
 International Journal of

Geo-Information

Article

A Novel 3D Anisotropic Total Variation Regularized
Low Rank Method for Hyperspectral Image
Mixed Denoising

Le Sun 1,2,3,† , Tianming Zhan 4, Zebin Wu 3 and Byeungwoo Jeon 5,*

1 School of Computer and Software, Nanjing University of Information Science and Technology,
Nanjing 210044, China; sunlecncom@nuist.edu.cn

2 Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of
Education, Nanjing University of Science and Technology, Nanjing 210094, China

3 School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; zebin.wu@gmail.com

4 School of Information and Technology, Nanjing Audit University, Nanjing 211815, China; ztm@ujs.edu.cn
5 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 440746, Korea
* Correspondence: bjeon@skku.edu; Tel.: +82-10-3709-7144
† This paper is extended from our PIC2016 conference paper.

Received: 10 September 2018; Accepted: 12 October 2018; Published: 17 October 2018
����������
�������

Abstract: Known to be structured in several patterns at the same time, the prior image of interest is
always modeled with the idea of enforcing multiple constraints on unknown signals. For instance,
when dealing with a hyperspectral restoration problem, the combination of constraints with
piece-wise smoothness and low rank has yielded promising reconstruction results. In this paper,
we propose a novel mixed-noise removal method by employing 3D anisotropic total variation and low
rank constraints simultaneously for the problem of hyperspectral image (HSI) restoration. The main
idea of the proposed method is based on the assumption that the spectra in an HSI lies in the
same low rank subspace and both spatial and spectral domains exhibit the property of piecewise
smoothness. The low rankness of an HSI is approximately exploited by the nuclear norm, while the
spectral-spatial smoothness is explored using 3D anisotropic total variation (3DATV), which is
defined as a combination of 2D spatial TV and 1D spectral TV of the HSI cube. Finally, the proposed
restoration model is effectively solved by the alternating direction method of multipliers (ADMM).
Experimental results of both simulated and real HSI datasets validate the superior performance of
the proposed method in terms of quantitative assessment and visual quality.

Keywords: hyperspectral restoration; multiple constraints; low rank; 3D anisotropic total
variation; ADMM

1. Introduction

Hyperspectral images (HSIs), three-dimensional data cubes with hundreds of narrow spectral
bands ranging from 0.4 to 2.5 µm, have been widely used in various fields [1], e.g., precise agriculture,
mineral detection, environment monitoring, and urban planning. However, during acquisition
of an image, real HSIs are always corrupted by several kinds of noises, e.g., Gaussian noise,
impulse noise, stripes or dead lines, which severely limit the precision of the subsequent processing,
e.g., unmixing [2,3], classification [4,5], and anomaly detection [6]. Therefore, it is essential to develop
effective restoration techniques for HSIs.

Enormous existing single image denoising methods, e.g., k-means clustering dictionary learning
algorithm via singular value decomposition (K-SVD) [7], non-local means [8,9], block-matching and
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3D filtering (BM3D) [10] as well as their variants, can be directly applied to HSI by treating it as
band-by-band images. However, without imposing the information between bands, these kinds of
methods always produce ordinary results.

Several kinds of powerful HSI restoration methods are based on wavelet transform [11–13]
which has shown great potential in multi-scale representation [14] and spatial-spectral correlation
exploration. For instance, Othman and Qian [15] proposed a two-dimensional (2D) algorithm
that benefits the spatial and spectral features of HSIs and operates the wavelet shrinkage in the
derivative domain. Usually, a wavelet transform is always combined with principle component
analysis (PCA) for HSI restoration [16,17]. For example, block-matching four-dimensional (BM4D)
filtering was conducted in the remaining low-energy principal component analysis (PCA) output
channel images for HSI denoising [18] and it achieved great progress in removing Gaussian
noise. Generally, due to the exploration in spectral and spatial domains, 3D wavelet methods [19]
produce much better results than 2D wavelet methods [20]. Moreover, the combination of sparse
reduced-rank regression and wavelet transform is another way to produce appealing results [21].
Except for wavelet transform-based methods, there are still a number of techniques developed for
hyperspectral restoration, e.g., tensor decomposition methods [22,23], sparse representation [24,25]
or sparse dictionary learning methods [26,27], kernel-based methods [28], deep learning [29] or neural
network [30,31] methods and Bayesian methods [32,33]. These methods have been proved to produce
outstanding results. However, all the above mentioned methods only consider one or two kinds of
noises, and fail to remove mixed noise completely.

