
 International Journal of

Geo-Information

Article

A Task-Oriented Knowledge Base for
Geospatial Problem-Solving

Can Zhuang 1 , Zhong Xie 1,2,*, Kai Ma 1, Mingqiang Guo 1 and Liang Wu 1,2

1 School of Information Engineering, China University of Geosciences, Wuhan 430074, China;
zhuangcan@cug.edu.cn (C.Z.); makai@cug.edu.cn (K.M.); guomingqiang@mapgis.com (M.G.);
wuliang@cug.edu.cn (L.W.)

2 National Engineering Research Center for GIS, Wuhan 430074, China
* Correspondence: xiezhong@cug.edu.cn; Tel.: +86-133-8750-5800

Received: 5 September 2018; Accepted: 27 October 2018; Published: 31 October 2018
����������
�������

Abstract: In recent years, the rapid development of cloud computing and web technologies has led
to a significant advancement to chain geospatial information services (GI services) in order to solve
complex geospatial problems. However, the construction of a problem-solving workflow requires
considerable expertise for end-users. Currently, few studies design a knowledge base to capture and
share geospatial problem-solving knowledge. This paper abstracts a geospatial problem as a task that
can be further decomposed into multiple subtasks. The task distinguishes three distinct granularities:
Geooperator, Atomic Task, and Composite Task. A task model is presented to define the outline
of problem solution at a conceptual level that closely reflects the processes for problem-solving.
A task-oriented knowledge base that leverages an ontology-based approach is built to capture and
share task knowledge. This knowledge base provides the potential for reusing task knowledge when
faced with a similar problem. Conclusively, the details of implementation are described through
using a meteorological early-warning analysis as an example.

Keywords: task; workflow; geospatial problem-solving; knowledge base

1. Introduction

In recent years, with the rapid development of cloud computing and web technologies, an
increasing number of geospatial information resources (GIRs), e.g., geospatial data, geospatial analysis
functions, models, applications, etc., have been encapsulated into a wide variety of geographic
information services (GIServices) [1] which are accessible to general public users over the web [2,3].
For example, a web service toolkit, named GeoPW [4], provides a set of geoprocessing services,
which are used to fulfill data processing and spatial analysis tasks over distributed information
infrastructures [5]. In the geospatial community, The Open Geospatial Consortium (OGC) established
a series of standard interface specifications, such as Web Feature Service (WFS), Web Map Service
(WMS), Web Coverage Service (WCS), and Web Processing Service (WPS), which further improve the
interoperability and web-based sharing of GIServices [5–7].

In the geospatial application domain, geospatial problems usually relate to heterogeneous data
and several computational processes [8]. The capabilities of a single GIService are limited and cannot
be effectively conducted because of the complexity of geospatial problems [4]. In the last decade,
workflow-based approaches have evolved to a major way to address complex geospatial problems [9].
Currently, with the assistance of standard interface specifications, GIServices published by different
organizations can be chained as a geoprocessing workflow that can describe the execution order of
problem-solving steps and enhance the power of atomic GIServices to fulfill complex geoprocessing
tasks [10–13]. In general, geospatial problems require comparatively deep expertise, which therefore

ISPRS Int. J. Geo-Inf. 2018, 7, 423; doi:10.3390/ijgi7110423 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-4071-3748
https://orcid.org/0000-0002-1304-6353
http://www.mdpi.com/2220-9964/7/11/423?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi7110423
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2018, 7, 423 2 of 18

need experts to contribute their problem-solving knowledge by means of a conceptual workflow.
In previous studies, there are already some investigations in the formalization of workflow [7,14,
15] and semantic interoperability for GIServices [16–18]. Additionally, a number of studies have
employed the task concept to facilitate the expression of user requirements at a semantic level [14,19,20].
In fact, many geospatial problems can share similar conceptual workflows. Therefore, the conceptual
workflows can be formalized into a knowledge base, which can facilitate future users to solve the
similar problems.

In this paper, we focus on using ontologies in association with a task-oriented approach to
construct a knowledge base to enhance geospatial problem-solving. It is generally believed that
ontology is the foundation and a significant part of the semantic web. Ontology provides unified
terms to improve the semantic interoperability of domain knowledge [21]. A task is introduced as
a reusable component to model the sequence of inference steps involved in the process of solving
certain kinds of geospatial problems at a conceptual level. The knowledge base can store conceptual
workflows that are considered to be a priori knowledge accumulated from past experience of domain
experts [22], which can enable problem-solving knowledge reusable [23]. A geospatial problem is
abstracted as a task, and the knowledge for the task is considered as a problem solution. Under many
circumstances, tasks need to decompose into simpler tasks, each of which can be solved by one or
a set of functions [24]. As the smaller task is simpler than the overall task, the complexity of the
task is reduced significantly [22]. Hence, we further divide the task into three distinct granularities:
(1) a geooperator, which is basic processing functionality; (2) an atomic task, which is indecomposable;
and (3) a composite task, which is decomposed into multiple subtasks.

The main work of this paper includes the following: (1) Concepts: the task concept is introduced
as a reusable component for geospatial problem-solving and is used to reflect users’ requirements;
(2) Model: a task model is proposed to simulate problem-solving processes; (3) Knowledge base:
an ontological knowledge base is designed, that comprises several interoperable ontologies to
capture and share problem-solving knowledge; and (4) Implementation: taking the meteorological
early-warning (MEW) analysis, for example, we describe the details of the implementation conclusively.
We focus on geospatial problem solution as a task that is composed of conceptual geoprocessing
operations not in connection with any concrete services. The instantiation and execution of a task,
the low-level interaction with operations (such as accessing input data), and the validation of the
processing chain are not in the scope of this article.

The remainder of this paper is organized as follows. Section 2 offers related work on the task-based
approach and geospatial problem-solving. Section 3 proposes the task concept and task model to
describe problem-solving processes. Section 4 presents a task-oriented knowledge base, some core
ontologies are described in detail. Section 5 introduces the detailed information of implementation.
Finally, conclusions and future work are given in Section 6.

2. Related Work

2.1. The Task-Based Approach

The notion of the task was proposed by Albrecht in the field of geographic information system
as early as in the 1990s [25] and has been used in many studies. However, there is still no unified
definition of a task [19]. In general, the task concept reflects user requirements and describes all actions
or operations to solve a specific problem. Some studies have been performed using a task-based
approach. We summarize and classify them as follows:

1. The task-based language. A task ontology language based on the OWL (Web Ontology Language),
named OWL-T, has been proposed to define task templates to formalize user demands and
business processes at a high-level abstraction, which is used for the task of a trip plan [26].
Hu et al. [19] extended the task-oriented approach to the OGC Sensor Web domain. A Task

ISPRS Int. J. Geo-Inf. 2018, 7, 423 3 of 18

Model Language, called TaskML, is a language for modeling tasks. The significant features of
TaskML are Task Trigger, Task Priority, and Task QoS.

2. The task ontology approach. Sun et al. [27] proposed a task ontology-driven approach for the
geospatial domain to realize live geoprocessing in a service-oriented environment, which includes
three steps: task model generation, process model instantiation, and workflow execution. A case
study of flood analysis is used to illustrate the effect and role of the task. Liu [28] proposed a
task ontology model for domain-independent dialogue management and created a dialogue
manager that is task-independent. Park et al. [29] presented a task ontology based on travelers’
perspectives using tasks, activities, relations, and properties. A prototype system was developed
using task-oriented menus.

3. A task-based approach for geospatial data acquisition. Wiegand and García [21] proposed a
task-based approach to advance geospatial data source retrieval. More concretely, they designed
a conceptual model that combines ontologies of tasks, data sources, metadata, and places and
uses the Jess rule engine and Protégé tool to provide automatic processing for data retrieval.
Qiu et al. [30] proposed a task-oriented approach for efficient disaster data management that
performed mapping from emergency tasks to data sources and calculated the correlation between
the data set and a generic task. A flood emergency example illustrates the use of this approach.

2.2. Geospatial Problem-Solving

Currently, geoprocessing service technology is widely employed to solve specific geospatial
problems in distributed information infrastructures. Much research has been devoted to utilizing or
facilitating geoprocessing services to support problem solving. Mikita [31] published a geoprocessing
service for forest owners to optimize clearcut size and shape during the process of forest recovery.
Müller [18] proposed a hierarchical framework to identify the semantic and syntactic properties of
geoprocessing services with four levels of granularity, which is conducive to service retrieval, service
comparison, service invocation.

In most cases, a single geoprocessing service is not enough to solve the complex geospatial
problem. Therefore, geoprocessing workflow technology provides a solution. The integration of
geoprocessing services has become a popular research topic, and a series of tools and architectures
were developed to support geoprocessing service chaining. For example, an open source geoprocessing
workflow tool, named GeoJModelBuilder, is able to integrate interoperable geoprocessing services
and compose them into a workflow [6,7]. A RichWPS orchestration engine in combination with a DSL
(Domain Specific Language) is used to orchestrate WPS processes and publish the composition as a
WPS process for further composition [32]. In addition, there are many popular workflow management
systems to facilitate the integration of geoprocessing services, such as Taverna [33,34], Triana [35],
Kepler [36], jABC [9,37]. However, they only simplify the workflow construction process at the
syntactical level, and building a workflow composed of services for geospatial problem-solving is still
challenging for end-users.

