blocks). The spatial distributions of the 
street centralities and land use intensities at the census block level are shown in Figure 11. We only 
calculated the linear correlation between the street centralities and urban land use intensities under 
the optimal scales, which are presented in Table 3. Dapeng District is excluded from the correlation 
analysis for consistency, resulting in 58 census blocks in total. 

The street centralities in the census blocks show an apparent concentration of high centralities 
in the core area (blue ellipses) in Figure 11a,c,e. The high intensities of commercial land and public 
service land are also concentrated in the core urban area (Figure 11b,d). However, for residential land, 
the Longhua and Minzhi blocks have high intensities, which are away from the core urban area 
(Figure 11f). Urban land intensities in Nanshan Disctrict (red circles), the high-technology zone, are 
relatively low compared to the Futian and Luohu districts, the initial special economic zones. The 
results of the correlation analysis show that the street centralities and urban land use intensities at 
the subdistrict level have a higher Pearson’s r compared with that in the 1 km grid (Tables 2 and 3). 
The subdistricts that have a larger scale than the 1 km grid and can eliminate local noise, resulting in 
a higher degree of correlation. 

 
Figure 11. Spatial distributions of street centralities and land use intensities at the subdistrict level 
(census block) in Shenzhen City. (a) Closeness at 1 km searching radius, (b) Commercial land use 
intensity, (c) Global Betweenness, (d) Public service land use intensity, (e) Straightness at 2 km 
searching radius, (f) Residential land use intensity.  

Table 3. Pearson’s r between street centralities and land use intensities at the subdistrict level (census 
block) (N = 58). 

Centralities Comm # Publ Resi 
Local CC1km 0.794 ** 0.849 ** 0.749 ** 
Global CB 0.518 ** 0.573 ** 0.521 ** 

Local CS5km 0.819 ** 0.872 ** 0.753 ** 
# Comm, Publ, and Resi represent commercial land, public service land, and residential land, 
respectively. ** p < 0.01. 

Figure 11. Spatial distributions of street centralities and land use intensities at the subdistrict level
(census block) in Shenzhen City. (a) Closeness at 1 km searching radius, (b) Commercial land use
intensity, (c) Global Betweenness, (d) Public service land use intensity, (e) Straightness at 2 km searching
radius, (f) Residential land use intensity.

Table 3. Pearson’s r between street centralities and land use intensities at the subdistrict level (census
block) (N = 58).

Centralities Comm # Publ Resi

Local CC
1km 0.794 ** 0.849 ** 0.749 **

Global CB 0.518 ** 0.573 ** 0.521 **
Local CS

5km 0.819 ** 0.872 ** 0.753 **
# Comm, Publ, and Resi represent commercial land, public service land, and residential land, respectively.
** p < 0.01.
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6. Conclusions

Urban land use structure and transport systems mutually interact. Previous studies on the
interrelationships between street centralities and land use intensities relied on land cover data,
neglecting the social functions of urban land use. Taking Shenzhen City as a case study, this study
contributed to distinguishing the different types of urban land use using reclassified points of
interest (POI) data and investigating their varying correlations with three street centralities (closeness,
betweenness, and straightness). The high values of the global closeness and straightness centralities
are concentrated in the urban core areas, while the high values of the global betweenness centralities
highlight the backbone of the road network. As the searching radius increases, the spatial patterns
of the local centralities are more similar to the global centralities, showing a transformation of local
characteristics to overall features. The results of our correlation analysis show a general strong
correlation between urban land intensities and street centralities. Specifically, commercial land and
public service land are more correlated with street centralities than residential land, because the spatial
distribution of residential land is relatively scattered compared to the other two types of urban land
use. We also found that the closeness and straightness centralities have stronger abilities in measuring
locational advantages than the betweenness centrality. The statistical units can affect the correlation
between the street centralities and the land use intensities, and they are more correlated in a larger
scale unit because of their reduced noise and ignored extraneous details. The analysis of the spatial
patterns of street centralities and urban land use intensities, as well as their interdependence can help
the implementation of urban land use planning and transportation planning.

This study uses POI data to characterize the different types of urban land use. However, the results
are not verified by the determined data, which may reduce the feasibility of the result. Secondly,
Shenzhen City is adjacent to Dongguan City and Huizhou City, and the residents of the three cities
commute between each other frequently, especially at the junction of Shenzhen and Dongguan.
This study only obtained the street network within the administrative boundaries of Shenzhen,
resulting in a bias for the street centralities calculation at the edge of the city boundary, also known
as the “edge effect” [42]. Finally, we only tested correlations between the street centralities and land
use intensities and their variations. Their spatial distributions and interrelationships between them
are complex, which can be influenced by regulation, history, as well as many other factors [21].
Further studies could help explain the mechanism of interdependence between urban land use
and transportation.