Recently, low-rank representation (LRR), another powerful technique for image analysis [34,35],
has drawn a lot of attention and achieved great success in the field of hyperspectral restoration.
Lu et al. [36] proposed an LRR method for removing stripe noise in HSIs by exploiting the high
spectral correlation among different bands, and graph regularization was constructed to preserve
the intrinsic local structure. Motivated by the idea of robust principle component analysis (RPCA),
Zhang et al. [37] exploited an HSI restoration method based on low-rank matrix recovery (LRMR) via
so-called “Go Decomposition” algorithm. Even though LRMR was constructed on overlapped patches
and achieved exciting performance for denoising mixed Gaussian and sparse noise simultaneously,
it only considers the local similarity within patches. To overcome such drawback, by treating the
different contribution of the overlapped patches, a spectral nonlocal weighted low-rank representation
method was presented in [38]. Meanwhile, He et al. [39] then improved the patch-wise LRMR by
a noise-adjusted iteration strategy, which makes LRMR adaptive to the noise intensity in different
bands. To exploit both the local similarity within a patch and the nonlocal similarity across the patches
in a group simultaneously, Wang et al. [40] proposed an approach of group low-rank representation
(GLRR) for HSI denoising. GLRR enables the exploitation of both the local similarity within a patch and
the nonlocal similarity across the patches in a group simultaneously and achieves better performance.
Different from the above-mentioned low-rank based methods, Sun et al. [41] paved a new way to
explore the low rank properties in the spectral difference images of HSI for mixed noise removal. Due to
lack of spatial information, however, those low-rank methods only exploit the low-rank properties of
HSIs from a spectral perspective and fail to remove the heavy Gaussian noise effectively. In addition,
when sparse noise has its own structure, for example, the stripes or dead lines in an HSI are located
at the same place in most of the bands, the low-rank-based method will treat the sparse noise as
a low-rank component and fail to remove it [42,43]. More research related to low-rank representation
for HSI denoising can be found in this literature [44,45] and references therein.

Total variation is an effective tool for imposing the spatial constraint and removing the Gaussian
noise in HSI [46–48]. For instance, Yuan et al. [46] extended the vectorial total variation (VTV) [49]
for HSI denoising, which is adaptive for noise intensity in each band and structures in the spatial
domain. Chang et al. [48] proposed to employ an anisotropic total variation which is defined by
maintaining the difference along the direction of strips for destriping of HSI. However, both methods
can only remove a certain kind of noise for HSI and are not flexible for removing mixed noises,
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i.e., Gaussian noise, stripes and deadlines. In order to deal with mixed noises for HSI, Aggarwal
et al. [50] proposed a novel spatial-spectral TV to explore the spectral smoothness across the spatial
total variation and achieved great success. In addition, by taking the advantage of combination of
multiple constrains, He et al. [42] proposed a band-by-band total variation regularized low-rank
matrix factorization (LRTV) method for the restoration of HSIs, which achieved great improvement
for mixed noise removal by combining total variation regularization and low rank representation
to enforce the local spatial smoothness and the low-rank property of the spectra in the whole scene
simultaneously. Similarly, Wu et al. [51] proposed to combine the band-by-band TV regularization
with weighted nuclear norm minimization (WNMM) for HSI mixed denoising. However, LRTV or
WNMM only consider the band-by-band TV model, and ignore the consistency and smoothness in
the spectral domain, which significantly limits the performance of HSI denoising especially in the
case of heavy Gaussian noise and structured sparse noise. More recently, Wang et al. [52] combined
the spatial-spectral TV with a low rank constraint for HSI mixed denoising and further improved
the denoising performance. Another way to improve the performance of HSI mixed denoising is to
involve three-dimensional total variation (3DTV) into the multiple combination framework. 3DTV
which promotes both spatial and spectral smoothness is a natural extension of the conventional 2D TV
for cubic data. It has been utilized for several applications of HSI, such as compressive sensing [53]
and super-resolution [54]. In [53], 3DTV is defined as a 2D spatial TV and a 1D spectral TV on the
abundance fractions of endmembers for HSI unmixing compressive sensing. Later, the 3DTV with the
same definition as that in [53] was combined with low rank tensor prior for HSI super-resolution.