Recently, more studies have focused on semantic and automatic workflow composition for
geospatial problem-solving. Farnaghi and Mansourian [12] proposed an automatic composition
solution using the AI (Artificial Intelligence) planning algorithm and SAWSDL (Semantic
Annotations for Web Service Description Language) to improve the disaster management process.
Al-Areqi et al. [10] applied a constraints-driven synthesis method to implement the semiautomatic
composition of a workflow for analysis of the impacts of sea-level rise. Samadzadegan et al. [38]
designed a framework for an automatic workflow for fire detection early warning based on OGC
services. Arul and Prakash presented a unified composition algorithm that adds a new phase
called Validation and Optimization to automatic web service composition and generated a scalable
composition process according to the dynamic change of user requirements [39].

ISPRS Int. J. Geo-Inf. 2018, 7, 423 4 of 18

3. Task as a Reusable Problem-Solving Component

3.1. An Application Scenario

In this section, we demonstrate an example that uses a workflow composed of distributed data
and various geoprocessing services. This example is used throughout the remainder of the paper to
help understand the concept of a geospatial task. Assuming an end-user is a staff of a meteorological
disaster monitoring department, he needs to predict the probability of the occurrence of geological
disasters in a certain region in the next day. The ideal result is a thematic map of the early-warning
region that uses different colors to represent different early-warning levels.

To achieve the early-warning results, the most common approach is to formulate a geographic
processing workflow that can generate an early-warning result map. As shown in Figure 1, the elliptical
shape represents a data node, and the rectangular shape represents a data processing node. First, it
uses geological hazard point data, influence factor data and early-warning unit data as input data to
calculate the potential degree index of early-warning units respectively. Similarly, it can obtain effective
rainfall data. Then, the potential distribution map and effective rainfall data from the previous step
with forecast rainfall data go through early-warning analysis calculations to achieve the early-warning
result map.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 4 of 19

3. Task as a Reusable Problem-Solving Component

3.1. An Application Scenario

In this section, we demonstrate an example that uses a workflow composed of distributed data
and various geoprocessing services. This example is used throughout the remainder of the paper to
help understand the concept of a geospatial task. Assuming an end-user is a staff of a meteorological
disaster monitoring department, he needs to predict the probability of the occurrence of geological
disasters in a certain region in the next day. The ideal result is a thematic map of the early-warning
region that uses different colors to represent different early-warning levels.

To achieve the early-warning results, the most common approach is to formulate a geographic
processing workflow that can generate an early-warning result map. As shown in Figure 1, the
elliptical shape represents a data node, and the rectangular shape represents a data processing node.
First, it uses geological hazard point data, influence factor data and early-warning unit data as input
data to calculate the potential degree index of early-warning units respectively. Similarly, it can
obtain effective rainfall data. Then, the potential distribution map and effective rainfall data from the
previous step with forecast rainfall data go through early-warning analysis calculations to achieve
the early-warning result map.

Potential degree
calculation

Geological
hazard point

data

Influence
factor data

Early warning
unit data

Potential
distribution

map

Data node

Effective rainfall
calculation

Geological
hazard point

data

Today Rainfall
data

Fewdays
Rainfall data

Effective
rainfall data

Forecast
rainfall data

Early-warning
analysis

Early-warning
result map

Task node

Figure 1. Sequences of the meteorological early-warning (MEW) process.

For the aforementioned application, the entire workflow can be considered a task. GIS domain
experts with professional knowledge are able to analyze the technological procedures and abstract
them in the form of conceptualization, which are then used to describe the skeleton knowledge of the
problem-solving process. The MEW task, which was previously performed manually and had the
requirements of GIS skills and knowledge of business processes, can now be executed automatically.

3.2. Task and Task Model

In this paper, the task concept is proposed to reflect user requirements, which can be
accomplished by one or more geoprocessing services. A geospatial problem is abstracted as a task

Figure 1. Sequences of the meteorological early-warning (MEW) process.

For the aforementioned application, the entire workflow can be considered a task. GIS domain
experts with professional knowledge are able to analyze the technological procedures and abstract
them in the form of conceptualization, which are then used to describe the skeleton knowledge of the
problem-solving process. The MEW task, which was previously performed manually and had the
requirements of GIS skills and knowledge of business processes, can now be executed automatically.

3.2. Task and Task Model

In this paper, the task concept is proposed to reflect user requirements, which can be accomplished
by one or more geoprocessing services. A geospatial problem is abstracted as a task that denotes a
high-level business goal, and users execute a sequence of processes to achieve the goal. Tasks are

ISPRS Int. J. Geo-Inf. 2018, 7, 423 5 of 18

different from operations or services, as tasks focus on what users want to solve, while operations or
services mainly focus on the implementation of geoprocessing computations.

A complex problem can consist of multiple problem-solving processes with different requirements,
which makes it difficult to define the solution as a single task [22]. Hence, a complex task can be
decomposed into several smaller tasks, each of which can be solved in a relatively independent way
by one or more geoprocessing services and then combined together into a complete solution [24].
The granularity of the task plays an important role during the problem-solving process. As shown
in Figure 2, there are three distinct granularities: (1) a geooperator as elementary functionality for an
atomic task, (2) an atomic task as a building block for a composite task, and (3) a composite task as
a building block for a complex geospatial task. Consequently, the task is a reusable component for
construction of the problem-solving workflow.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 5 of 19

that denotes a high-level business goal, and users execute a sequence of processes to achieve the goal.
Tasks are different from operations or services, as tasks focus on what users want to solve, while
operations or services mainly focus on the implementation of geoprocessing computations.

A complex problem can consist of multiple problem-solving processes with different
requirements, which makes it difficult to define the solution as a single task [22]. Hence, a complex
task can be decomposed into several smaller tasks, each of which can be solved in a relatively
independent way by one or more geoprocessing services and then combined together into a complete
solution [24]. The granularity of the task plays an important role during the problem-solving process.
As shown in Figure 2, there are three distinct granularities: (1) a geooperator as elementary
functionality for an atomic task, (2) an atomic task as a building block for a composite task, and (3) a
composite task as a building block for a complex geospatial task. Consequently, the task is a reusable
component for construction of the problem-solving workflow.

The process property of the geospatial task is expressed by a task process graph (TPG), which is
used to capture the execution order of problem-solving steps and closely describe how a task should
be achieved. Each TPG contains a set of edges that compose an acyclic directed graph structure. An
edge denotes a workflow of two tasks. The directions of edges decide the dependencies between the
tasks. The combination of TPG and task composes a task model that provides an approach to allow
users to specify complex geospatial problems at an abstract level.

AtomicTaskGeooperator CompositeTask

Task

1..*

1
11

Figure 2. Relationships between Task, AtomicTask, CompositeTask, and Geooperator.

3.3. Geooperator

Geospatial problem-solving knowledge is represented at a conceptualized level that requires
categorization and formalization of geoprocessing services. Geooperators are developed mostly for
improving the discoverability and exchangeability of geoprocessing functionality and providing an
approach to formalize well-defined geoprocessing functionality [40]. In Brauner’s work, geooperators
are categorized in terms of multiple different perspectives, such as geodata, legacy GIS, pragmatic,
formal or technical perspectives [41]. An overview of perspectives and top-level categories identified
by Brauner is shown in Figure 3a, and elements described by the geooperator are given in Figure 3b,
which can facilitate our work. The former is used to define the subclasses of Geooperator class in the
GIS operation ontology without further modification; the latter is partially transformed into data
properties and object properties of the Geooperator class.

In this paper, geooperators are introduced to provide a conceptualization for geoprocessing
services (such as a geospatial analysis or transformation service) that are encapsulated as standard
web services (e.g., WPS) for providing geoprocessing functionalities on the web. From an object-
oriented perspective, geooperators act as wrappers for existing geoprocessing services and
subsequently serve as building blocks for elementary geoprocessing tasks.

Figure 2. Relationships between Task, AtomicTask, CompositeTask, and Geooperator.

The process property of the geospatial task is expressed by a task process graph (TPG), which is
used to capture the execution order of problem-solving steps and closely describe how a task should be
achieved. Each TPG contains a set of edges that compose an acyclic directed graph structure. An edge
denotes a workflow of two tasks. The directions of edges decide the dependencies between the tasks.
The combination of TPG and task composes a task model that provides an approach to allow users to
specify complex geospatial problems at an abstract level.

3.3. Geooperator

Geospatial problem-solving knowledge is represented at a conceptualized level that requires
categorization and formalization of geoprocessing services. Geooperators are developed mostly for
improving the discoverability and exchangeability of geoprocessing functionality and providing an
approach to formalize well-defined geoprocessing functionality [40]. In Brauner’s work, geooperators
are categorized in terms of multiple different perspectives, such as geodata, legacy GIS, pragmatic,
formal or technical perspectives [41]. An overview of perspectives and top-level categories identified
by Brauner is shown in Figure 3a, and elements described by the geooperator are given in Figure 3b,
which can facilitate our work. The former is used to define the subclasses of Geooperator class in
the GIS operation ontology without further modification; the latter is partially transformed into data
properties and object properties of the Geooperator class.