Author Contributions: S.W. and G.X. conceived the experiments, analyzed the data, and wrote the paper.
Q.G. reviewed and provided comments for revisions.

Funding: This work was supported by the National Natural Science Foundation of China, grant number 41471384.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Badoe, D.A.; Miller, E.J. Transportation-land-use interaction: Empirical findings in North America, and their
implications for modeling. Transp. Res. Part D 2000, 5, 235–263. [CrossRef]

2. Cao, X. Land use and transportation in China. Transp. Res. Part D 2017, 52, 423–427. [CrossRef]
3. Wang, Y.; Monzon, A.; Ciommo, F.D. Assessing the accessibility impact of transport policy by a land-use and

transport interaction model—The case of Madrid. Comput. Environ. Urban Syst. 2015, 49, 126–135. [CrossRef]
4. Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [CrossRef]
5. Sultana, S. Transportation and land use. In International Encyclopedia of Geography; John Wiley & Sons, Ltd.:

New York, NY, USA, 2016.
6. Van Wee, B. Evaluating the impact of land use on travel behaviour: The environment versus accessibility.

J. Transp. Geogr. 2011, 19, 1530–1533. [CrossRef]
7. Lee, M.; Barbosa, H.; Youn, H.; Holme, P.; Ghoshal, G. Morphology of travel routes and the organization of

cities. Nat. Commun. 2017, 8, 2229. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S1361-9209(99)00036-X
http://dx.doi.org/10.1016/j.trd.2017.02.007
http://dx.doi.org/10.1016/j.compenvurbsys.2014.03.005
http://dx.doi.org/10.1080/01944365908978307
http://dx.doi.org/10.1016/j.jtrangeo.2011.05.011
http://dx.doi.org/10.1038/s41467-017-02374-7
http://www.ncbi.nlm.nih.gov/pubmed/29263392


ISPRS Int. J. Geo-Inf. 2018, 7, 425 14 of 15

8. Jaarsma, C.F. Approaches for the planning of rural road networks according to sustainable land use planning.
Landsc. Urban Plan. 1997, 39, 47–54. [CrossRef]

9. Shen, Y.; Karimi, K. The economic value of streets: Mix-scale spatio-functional interaction and housing price
patterns. Appl. Geogr. 2017, 79, 187–202. [CrossRef]

10. Van Oort, F.; Burger, M.; Raspe, O. On the economic foundation of the urban network paradigm:
Spatial integration, functional integration and economic complementarities within the Dutch Randstad.
Urban Stud. 2010, 47, 725–748. [CrossRef]

11. Lin, J.; Ban, Y. Comparative analysis on topological structures of urban street networks. ISPRS Int. J. Geo-Inf.
2017, 6, 295.

12. Porta, S.; Crucitti, P.; Latora, V. The network analysis of urban streets: A dual approach. Physica A 2006, 369,
853–866. [CrossRef]

13. Porta, S.; Crucitti, P.; Latora, V. The network analysis of urban streets: A primal approach. Environ. Plan. B
2006, 33, 705–725. [CrossRef]

14. Crucitti, P.; Latora, V.; Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 2006, 73, 036125. [CrossRef] [PubMed]

15. Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets. Chaos 2006, 16, 015113. [CrossRef]
[PubMed]

16. Wang, F.; Antipova, A.; Porta, S. Street centrality and land use intensity in Baton rouge, Louisiana.
J. Transp. Geogr. 2011, 19, 285–293. [CrossRef]

17. Porta, S.; Strano, E.; Iacoviello, V.; Messora, R.; Latora, V.; Cardillo, A.; Wang, F.H.; Scellato, S. Street centrality
and densities of retail and services in Bologna, Italy. Environ. Plan. B 2009, 36, 450–465. [CrossRef]

18. Porta, S.; Latora, V.; Wang, F.; Rueda, S.; Strano, E.; Scellato, S.; Cardillo, A.; Belli, E.; Càrdenas, F.;
Cormenzana, B. Street centrality and the location of economic activities in Barcelona. Urban Stud. 2012, 49,
1471–1488. [CrossRef]

19. Wang, F.; Chen, C.; Xiu, C.; Zhang, P. Location analysis of retail stores in Changchun, China: A street
centrality perspective. Cities 2014, 41, 54–63. [CrossRef]

20. Rui, Y.; Ban, Y. Exploring the relationship between street centrality and land use in Stockholm. Int. J. Geogr.
Inf. Sci. 2014, 28, 1425–1438. [CrossRef]

21. Chaudhuri, G.; Clarke, K.C. On the spatiotemporal dynamics of the coupling between land use and road
networks: Does political history matter? Environ. Plan. B 2015, 42, 133–156. [CrossRef]

22. Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.-L.; Li, T.; Zhou, C. A new insight into land use classification based
on aggregated mobile phone data. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [CrossRef]