Based on our previous research [55], in this paper, we propose a novel hyperspectral restoration
method based on 3D anisotropic total variation (ATV) regularization and low-rank representation,
namely 3DATVLR, where the ATV is defined by the l1 norm TV along two directions in spatial domain
and the l1 norm TV along one direction in spectral domain. This method could exploit both the spatial
and spectral information of HSIs and is able to preserve the spectra and edges as well as remove the
mixed noise simultaneously by treating an HSI as a 3D cube. Compared to [54], the proposed 3DATV
intends to promote different smoothness strength from spatial and spectral TV while 3DTV defined
in [53] enforces the spatial TV and spectral TV equally. This enables 3DATV to be more flexible for
dealing with different mixed noises. In addition, our 3DATVLR method concerns the mixed noises
removal problem while the method in [54] only considers the Gaussian noise for HSI super-resolution
problem. More importantly, as analyzed in [56], the unfolding matrices of the HSI tensor along spectral
mode and self-similar mode are of low rank. Enforcing low rankness on three modes of HSI tensor
will reduce the performance of HSI denoising.

The contributions of this paper are summarized as follows:

1. By treating an HSI as a 3D cube, 3D anisotropic total variation (3DATV) is adopted to exploit the
spatial smoothness and spectral consistency simultaneously along with the low-rank regularization.

2. The TV denoising process is updated iteratively in a spatial-spectral manner in the alternating
direction method of multipliers (ADMM) algorithm instead of in a band-by-band manner, and it
can be effectively solved by an n-D fast Fourier transform (nFFT).

3. When low-rank regularization fails to remove the structured sparse noise, i.e., structured stripes
or dead lines, 3DATV could effectively get rid of them by simultaneously exploring the spatial
and spectral consistency while LRTV even makes this case in a dilemma since the band-by-band
TV preserves the stripes or deadlines along one of the directions.

The remainder of this paper is organized as follows: Section 2 formulates the restoration problem
for HSIs. Section 3 describes the proposed 3DATVLR model and presents the details of the optimization
algorithm. Section 4 illustrates the experimental results. Section 5 concludes the paper with some remarks.
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2. Basic Formulation

2.1. Observation Model

Firstly, we define some notations for HSI restoration problem. Let X ∈ Rm×n×l represent a clear
HSI cube with m× n spatial pixels and l spectral bands. Then, the observed HSI cube Y ∈ Rm×n×l ,
corrupted by Gaussian noise N ∈ Rm×n×l and sparse noise S ∈ Rm×n×l , can be formulated as

Y = X + S + N. (1)

This mixed noise formulation was first utilized for hyperspectral restoration in [37] using LRMR.
It is used to remove the Gaussian noise caused by the imaging sensors and model system, as well as
the sparse noise, e.g., dead lines or stripes, created by push-broom sensors.