In this paper, geooperators are introduced to provide a conceptualization for geoprocessing
services (such as a geospatial analysis or transformation service) that are encapsulated as standard web
services (e.g., WPS) for providing geoprocessing functionalities on the web. From an object-oriented
perspective, geooperators act as wrappers for existing geoprocessing services and subsequently serve
as building blocks for elementary geoprocessing tasks.

ISPRS Int. J. Geo-Inf. 2018, 7, 423 6 of 18

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 6 of 19

(a) (b)

Figure 3. (a) Different perspectives on Geooperator [41] (b) Description elements of Geooperator [17].

3.4. Formal Definition

Definition 1 (Task). A task can be defined as a quadruple:

T = (PT, OP, PA, C), (1)

where PT specifies the type of task, OP is spatial inputs and outputs (e.g., spatial datasets), PA is a set of non-
spatial parameters of a task and C consists of the precondition and result that generally constrains the thematic
and geometric attributes of input or output data for geoprocessing tasks [42].

Definition 2 (Task Process Graph). A task process graph defines the basic structure of task decomposition
[43], which is an acyclic directed graph defined as follows:

TPG = (V, E), (2)

where V is a finite set of n vertices {v1, v2, v3, …, vn}, and each node v ∈˙V represents a task tv. E is a finite set
of directed edges {evi,vj}. Each edge evi,vj ∈ E can be characterized by a tuple (pvi,vj, cij). pvi,vj = <vi, vj> is an ordered
pair that represents execution precedence between task tvi and task tvj; in other words, tvi is ahead of tvj in the
sequence of task decomposition that can alsobe denoted by vi ≤ vj. cij represents the control flow connector
between two tasks, which includes sequence, branching, loop, and so forth.

Definition 3 (Task Model). A task model is defined by a 2-tuple as follows:

TModel = (t, tpg), (3)

where t ∈ T is a task instance, and tpg denotes a task process graph associated with t that defines the
decomposition structure. If tpg only contains a geooperator, we consider this task to be an atomic task;
otherwise, it is a composite task.

Definition 4 (Task Decomposition). Following the definition of the task model, we can further accomplish
the task decomposition. Given a task process graph tpg = (V, E), assuming v ∈ V, tv ∈ T, v associates with tv. If
tv has a corresponding model tmodelv = (tv, tpgv), then the decomposition of the task can be defined by

tpg’ = Decompose(v, tpg, tmodelv), (4)

where tpg’ is a new task process graph obtained replacing node v with tpgv in tmodelv.

Figure 3. (a) Different perspectives on Geooperator [41] (b) Description elements of Geooperator [17].

3.4. Formal Definition

Definition 1 (Task). A task can be defined as a quadruple:

T = (PT, OP, PA, C), (1)

where PT specifies the type of task, OP is spatial inputs and outputs (e.g., spatial datasets), PA is a set of
non-spatial parameters of a task and C consists of the precondition and result that generally constrains the
thematic and geometric attributes of input or output data for geoprocessing tasks [42].

Definition 2 (Task Process Graph). A task process graph defines the basic structure of task decomposition [43],
which is an acyclic directed graph defined as follows:

TPG = (V, E), (2)

where V is a finite set of n vertices {v1, v2, v3, . . . , vn}, and each node v ∈ V represents a task tv. E is a finite set
of directed edges {evi,vj}. Each edge evi,vj ∈ E can be characterized by a tuple (pvi,vj, cij). pvi,vj = <vi, vj> is an
ordered pair that represents execution precedence between task tvi and task tvj; in other words, tvi is ahead of tvj
in the sequence of task decomposition that can alsobe denoted by vi ≤ vj. cij represents the control flow connector
between two tasks, which includes sequence, branching, loop, and so forth.

Definition 3 (Task Model). A task model is defined by a 2-tuple as follows:

TModel = (t, tpg), (3)

where t ∈ T is a task instance, and tpg denotes a task process graph associated with t that defines the decomposition
structure. If tpg only contains a geooperator, we consider this task to be an atomic task; otherwise, it is a
composite task.

Definition 4 (Task Decomposition). Following the definition of the task model, we can further accomplish
the task decomposition. Given a task process graph tpg = (V, E), assuming v ∈ V, tv ∈ T, v associates with tv.
If tv has a corresponding model tmodelv = (tv, tpgv), then the decomposition of the task can be defined by

tpg’ = Decompose(v, tpg, tmodelv), (4)

where tpg’ is a new task process graph obtained replacing node v with tpgv in tmodelv.

ISPRS Int. J. Geo-Inf. 2018, 7, 423 7 of 18

Taking the workflow mentioned in Section 3.1 as an example, Figure 4 depicts the task
decomposition procedure. The node “Early-warning analysis” is replaced by a task process graph,
which is defined in a task model, where the edges previously connected with this node are revised.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 7 of 19

Taking the workflow mentioned in Section 3.1 as an example, Figure 4 depicts the task
decomposition procedure. The node “Early-warning analysis” is replaced by a task process graph,
which is defined in a task model, where the edges previously connected with this node are revised.

Potential
degree

calculation

Early-warning
analysis

Risk index
calculation

Early-warning
level division

Effective
rainfall

calculation

Overlay
analysis

Potential
degree

calculation

Effective
rainfall

calculation

Overlay
analysis

Risk index
calculation

Early-warning
level division

Figure 4. An example of task decomposition.

4. A Task-Oriented Knowledge Base

This section presents the knowledge base that adapts the ontology-based approach and provides
comprehensive knowledge to support the geoprocessing task. To build the knowledge base, a set of
ontologies are needed to capture knowledge related to the problem-solving solution. The use of
ontologies makes the semantic meaning of problem-solving procedures explicit and further facilitates
users to obtain the problem solution [44]. Formalizing the knowledge base will assist both GIS non-
specialist users and specialists in automating problem solving, allowing reuse and sharing of
solutions [21]. Accordingly, we deem that the knowledge base is valuable.

4.1. Background on Ontologies

It is widely known that ontology provides a formal language to standardize and share the
semantics of various kinds of domain knowledge. The word ontology was first used as a
philosophical concept and address the nature of existence, and it was subsequently introduced into
the information domain by researchers. Currently, one of the most prevalent definitions of ontology
is “Ontology is an explicit specification of a conceptualization”, which was proposed by Gruber in
1993 [45]. Based on this definition, ontology is essentially a taxonomy of the objective world and a
knowledge representation model. Meanwhile, ontology also supports non-taxonomic relations.

According to Perez [46], knowledge in ontologies is formalized by five kinds of modeling
primitives: concepts, relations, functions, axioms, and instances. From a mathematical point of view,
ontology can be formally expressed by an Equation as follows:

O = {C, R, F, A, I}, (5)

where C is a set whose elements are called concepts; R is a set of relations between concepts, R ⊆ C ×
C; F is a special relation in which the former n − 1 elements can uniquely determine the n-th element,
and it can be defined as follows: F: C1 × C2 × … × Cn−1→Cn; A represents a geographic axiom, that is, a
collection of assertions in a logical form that are always true; and I stands for instances of concepts.

Figure 4. An example of task decomposition.

4. A Task-Oriented Knowledge Base

This section presents the knowledge base that adapts the ontology-based approach and provides
comprehensive knowledge to support the geoprocessing task. To build the knowledge base, a set
of ontologies are needed to capture knowledge related to the problem-solving solution. The use of
ontologies makes the semantic meaning of problem-solving procedures explicit and further facilitates
users to obtain the problem solution [44]. Formalizing the knowledge base will assist both GIS
non-specialist users and specialists in automating problem solving, allowing reuse and sharing of
solutions [21]. Accordingly, we deem that the knowledge base is valuable.

4.1. Background on Ontologies

It is widely known that ontology provides a formal language to standardize and share the
semantics of various kinds of domain knowledge. The word ontology was first used as a philosophical
concept and address the nature of existence, and it was subsequently introduced into the information
domain by researchers. Currently, one of the most prevalent definitions of ontology is “Ontology is an
explicit specification of a conceptualization”, which was proposed by Gruber in 1993 [45]. Based on this
definition, ontology is essentially a taxonomy of the objective world and a knowledge representation
model. Meanwhile, ontology also supports non-taxonomic relations.

According to Perez [46], knowledge in ontologies is formalized by five kinds of modeling
primitives: concepts, relations, functions, axioms, and instances. From a mathematical point of
view, ontology can be formally expressed by an Equation as follows:

O = {C, R, F, A, I}, (5)

where C is a set whose elements are called concepts; R is a set of relations between concepts, R⊆ C × C;
F is a special relation in which the former n − 1 elements can uniquely determine the n-th element, and
it can be defined as follows: F: C1 × C2 × . . . × Cn−1→Cn; A represents a geographic axiom, that is, a
collection of assertions in a logical form that are always true; and I stands for instances of concepts.