23. Zhou, M.; Yue, Y.; Li, Q.; Wang, D. Portraying temporal dynamics of urban spatial divisions with mobile
phone positioning data: A complex network approach. ISPRS Int. J. Geo-Inf. 2016, 5, 240. [CrossRef]

24. Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high
spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [CrossRef]

25. Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by
integrating points-of-interest and Google word2vec model. J. Geogr. Inf. Sci. 2016, 31, 825–848. [CrossRef]

26. Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.; Pereira, F.C. Mining point-of-interest data from social networks
for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [CrossRef]

27. Liu, X.; Long, Y. Automated identification and characterization of parcels with openstreetmap and points of
interest. Environ. Plan. B 2015, 43, 341–360. [CrossRef]

28. Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human
activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [CrossRef]

29. Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social
media check-in data. Cities 2016, 55, 9–21. [CrossRef]

30. Yuan, J.; Zheng, Y.; Xie, X. Discovering Regions of Different Functions in a City Using Human Mobility and
POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Beijing, China, 12–16 August 2012; ACM: New York, NY, USA, 2012; pp. 186–194.

31. Wang, Y.; Gu, Y.; Dou, M.; Qiao, M. Using spatial semantics and interactions to identify urban functional
regions. ISPRS Int. J. Geo-Inf. 2018, 7, 130. [CrossRef]

32. Yue, Y.; Zhuang, Y.; Yeh, A.G.O.; Xie, J.-Y.; Ma, C.-L.; Li, Q.-Q. Measurements of POI-based mixed use and
their relationships with neighbourhood vibrancy. J. Geogr. Inf. Sci. 2016, 31, 658–675. [CrossRef]

http://dx.doi.org/10.1016/S0169-2046(97)00067-4
http://dx.doi.org/10.1016/j.apgeog.2016.12.012
http://dx.doi.org/10.1177/0042098009352362
http://dx.doi.org/10.1016/j.physa.2005.12.063
http://dx.doi.org/10.1068/b32045
http://dx.doi.org/10.1103/PhysRevE.73.036125
http://www.ncbi.nlm.nih.gov/pubmed/16605616
http://dx.doi.org/10.1063/1.2150162
http://www.ncbi.nlm.nih.gov/pubmed/16599779
http://dx.doi.org/10.1016/j.jtrangeo.2010.01.004
http://dx.doi.org/10.1068/b34098
http://dx.doi.org/10.1177/0042098011422570
http://dx.doi.org/10.1016/j.cities.2014.05.005
http://dx.doi.org/10.1080/13658816.2014.893347
http://dx.doi.org/10.1068/b39089
http://dx.doi.org/10.1080/13658816.2014.913794
http://dx.doi.org/10.3390/ijgi5120240
http://dx.doi.org/10.1016/j.rse.2018.04.050
http://dx.doi.org/10.1080/13658816.2016.1244608
http://dx.doi.org/10.1016/j.compenvurbsys.2014.12.001
http://dx.doi.org/10.1177/0265813515604767
http://dx.doi.org/10.1111/tgis.12289
http://dx.doi.org/10.1016/j.cities.2016.03.013
http://dx.doi.org/10.3390/ijgi7040130
http://dx.doi.org/10.1080/13658816.2016.1220561


ISPRS Int. J. Geo-Inf. 2018, 7, 425 15 of 15

33. Beruea of Statistics of Shenzhen. Statistical Communique of Shenzhen on Economic and Social Development
in 2016. 2017. Available online: http://www.sz.gov.cn/cn/xxgk/zfxxgj/tjsj/tjgb/201705/t20170502_
6199402.htm (accessed on 20 October 2018). (In Chinese)

34. Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating urban land-use changes at a large scale
by integrating dynamic land parcel subdivision and vector-based cellular automata. J. Geogr. Inf. Sci. 2017,
31, 2452–2479. [CrossRef]

35. Tu, W.; Cao, J.; Yue, Y.; Shaw, S.-L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling mobile phone and
social media data: A new approach to understanding urban functions and diurnal patterns. J. Geogr. Inf. Sci.
2017, 31, 2331–2358. [CrossRef]

36. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

37. Haklay, M. How good is volunteered geographical information? A comparative study of openstreetmap and
ordnance survey datasets. Environ. Plan. B 2010, 37, 682–703. [CrossRef]

38. Boeing, G. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street
networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [CrossRef]

39. Grippa, T.; Georganos, S.; Zarougui, S.; Bognounou, P.; Diboulo, E.; Forget, Y.; Lennert, M.; Vanhuysse, S.;
Mboga, N.; Wolff, E. Mapping urban land use at street block level using openstreetmap, remote sensing data,
and spatial metrics. ISPRS Int. J. Geo-Inf. 2018, 7, 246. [CrossRef]
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