ISPRS Int. J. Geo-Inf. 2018, 7, 423 8 of 18

In the process of building ontology, instances represent objects that can be anything in a domain,
and concepts are a set of objects that are mapped to classes. The relations between concepts are realized
by properties that are classified into two types: an object property and a data property [47]. An object
property specifies the relations between two classes, and it connects two individuals from different
classes. A data property defines the relations between individuals and data values, which is similar to
an inherent attribute of an object.

4.2. Ontologies at the Heart of the Knowledge Base

To realize the capability to represent the knowledge of the problem-solving process, the knowledge
base provides a set of ontologies as follows: Task Ontology, Process Ontology, GIS Operation
Ontology, Interface Ontology, Data Type Ontology, GIS Data Ontology, and GIService Type Ontology.
These ontologies are combined to provide support for all facets of problem-solving, each of which
plays a key role in building a rich, dynamic and flexible task-oriented knowledge base. Figure 5 shows
the delineations of the definitions of ontologies and how they relate to each other. Several important
ontologies are discussed in detail in the following section.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 8 of 19

In the process of building ontology, instances represent objects that can be anything in a domain,
and concepts are a set of objects that are mapped to classes. The relations between concepts are
realized by properties that are classified into two types: an object property and a data property [47].
An object property specifies the relations between two classes, and it connects two individuals from
different classes. A data property defines the relations between individuals and data values, which
is similar to an inherent attribute of an object.

4.2. Ontologies at the Heart of the Knowledge Base

To realize the capability to represent the knowledge of the problem-solving process, the
knowledge base provides a set of ontologies as follows: Task Ontology, Process Ontology, GIS
Operation Ontology, Interface Ontology, Data Type Ontology, GIS Data Ontology, and GIService
Type Ontology. These ontologies are combined to provide support for all facets of problem-solving,
each of which plays a key role in building a rich, dynamic and flexible task-oriented knowledge base.
Figure 5 shows the delineations of the definitions of ontologies and how they relate to each other.
Several important ontologies are discussed in detail in the following section.

Figure 5. The relationships of ontologies in the knowledge base.

4.2.1. Task Ontology

Task Ontology is the core for supporting problem solving, that defines the Task class to represent
a geospatial problem. Its property relations are composed of object properties and data properties.
The data properties mainly describe the metadata information of task instances, such as Description,
Publisher, Create Time, and so on. The object properties include: hasSynonym, hasTaskType,
hasProcess, hasInput, hasOutput, etc.

The Task class refers to the Task Lexicon class through the hasSynonym property for semantic
annotations of tasks to provide the words and phrases describing tasks, on the basis of which end
users externalize their own expression of the target problem in natural language. This can broaden

Figure 5. The relationships of ontologies in the knowledge base.

4.2.1. Task Ontology

Task Ontology is the core for supporting problem solving, that defines the Task class to represent
a geospatial problem. Its property relations are composed of object properties and data properties.
The data properties mainly describe the metadata information of task instances, such as Description,
Publisher, Create Time, and so on. The object properties include: hasSynonym, hasTaskType,
hasProcess, hasInput, hasOutput, etc.

The Task class refers to the Task Lexicon class through the hasSynonym property for semantic
annotations of tasks to provide the words and phrases describing tasks, on the basis of which end users
externalize their own expression of the target problem in natural language. This can broaden the scope

ISPRS Int. J. Geo-Inf. 2018, 7, 423 9 of 18

of keyword queries and dispose synonyms to support natural language retrieval. The Task Type class
describes the categorization of tasks on the basis of functionalities that tasks can implement. The MEW
analysis in the example mentioned above is a sort of geospatial task. The Task Type class is linked
to the Task class for semantic reference to state the type of task individuals through the predefined
hasTaskType property. Each individual of the Task class has at least one conceptual solution which is
denoted in the Process ontology. The interfaces of the Task class are defined in the Interface Ontology,
which will be described in detail in the following section.

4.2.2. Process Ontology

Process Ontology is used to define problem-solving processes at a conceptual level for a
certain type of task, that is not associated with any concrete services. The AtomicProcess and
CompositeProcess classes are created as subclasses of the Process class to classify the process
individuals according to the number of processes involved. The atomic process directly refers to the
Geooperator class in the GIS Operation Ontology using the RDF:Type property; however, the composite
process is an edge set that contains some edges. Each edge denotes the sequence of two task nodes
that are semantically annotated to the Task class using the fromTask and toTask properties. A series
of edges form a directed graph that is called a task process graph that describes how the task works.
In this paper, we only consider the linear sequence between two tasks; other control flow logics will be
included in future work.

4.2.3. Data Type Ontology

Data Type Ontology is defined to describe the data types that are divided into two categories:
SimpleDataType and GeoDataType, as illustrated in Figure 6. SimpleDataType includes some primitive
data types in some programming language or description language such as xml:string and xml:float in
XML. GeoDataType is an abstract representation of geospatial data, which has some data properties
shared by any type of geospatial data, including attribute, data format, and coordinate reference system
(CRS). Based on abstract specifications of the International Standard Organization (ISO) for vector [48]
and raster data [49], GeoDataType is differentiated as VectorDataType and RasterDataType, each of
which has unique characteristics. In vector data, each geospatial feature must identify a geometric type,
such as point, polyline, and polygon following OGC Simple Feature Specification [50]. The resolution
and band number must be identified in raster data.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 9 of 19

the scope of keyword queries and dispose synonyms to support natural language retrieval. The Task
Type class describes the categorization of tasks on the basis of functionalities that tasks can
implement. The MEW analysis in the example mentioned above is a sort of geospatial task. The Task
Type class is linked to the Task class for semantic reference to state the type of task individuals
through the predefined hasTaskType property. Each individual of the Task class has at least one
conceptual solution which is denoted in the Process ontology. The interfaces of the Task class are
defined in the Interface Ontology, which will be described in detail in the following section.

4.2.2. Process Ontology

Process Ontology is used to define problem-solving processes at a conceptual level for a certain
type of task, that is not associated with any concrete services. The AtomicProcess and
CompositeProcess classes are created as subclasses of the Process class to classify the process
individuals according to the number of processes involved. The atomic process directly refers to the
Geooperator class in the GIS Operation Ontology using the RDF:Type property; however, the
composite process is an edge set that contains some edges. Each edge denotes the sequence of two
task nodes that are semantically annotated to the Task class using the fromTask and toTask
properties. A series of edges form a directed graph that is called a task process graph that describes
how the task works. In this paper, we only consider the linear sequence between two tasks; other
control flow logics will be included in future work.

4.2.3. Data Type Ontology

Data Type Ontology is defined to describe the data types that are divided into two categories:
SimpleDataType and GeoDataType, as illustrated in Figure 6. SimpleDataType includes some
primitive data types in some programming language or description language such as xml:string and
xml:float in XML. GeoDataType is an abstract representation of geospatial data, which has some data
properties shared by any type of geospatial data, including attribute, data format, and coordinate
reference system (CRS). Based on abstract specifications of the International Standard Organization
(ISO) for vector [48] and raster data [49], GeoDataType is differentiated as VectorDataType and
RasterDataType, each of which has unique characteristics. In vector data, each geospatial feature
must identify a geometric type, such as point, polyline, and polygon following OGC Simple Feature
Specification [50]. The resolution and band number must be identified in raster data.

Data Type

SimpleDataType

GeoDataType

VectorDataType

Point

Polyline

Polygon

RasterDataType

Resolution
Bands

...
Attribute
Coordinate reference
system(CRS)
Data Format

Figure 6. Data type specifications. Figure 6. Data type specifications.

ISPRS Int. J. Geo-Inf. 2018, 7, 423 10 of 18

4.2.4. GIS Operation Ontology

In GIS Operation Ontology, the Geooperator class is employed to conceptualize geoprocessing
functionalities. The notion of Geooperator has been introduced in the previous section.
The geooperators are used as building blocks for the conceptual workflow of geospatial
problem-solving. This ontology of the knowledge base is based on work by Hofer [42] who translated
the SKOS (Simple Knowledge Organization System) thesaurus provided by Brauner [41] into an
OWL ontology and included an additional concept that is known as a functional concept. The SKOS
thesaurus contains 40 geooperators. This ontology can be extended by extra categories, if necessary.
The categories of the Pragmatic perspective originate from the general task, and are task-oriented
categories. Users can further integrate new categories based on practical application. Therefore,
in this paper, an additional category named MEW is integrated into the Pragmatic perspective
of the geooperator, and subcategories or geooperators can be created for a further description of
geoprocessing operations. Based on this classification, geoprocessing services that perform geospatial
functionalities are thought of as individuals of the Geooperator class.

4.2.5. Interface Ontology

As introduced in the previous section, tasks are used as reusable components to accomplish
the composition of problem-solving processes. The composition requires an evaluation of the
correspondence of interfaces. The knowledge base needs to include sufficient information of interfaces
to satisfy the needs of the composition. An interface requires the description of operands that contain
inputs and outputs, constraints that contain a precondition and result, and non-spatial parameters.
Consequently, as illustrated in Figure 7, the Interface class consists of the subclasses Input, Output,
Parameter, Precondition, and Result. GeoDataType in Data Type Ontology is used to specify operands
of interfaces, whereas non-spatial parameters can refer to SimpleDataType which includes conventional
data types. The Precondition class focuses on the thematic and geometric properties of the input to
ensure the correct function of the operation [42]. The Postcondition class defines the expected result of
the output.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 10 of 19

4.2.4. GIS Operation Ontology

In GIS Operation Ontology, the Geooperator class is employed to conceptualize geoprocessing
functionalities. The notion of Geooperator has been introduced in the previous section. The
geooperators are used as building blocks for the conceptual workflow of geospatial problem-solving.
This ontology of the knowledge base is based on work by Hofer [42] who translated the SKOS (Simple
Knowledge Organization System) thesaurus provided by Brauner [41] into an OWL ontology and
included an additional concept that is known as a functional concept. The SKOS thesaurus contains
40 geooperators. This ontology can be extended by extra categories, if necessary. The categories of
the Pragmatic perspective originate from the general task, and are task-oriented categories. Users can
further integrate new categories based on practical application. Therefore, in this paper, an additional
category named MEW is integrated into the Pragmatic perspective of the geooperator, and
subcategories or geooperators can be created for a further description of geoprocessing operations.
Based on this classification, geoprocessing services that perform geospatial functionalities are
thought of as individuals of the Geooperator class.

4.2.5. Interface Ontology

As introduced in the previous section, tasks are used as reusable components to accomplish the
composition of problem-solving processes. The composition requires an evaluation of the
correspondence of interfaces. The knowledge base needs to include sufficient information of
interfaces to satisfy the needs of the composition. An interface requires the description of operands
that contain inputs and outputs, constraints that contain a precondition and result, and non-spatial
parameters. Consequently, as illustrated in Figure 7, the Interface class consists of the subclasses
Input, Output, Parameter, Precondition, and Result. GeoDataType in Data Type Ontology is used to
specify operands of interfaces, whereas non-spatial parameters can refer to SimpleDataType which
includes conventional data types. The Precondition class focuses on the thematic and geometric
properties of the input to ensure the correct function of the operation [42]. The Postcondition class
defines the expected result of the output.

Similarly, we extend the interface properties of geooperators using the Interface Ontology which
presently does not involve the related interface specifications.

Input

Geooperator

Parameter

Precondition

Result

Interface

Output Task

GeoDataType

SimpleDataType

Data Type

Figure 7. Interface for annotating Task and Geooperator, and Data Type for specifying Interface.

5. Implementation

In Section 3, we introduce an application scenario that is a geospatial problem-solving process
in the context of MEW. We take this example to demonstrate the benefits of the ontology-based

Figure 7. Interface for annotating Task and Geooperator, and Data Type for specifying Interface.

Similarly, we extend the interface properties of geooperators using the Interface Ontology which
presently does not involve the related interface specifications.

5. Implementation

In Section 3, we introduce an application scenario that is a geospatial problem-solving process in
the context of MEW. We take this example to demonstrate the benefits of the ontology-based knowledge

ISPRS Int. J. Geo-Inf. 2018, 7, 423 11 of 18

base for tasks during the process of geospatial problem-solving. The implementation includes three
parts: creation of ontologies, representation of knowledge, and task instances.

5.1. Creation of Ontologies

Based on the proposed architecture of the task-oriented knowledgebase described in Section 4.2,
we build different abstract ontologies to represent the hierarchy and relationships of the concepts
using Protégé 5.2.0 which is an OWL ontology development platform that allows creation and query
of ontologies [21]. In general, an ontology is composed of the following components: concepts and
properties of each concept, relationships or constraints between concepts, and instances of concepts [28].
Figure 8a presents all concepts or classes defined in the ontological knowledge base. All object
properties that represent the relationships between classes are shown in Figure 8b; they include
hasTaskType, hasSynonym, hasProcess, etc. The abstract ontologies can be instantiated for specific
tasks. In this paper, the task instances for meteorological early-warning are implemented, which are
detailed in the next section.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 11 of 19

knowledge base for tasks during the process of geospatial problem-solving. The implementation
includes three parts: creation of ontologies, representation of knowledge, and task instances.

5.1. Creation of Ontologies

Based on the proposed architecture of the task-oriented knowledgebase described in Section 4.2,
we build different abstract ontologies to represent the hierarchy and relationships of the concepts
using Protégé 5.2.0 which is an OWL ontology development platform that allows creation and query
of ontologies [21]. In general, an ontology is composed of the following components: concepts and
properties of each concept, relationships or constraints between concepts, and instances of concepts
[28]. Figure 8a presents all concepts or classes defined in the ontological knowledge base. All object
properties that represent the relationships between classes are shown in Figure 8b; they include
hasTaskType, hasSynonym, hasProcess, etc. The abstract ontologies can be instantiated for specific
tasks. In this paper, the task instances for meteorological early-warning are implemented, which are
detailed in the next section.

(a) (b)

Figure 8. An excerpt of ontologies where (a) depicts the classes of ontologies, and (b) illustrates the
object properties between classes.

5.2. Representation of Ontology Knowledge

Once the components of an ontology are developed, the ontology can be represented by
ontology description language, such as Resource Description Framework (RDF) and Web Ontology
Language (OWL). RDF is built upon XML, which uses triples of object, property, and value to
describe resources. OWL is a W3C-recommended standard semantic markup language being
developed by the Semantic Web community, which is an extension of RDF [15,21]. In this paper, we
use OWL as a standard and machine-readable language to represent the knowledge of ontologies,
which is presented as an OWL file.

Meanwhile, we use property restrictions including hasValue and quantifier restrictions to limit
associations between different classes [15]. The hasValue restriction specifies that the individuals of
a class have a given value. Nevertheless, the quantifier restriction limits the individuals of a class
using an existential restriction (∃, owl:someValuesFrom) or a universal restriction(∀,

Figure 8. An excerpt of ontologies where (a) depicts the classes of ontologies, and (b) illustrates the
object properties between classes.

5.2. Representation of Ontology Knowledge

Once the components of an ontology are developed, the ontology can be represented by ontology
description language, such as Resource Description Framework (RDF) and Web Ontology Language
(OWL). RDF is built upon XML, which uses triples of object, property, and value to describe resources.
OWL is a W3C-recommended standard semantic markup language being developed by the Semantic
Web community, which is an extension of RDF [15,21]. In this paper, we use OWL as a standard
and machine-readable language to represent the knowledge of ontologies, which is presented as an
OWL file.

Meanwhile, we use property restrictions including hasValue and quantifier restrictions to limit
associations between different classes [15]. The hasValue restriction specifies that the individuals of a
class have a given value. Nevertheless, the quantifier restriction limits the individuals of a class using
an existential restriction (∃, owl:someValuesFrom) or a universal restriction(∀, owl:allValuesFrom).
The former states that values for the restricted property have at least one instance of class, which is
defined by existential restriction; however, the latter states that all values for the restricted relationship
must be a type of instance. For example, an MEW analysis task only needs effective rainfall data,

ISPRS Int. J. Geo-Inf. 2018, 7, 423 12 of 18

forecast rainfall data, and potential degree data that can be restricted with the following formal
statement: ∀ hasInput (Effective_Rainfall_Data ∪ Forecast_Rainfall_Data ∪ Potential_Degree_Data).
This statement defines a universal restriction on the “hasInput” property between the Task class and
the Input class (Figure 5). The OWL notation using the “owl:allValuesFrom” restriction is shown in
Figure 9.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 12 of 19

owl:allValuesFrom). The former states that values for the restricted property have at least one
instance of class, which is defined by existential restriction; however, the latter states that all values
for the restricted relationship must be a type of instance. For example, an MEW analysis task only
needs effective rainfall data, forecast rainfall data, and potential degree data that can be restricted
with the following formal statement: ∀ hasInput (Effective_Rainfall_Data ∪ Forecast_Rainfall_Data ∪
Potential_Degree_Data). This statement defines a universal restriction on the “hasInput” property
between the Task class and the Input class (Figure 5). The OWL notation using the
“owl:allValuesFrom” restriction is shown in Figure 9.

<owl:Class rdf:ID =“Meterological Early-warning Task”>
<rdfs:subClassof>

<owl:Restriction>
<owl:onProperty rdf:resource =“hasInput”/>
<owl:allValuesFrom rdf:resource =“#Effective_Rainfall_Data”/>
<owl:allValuesFrom rdf:resource =“#Forecast_Rainfall_Data”/>
<owl:allValuesFrom rdf:resource =“#Potential_Degree_Data”/>

</owl:Restriction>
</rdfs:subClassof>

</owl:Class>

Figure 9. Snippets of owl notation using a universal restriction.

5.3. Task Instances

The specific task instances can be represented using classes and properties defined in the
ontologies. Using the meteorological early-warning mentioned in Section 3.1 as an example, the tasks
involved in the MEW example are listed in Table 1, in which there are two composite tasks (e.g.,
EWATask) and six atomic tasks (e.g., ERCTask, and FQTask). We use ERCTask as an example of an
atomic task instance, which is used to calculate the effective rainfall. Figure 10 shows the individuals
and properties involved in the ERCTask instance. The process of an atomic task is an individual of
AtomicProcess, while those of composite tasks are not. We list the namespace declaration of
ontologies and the syntax of class, subclass, and property definitions using OWL, as shown below
Figure 10.

Table 1. Tasks involved in the MEW example

Task Type Abbreviation SubTask Description

PotentialDegreeCalTask PDCTask
FQTask
FWCTask
PDITask

Calculate potential degree index from multiple
influence factor data

EffectiveRainfallCalTask ERCTask Calculate effective rainfall

EarlyWarningAnalysisTask EWATask
OATask
HRITask
EWLTask

Generate a forecast map according to an early
warning model

FactorQuantificationTask FQTask
Quantify the factor data according to a certainty
factor model

FactorWeightCalTask FWCTask Calculate factor weight
PotentialDegreeIndexCalTask PDITask Calculate potential degree index
OverlayAnalysisTask OATask Overlay the input data.
HazardRiskIndexCalTask HRITask Calculate the hazard risk index

EarlyWarningLevelTask EWLTask
Divide early-warning level according to the risk
index

Figure 9. Snippets of owl notation using a universal restriction.

5.3. Task Instances

The specific task instances can be represented using classes and properties defined in the
ontologies. Using the meteorological early-warning mentioned in Section 3.1 as an example, the
tasks involved in the MEW example are listed in Table 1, in which there are two composite tasks (e.g.,
EWATask) and six atomic tasks (e.g., ERCTask, and FQTask). We use ERCTask as an example of an
atomic task instance, which is used to calculate the effective rainfall. Figure 10 shows the individuals
and properties involved in the ERCTask instance. The process of an atomic task is an individual of
AtomicProcess, while those of composite tasks are not. We list the namespace declaration of ontologies
and the syntax of class, subclass, and property definitions using OWL, as shown below Figure 10.

Table 1. Tasks involved in the MEW example

Task Type Abbreviation SubTask Description

PotentialDegreeCalTask PDCTask
FQTask
FWCTask
PDITask

Calculate potential degree index
from multiple influence factor data

EffectiveRainfallCalTask ERCTask Calculate effective rainfall

EarlyWarningAnalysisTask EWATask
OATask
HRITask
EWLTask

Generate a forecast map according
to an early warning model

FactorQuantificationTask FQTask Quantify the factor data according
to a certainty factor model

FactorWeightCalTask FWCTask Calculate factor weight

PotentialDegreeIndexCalTask PDITask Calculate potential degree index

OverlayAnalysisTask OATask Overlay the input data.

HazardRiskIndexCalTask HRITask Calculate the hazard risk index

EarlyWarningLevelTask EWLTask Divide early-warning level
according to the risk index

Differing from the atomic task, the process of the composite task is composed of multiple edge
individuals, each of which describes the data flow between two task instances. A set of edges
compose a process graph that denotes how the task works. For example, Figure 11 shows the task
instance of a composite task called EWATask. The process individual “process:EWAProcess” contains
two edge individuals: “process:EWAEdge1” and “process:EWAEdge2”. The former connects the

ISPRS Int. J. Geo-Inf. 2018, 7, 423 13 of 18

two task instances: “task:QATask” and “task:HRITask”, and the latter connects “task:HRITask” and
“task:EWLTask”. These edge individuals are linked to process individuals with the itemEdge property.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 13 of 19

Figure 10. The task instance of an atomic task (EffectiveRainfallCalTask).

Differing from the atomic task, the process of the composite task is composed of multiple edge
individuals, each of which describes the data flow between two task instances. A set of edges
compose a process graph that denotes how the task works. For example, Figure 11 shows the task
instance of a composite task called EWATask. The process individual “process:EWAProcess”
contains two edge individuals: “process:EWAEdge1” and “process:EWAEdge2”. The former
connects the two task instances: “task:QATask” and “task:HRITask”, and the latter connects
“task:HRITask” and “task:EWLTask”. These edge individuals are linked to process individuals with
the itemEdge property.

Figure 10. The task instance of an atomic task (EffectiveRainfallCalTask).ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 14 of 19

Figure 11. The task instance of a composite task (EarlyWarningAnalysisTask).

5.4. Prototype

A prototype system based on the realized ontology representation and formalized task instances
was developed to facilitate users to solve complex geospatial problems. The implemented prototype,
leverages a number of web techniques, such as Ajax, XML, JSON, EasyUI, GoJS, OpenLayers, Apache
Axis2, and so on. Ajax is used for asynchronous data exchange between the client and server sides.
XML and JSON are data exchange formats. EasyUI and GoJS are client UI frameworks, and GoJS is
employed to draw a flowchart. OpenLayers is a JavaScript class library package for WebGIS client
development, which is used to achieve map data access. Apache Axis2 is used to provide the Web
Service interface. The Java API package Apache Jena [51], a Semantic Web framework for Java, is
used to parse the ontology file, access ontology definitions, and infer knowledge [52]. The Apache
Tomcat server was employed as a web container. The prototype system can be accessed using
Microsoft IE or a Google browser in a Windows operating system

The MEW analysis in Henan, China is used as an example to utilize the knowledge base to
support geospatial problem solving. First, we define formal semantics in the ontology-based
knowledge base by creating task instances using an ontology editor. The task instance is named
EWATask (Figure 11) which can decompose into three subtasks (OATask, HRITask, and EWLTask),
The ontology files are generated using OWL format language which is mentioned in the previous
section.

Second, the web services, including three data access services (Potential_Degree_Data,
Effective_Rainfall_Data, and Forecast_Rainfall_Data) and three geoprocessing services (wps_overlay,
wps _riskIndex, and wps_ewLevel), are published with the support of MapGIS IGServer [53]. The
details of data access services are shown in Table 2, the geoprocessing services follow the WPS
specification, and the workflow model for EWATask is shown in Figure 12.

Figure 11. The task instance of a composite task (EarlyWarningAnalysisTask).

5.4. Prototype

A prototype system based on the realized ontology representation and formalized task instances
was developed to facilitate users to solve complex geospatial problems. The implemented prototype,

ISPRS Int. J. Geo-Inf. 2018, 7, 423 14 of 18

leverages a number of web techniques, such as Ajax, XML, JSON, EasyUI, GoJS, OpenLayers, Apache
Axis2, and so on. Ajax is used for asynchronous data exchange between the client and server sides.
XML and JSON are data exchange formats. EasyUI and GoJS are client UI frameworks, and GoJS is
employed to draw a flowchart. OpenLayers is a JavaScript class library package for WebGIS client
development, which is used to achieve map data access. Apache Axis2 is used to provide the Web
Service interface. The Java API package Apache Jena [51], a Semantic Web framework for Java, is used
to parse the ontology file, access ontology definitions, and infer knowledge [52]. The Apache Tomcat
server was employed as a web container. The prototype system can be accessed using Microsoft IE or
a Google browser in a Windows operating system

The MEW analysis in Henan, China is used as an example to utilize the knowledge base to support
geospatial problem solving. First, we define formal semantics in the ontology-based knowledge base
by creating task instances using an ontology editor. The task instance is named EWATask (Figure 11)
which can decompose into three subtasks (OATask, HRITask, and EWLTask), The ontology files are
generated using OWL format language which is mentioned in the previous section.

Second, the web services, including three data access services (Potential_Degree_Data,
Effective_Rainfall_Data, and Forecast_Rainfall_Data) and three geoprocessing services (wps_overlay,
wps _riskIndex, and wps_ewLevel), are published with the support of MapGIS IGServer [53]. The
details of data access services are shown in Table 2, the geoprocessing services follow the WPS
specification, and the workflow model for EWATask is shown in Figure 12.

Table 2. Data access services involved in EWATask.

Data Name Service Type SRS Geometry

Potential_Degree_Data WFS Xi’an 80 Polygon
Effective_Rainfall_Data WFS Xi’an 80 Polygon
Forecast_Rainfall_Data WFS Xi’an 80 Polygon

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 15 of 19

Table 2. Data access services involved in EWATask.

Data Name Service Type SRS Geometry
Potential_Degree_Data WFS Xi’an 80 Polygon
Effective_Rainfall_Data WFS Xi’an 80 Polygon
Forecast_Rainfall_Data WFS Xi’an 80 Polygon

Figure 12. The workflow model of EWATask. Data access services are represented in elliptical shapes,
and geoprocessing services are represented in rectangular shapes.

Finally, the prototype system provides an intuitive and easy-to-use graphical user interface
(GUI). The end-users can access the GUI of the prototype system using a web browser. As shown in
Figure 13, in the left panel, there is a tree structure showing the task lists that are parsed from the
knowledge base. The user selects and clicks on a tasknode; then, the process model of the task will
be displayed in the form of a flowchart in the right panel (step 1). Next, right-click on a process node
and select the menu “service binding” (step 2). A service binding window pops up and allows end-
users to bind the appropriate service and input the related parameters manually (step 3). Repeat this
step for each process node. Finally, execute the task and get the result map (step 4). For instance, Mr.
Wang took Henan province in China as a forecast area for the risk analysis and forecasted the
possibility of the occurrence of geological hazards in the next 24 h. He clicked the
EarlyWarnAnalysisTask node in the prototype system, the process graph of which was shown in the
right panel (Figure 13). Following this workflow, he bound the appropriate geoprocessing services
(wps_overlay, wps_riskIndex, and wps_ewLevel) that were invoked with a linear sequence
(wps_overlay → wps_riskIndex → wps_ewLevel). According to the forecast results, an early-
warning result map as shown in the lower right of Figure 13, was obtained, which uses different
colors to represent different early-warning levels.

Resultwps_overlay wps _riskIndex wps _ewLevel

Potential_Degree_
Data

Effective_Rainfall_
Data

Forecast_Rainfall_
Data

Figure 12. The workflow model of EWATask. Data access services are represented in elliptical shapes,
and geoprocessing services are represented in rectangular shapes.

Finally, the prototype system provides an intuitive and easy-to-use graphical user interface
(GUI). The end-users can access the GUI of the prototype system using a web browser. As shown
in Figure 13, in the left panel, there is a tree structure showing the task lists that are parsed from
the knowledge base. The user selects and clicks on a tasknode; then, the process model of the
task will be displayed in the form of a flowchart in the right panel (step 1). Next, right-click on a
process node and select the menu “service binding” (step 2). A service binding window pops up
and allows end-users to bind the appropriate service and input the related parameters manually
(step 3). Repeat this step for each process node. Finally, execute the task and get the result map
(step 4). For instance, Mr. Wang took Henan province in China as a forecast area for the risk analysis
and forecasted the possibility of the occurrence of geological hazards in the next 24 h. He clicked
the EarlyWarnAnalysisTask node in the prototype system, the process graph of which was shown
in the right panel (Figure 13). Following this workflow, he bound the appropriate geoprocessing

ISPRS Int. J. Geo-Inf. 2018, 7, 423 15 of 18

services (wps_overlay, wps_riskIndex, and wps_ewLevel) that were invoked with a linear sequence
(wps_overlay→ wps_riskIndex→ wps_ewLevel). According to the forecast results, an early-warning
result map as shown in the lower right of Figure 13, was obtained, which uses different colors to
represent different early-warning levels.

Figure 13. The graphical user interface of the prototype system.

6. Conclusions and Future Work

This paper proposes a task model and abstracts a geospatial problem as a task that can be used as
a reusable component for problem-solving. A task-oriented knowledge base is built to capture sharable
and reusable geospatial problem-solving knowledge. In the knowledge base, we combine multiple
ontologies (e.g., Task Ontology, Process Ontology, and GIS Operation Ontology) to provide assistance
for all facets of problem-solving. This knowledge base is not tightly-coupled with any specific workflow
language. The required knowledge about problem-solving is stored in the knowledge base which
employs ontology and task-oriented approach to achieve the formalization and reusability of tasks.

This knowledge base is tailored for domain experts to create and share their professional geospatial
problem-solving knowledge. For the end-users, a user-friendly interface is needed to submit a
geospatial problem and query the problem solution. An approach that has the capabilities of parsing
natural language input will be developed in future work. This approach would allow users to input
free-text to submit problem requirements.

In this paper, we only concentrate on using ontologies to describe a conceptual workflow that is
composed of a linear sequence of GIS functionalities. We do not present an algorithm to instantiate
into a concrete service chain and execute this workflow. The approach of knowledge transformation,
instantiation and execution of a workflow will be implemented in future work.

Author Contributions: C.Z. designed the knowledge base, implemented the prototype system, and wrote the
paper. K.M. and M.G. deployed and performed the prototype system. L.W. contributed the materials and tools.
Z.X. conceived the early ideas of this work, reviewed the paper, and provided some suggestions and feedback.

Funding: This work was funded by the National Key Research and Development Program of China (Grant Nos.
2017YFB0503600, 2018YFB0505500, 2017YFC0602204), National Natural Science Foundation of China (Grant Nos.
41671400, 41701446), and Hubei Province Natural Science Foundation of China (Grant No. 2017CFB277).

Acknowledgments: We acknowledge the anonymous reviewers for their valuable comments and suggestions to
improve this paper.

ISPRS Int. J. Geo-Inf. 2018, 7, 423 16 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yue, P.; Baumann, P.; Bugbee, K.; Jiang, L. Towards intelligent giservices. Earth Sci. Inform. 2015, 8, 463–481.
[CrossRef]

2. Li, X.; Song, J.; Huang, B. A scientific workflow management system architecture and its scheduling based
on cloud service platform for manufacturing big data analytics. Int. J. Adv. Manuf. Technol. 2016, 84, 119–131.
[CrossRef]

3. Yang, Z.L.; Cao, J.; Hu, K.; Gui, Z.P.; Wu, H.Y.; You, L. Developing a cloud-based online geospatial information
sharing and geoprocessing platform to facilitate collaborative education and research. In Proceedings of the
ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
2016 XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B6, pp. 3–7.

4. Peng, Y.; Gong, J.; Di, L.; Jie, Y.; Sun, L.; Sun, Z.; Qian, W. GeoPW: Laying blocks for the geospatial processing
web. Trans. GIS 2010, 14, 755–772.

5. Qi, K.; Gui, Z.; Li, Z.; Guo, W.; Wu, H.; Gong, J. An extension mechanism to verify, constrain and enhance
geoprocessing workflows invocation. Trans. GIS 2016, 20, 240–258. [CrossRef]

6. Zhang, M.; Bu, X.; Yue, P. Geojmodelbuilder: An open source geoprocessing workflow tool. Open Geospat.
Data Softw. Stand. 2017, 2, 8. [CrossRef]

7. Yue, P.; Zhang, M.; Tan, Z. A geoprocessing workflow system for environmental monitoring and integrated
modelling. Environ. Model. Softw. 2015, 69, 128–140. [CrossRef]

8. Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial web service
chains. Comput. Geosci. 2007, 33, 649–665. [CrossRef]

9. Lamprecht, A.L.; Steffen, B.; Margaria, T. Scientific workflows with the jabc framework. Int. J. Softw. Tools
Technol. Transf. 2016, 18, 629–651. [CrossRef]

10. Al-Areqi, S.; Lamprecht, A.L.; Margaria, T. Constraints-driven automatic geospatial service composition:
Workflows for the analysis of sea-level rise impacts. In Proceedings of the International Conference on
Computational Science and Its Applications, Beijing, China, 4–7 July 2016; pp. 134–150.

11. Kliment, T.; Bordogna, G.; Frigerio, L.; Crema, A.; Boschetti, M.; Brivio, P.A.; Sterlacchini, S. Image data
and metadata workflows automation in geospatial data infrastructure deployed for agricultural sector.
In Proceedings of the Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 146–149.

12. Farnaghi, M.; Mansourian, A. Disaster planning using automated composition of semantic OGC web services:
A case study in sheltering. Comput. Environ. Urban Syst. 2013, 41, 204–218. [CrossRef]

13. Al-Areqi, S.; Lamprecht, A.-L.; Margaria, T. Automatic workflow composition in the geospatial domain:
An application on sea-level rise impacts analysis. In Proceedings of the 19th AGILE International Conference
on Geographic Information Science, Helsinki, Finland, 14–17 June 2016.

14. Sun, Z.; Yue, P.; Di, L. Geopwtmanager: A task-oriented web geoprocessing system. Comput. Geosci. 2012, 47,
34–45. [CrossRef]

15. Jung, C.T.; Sun, C.H.; Yuan, M. An ontology-enabled framework for a geospatial problem-solving
environment. Comput. Environ. Urban Syst. 2013, 38, 45–57. [CrossRef]

16. Lutz, M. Ontology-based descriptions for semantic discovery and composition of geoprocessing services.
Geoinformatica 2007, 11, 1–36. [CrossRef]

17. Hofer, B.; Mãs, S.; Brauner, J.; Bernard, L. Towards a knowledge base to support geoprocessing workflow
development. Int. J. Geogr. Inf. Syst. 2016, 31, 694–716. [CrossRef]

18. Müller, M. Hierarchical profiling of geoprocessing services. Comput. Geosci. 2015, 82, 68–77. [CrossRef]
19. Hu, L.; Yue, P.; Zhang, M.; Gong, J.; Jiang, L.; Zhang, X. Task-oriented sensor web data processing for

environmental monitoring. Earth Sci. Inform. 2015, 8, 511–525. [CrossRef]
20. Gorton, S.; Reiff-Marganiec, S. Towards a task-oriented, policy-driven business requirements specification

for web services. In Proceedings of the International Conference on Business Process Management, Vienna,
Austria, 5–7 September 2006; pp. 465–470.

21. Wiegand, N.; García, C. A task-based ontology approach to automate geospatial data retrieval. Trans. GIS
2007, 11, 355–376. [CrossRef]

http://dx.doi.org/10.1007/s12145-015-0229-z
http://dx.doi.org/10.1007/s00170-015-7804-9
http://dx.doi.org/10.1111/tgis.12152
http://dx.doi.org/10.1186/s40965-017-0022-7
http://dx.doi.org/10.1016/j.envsoft.2015.03.017
http://dx.doi.org/10.1016/j.cageo.2006.09.003
http://dx.doi.org/10.1007/s10009-016-0427-0
http://dx.doi.org/10.1016/j.compenvurbsys.2013.06.003
http://dx.doi.org/10.1016/j.cageo.2011.11.031
http://dx.doi.org/10.1016/j.compenvurbsys.2012.10.008
http://dx.doi.org/10.1007/s10707-006-7635-9
http://dx.doi.org/10.1080/13658816.2016.1227441
http://dx.doi.org/10.1016/j.cageo.2015.05.017
http://dx.doi.org/10.1007/s12145-015-0235-1
http://dx.doi.org/10.1111/j.1467-9671.2007.01050.x

ISPRS Int. J. Geo-Inf. 2018, 7, 423 17 of 18

22. Luo, J. The Semantic Geospatial Problem Solving Environment: An Enabling Technology for Geographical
Problem Solving under Open, Heterogeneous Environments. Ph.D. Thesis, The Pennsylvania State
University, Pennsylvania, PA, USA, 2007.

23. Jung, C.T.; Sun, C.H. Ontology-driven problem solving framework for spatial decision support systems.
Tetsu- to-Hagane. 2010, 47, 512–515.

24. Vahedi, B.; Kuhn, W.; Ballatore, A. Question-based spatial computing—A case study. In Geospatial Data in a
Changing World; Springer International Publishing: Cham, Switzerland, 2016; pp. 37–50.

25. Albrecht, J. Universal elementary GIS tasks-beyond low-level commands. In Proceedings of the Sixth
International Symposium on Spatial Data Handling, Edinburgh, UK, 3–7 August 1994; pp. 209–222.

26. Tran, V.X.; Tsuji, H. Owl-t: An ontology-based task template language for modeling business processes.
In Proceedings of the Acis International Conference on Software Engineering Research, Management &
Applications, Busan, Korea, 20–22 August 2007; pp. 101–108.

27. Sun, Z.; Yue, P.; Lu, X.; Zhai, X.; Hu, L. A task ontology driven approach for live geoprocessing in a
service-oriented environment. Trans. GIS 2012, 16, 867–884. [CrossRef]

28. Yuan, X.; Liu, G. A task ontology model for domain independent dialogue management. In Proceedings of
the IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement
Systems, Tianjin, China, 2–4 July 2012; pp. 148–153.

29. Park, H.; Yoon, A.; Kwon, H.C. Task model and task ontology for intelligent tourist information service.
Int. J. U- E-Serv. Sci. Technol. 2012, 5, 43–58.

30. Linyao, Q.; Zhiqiang, D.; Qing, Z. A task-oriented disaster information correlation method. In Proceedings
of the 2015 International Workshop on Spatiotemporal Computing, Fairfax, VA, USA, 13–15 July 2015;
Volume II-4/W2, pp. 169–176.

31. Mikita, T.; Balogh, P. Usage of geoprocessing services in precision forestry for wood volume calculation and
wind risk assessment. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 793–801. [CrossRef]

32. Bensmann, F.; Alcacerlabrador, D.; Ziegenhagen, D.; Roosmann, R. The richwps environment for
orchestration. ISPRS Int. J. Geo-Inf. 2014, 3, 1334–1351. [CrossRef]

33. Hull, D.; Wolstencroft, K.; Stevens, R.; Goble, C.; Pocock, M.R.; Li, P.; Oinn, T. Taverna: A tool for building
and running workflows of services. Nucleic Acids Res. 2006, 34, 729–732. [CrossRef] [PubMed]

34. Wolstencroft, K.; Haines, R.; Fellows, D.; Williams, A.; Withers, D.; Owen, S.; Soilandreyes, S.; Dunlop, I.;
Nenadic, A.; Fisher, P. The taverna workflow suite: Designing and executing workflows of web services on
the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, 557–561. [CrossRef] [PubMed]

35. Taylor, I.; Shields, M.; Wang, I.; Harrison, A. The triana workflow environment: Architecture and applications.
In Workflows e-Science; Springer: London, UK, 2007; pp. 320–339.

36. Altintas, I.; Berkley, C.; Jaeger, E.; Jones, M. Kepler: An extensible system for design and execution of
scientific workflows. In Proceedings of the International Conference on Scientific and Statistical Database
Management, Santorini Island, Greece, 23 June 2004; pp. 423–424.

37. Lamprecht, A.L.; Margaria, T.; Steffen, B. Modeling and Execution of Scientific Workflows with the jABC
Framework; Springer: Berlin/Heidelberg, Germany, 2014; pp. 14–29.

38. Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H. An architecture for automated fire
detection early warning system based on geoprocessing service composition. In Proceedings of the SMPR
2013, Tehran, Iran, 5–8 October 2013; pp. 351–355.

39. Arul, U.; Prakash, S. A unified algorithm to automatic semantic composition using multilevel workflow
orchestration. In Cluster Computing; Springer: New York, NY, USA, 2018; pp. 1–22.

40. Hofer, B.; Brauner, J.; Jackson, M.; Granell, C.; Rodrigues, A.; Nüst, D.; Wiemann, S. Descriptions of spatial
operations—Recent approaches and community feedback. Int. J. Spat. Data Infrastruct. Res. 2015, 10, 124–137.

41. Brauner, J. Formalizations for Geooperators-Geoprocessing in Spatial Data Infrastructures. Ph.D. Thesis,
Technische Universität Dresden, Dresden, Germany, 2015.

42. Hofer, B.; Papadakis, E.; Mäs, S. Coupling knowledge with GIS operations: The benefits of extended
operation descriptions. Int. J. Geo-Inf. 2017, 6, 40. [CrossRef]

43. Crubézy, M.; Musen, M.A. Ontologies in Support of Problem Solving; Springer: Berlin/Heidelberg, Germany,
2004; pp. 321–341.

44. Zhao, P.; Di, L.; Yu, G.; Yue, P.; Wei, Y.; Yang, W. Semantic web-based geospatial knowledge transformation.
Comput. Geosci. 2009, 35, 798–808. [CrossRef]

http://dx.doi.org/10.1111/j.1467-9671.2012.01364.x
http://dx.doi.org/10.11118/actaun201563030793
http://dx.doi.org/10.3390/ijgi3041334
http://dx.doi.org/10.1093/nar/gkl320
http://www.ncbi.nlm.nih.gov/pubmed/16845108
http://dx.doi.org/10.1093/nar/gkt328
http://www.ncbi.nlm.nih.gov/pubmed/23640334
http://dx.doi.org/10.3390/ijgi6020040
http://dx.doi.org/10.1016/j.cageo.2008.03.013

ISPRS Int. J. Geo-Inf. 2018, 7, 423 18 of 18

45. Gruber, T.R. A translational approach to portable ontologies. Knowl. Acquis. 1993, 5, 199–220. [CrossRef]
46. Perez, A.G.; Benjamins, V.R. Overview of knowledge sharing and reuse components: Ontologies and

problem-solving methods. In Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI’99), Stockholm, Sweden, 31 July–6 August 1999.

47. Zhong, S.; Fang, Z.; Zhu, M.; Huang, Q. A geo-ontology-based approach to decision-making in emergency
management of meteorological disasters. Nat. Hazards 2017, 89, 531–554. [CrossRef]

48. The International Organization for Standardization (ISO). ISO 19107: Geographic Information—Spatial Schema;
The International Organization for Standardization: Geneva, Switzerland, 2003.

49. ISO. ISO 19123: Geographic Information—Schema for Coverage Geometry and Functions; The International
Organization for Standardization: Geneva, Switzerland, 2005.

50. OGC. OGC Abstract Specifications: Topic 5—Features; Open Geospatial Consortium: Wayland, MA, USA, 2009;
pp. 8–126.

51. Apache Jena. Available online: http://jena.apache.org/ (accessed on 29 August 2018).
52. Zhang, C.; Zhao, T.; Li, W. Automatic search of geospatial features for disaster and emergency management.

Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 409–418. [CrossRef]
53. Wu, X.; Liu, X.; Zhou, S. Principle and Method of MapGIS IGServer; Publishing House of Electronics Industry:

Beijing, China, 2012.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1007/s11069-017-2979-z
http://jena.apache.org/
http://dx.doi.org/10.1016/j.jag.2010.05.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Task-Based Approach
	Geospatial Problem-Solving

	Task as a Reusable Problem-Solving Component
	An Application Scenario
	Task and Task Model
	Geooperator
	Formal Definition

	A Task-Oriented Knowledge Base
	Background on Ontologies
	Ontologies at the Heart of the Knowledge Base
	Task Ontology
	Process Ontology
	Data Type Ontology
	GIS Operation Ontology
	Interface Ontology

	Implementation
	Creation of Ontologies
	Representation of Ontology Knowledge
	Task Instances
	Prototype

	Conclusions and Future Work
	References