2.2. Restoration Model

With Equation (1) in mind, the restoration model of removing mixed Gaussian and sparse noises
for HSIs can be formulated as

min
X,S

J1(X) + λJ2(S)

s.t. ||Y− X− S||2F ≤ ε,
(2)

where λ is a parameter that maintains the trade-off between the two priori terms, and ε is a parameter
related to the density of Gaussian noise. J2(S) is usually modeled as sparse regularization [37–39],
i.e., ||S||1 = ∑i |si|, where si is the element of S. J1(X) is the regularization associated with the clean
HSI X, which models the a priori properties of the clean HSI.

2.3. Prior Regularizations

2.3.1. Low Rank Regularization

One choice for J1(X) is the nuclear norm, i.e., ||X||∗, which exploits the low-rank property by enforcing
the sum of the singular values of X, and has shown good performance in HSI restoration [37,42].

The objective function involving the low rank regularization and sparse regularization is
formulated as:

min
X,S
||X||∗ + λ||S||1

s.t. ||Y− X− S||2F ≤ ε.
(3)

Equation (3) is the well-known robust principle component analysis (RPCA) model which has
been widely used in nature image processing [48]. Even working well for HSI mixed denoising, it still
has two main drawbacks as follows:

• Due to the independent distribution of Gaussian noise in each pixel, Equation (3) can not
completely remove the heavy Gaussian noise.

• Equation (3) can not remove the structured sparse noise, i.e., stripes or dead lines locate at
the same place in each band because the low rank method will treat them as one of the low
rank components.

2.3.2. Total Variation Regularization

Another supplementary choice for J1(X) is the total variation, which can effectively promote the
spatial-spectral smoothness by suppressing the heavy Gaussian noise successfully.
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Therefore, the band-by-band TV regularized low rank (LRTV) model is expressed as [42]:

min
X,S
||X||∗ + τ||X||HTV + λ||S||1

s.t. ||Y− X− S||2F ≤ ε,
(4)

where ||X||HTV = ∑l
i=1 ||Xi||tv is the conventional band-by-band TV.

Benefitting from the band-by-band TV regularization, LRTV can produce more accurate results
than LRMR, especially for the heavy Gaussian noise case. However, for the structured sparse noise,
it still fails to remove it because band-by-band TV will inversely keep the stripes or dead lines in one
of the directions, i.e., horizontal direction or vertical direction.

3. 3D Anisotropic TV Regularized Low-Rank Model for HSI Restoration

In this section, we systematically present the mathematical formulation of the proposed method
and illustrate the framework of it in Figure 1.
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Figure 1. The flow chart of the proposed 3DATVLR method.

3.1. 3D Anisotropic Total Variation Regularization

A straightforward way to extend the conventional 2D TV, which has been widely used in
HSI analysis [57,58], to a 3D version for HSI is to impose the spatial-spectral total variation into
a unit system. Before doing this, we first analyze the statistical distribution of each gradient image,
i.e., DhX, DvX, and DzX. Figure 2 exhibits the visual illustration and statistical table of each gradient
image of Washington DC dataset. It is clear that the shape of each spatial difference (i.e., DhX, DvX)
obeys Laplacian distribution while the shape of the spectral difference obeys Gaussian distribution.
The phenomena follows the rule of optical imaging in spectral band. However, considering that the
sparse noise will still exist in the spectral difference image, we finally employ the l1 norm to model the
distributions in three directions.
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Figure 2. Visual illustration and statistical table of each gradient image of HSI (Washington DC).

Hence, the formulation of 3D anisotropic TV can be expressed as follows:

||X||3DATV = ||DhX||1 + ||DvX||1 + ρ||DzX||1, (5)

where Dh and Dv respectively denote the horizontal and vertical difference operators along the spatial
dimension, while Dz is a linear operator corresponding to the spectral difference, and ρ controls the
proportion of the spectral correlation. Now, the 3DATV in Equation (5) exploits both spatial and
spectral smoothness for HSIs, and the definitions of its three operators are expressed as

DhX(i, j, k) = X(i + 1, j, k)− X(i, j, k),

DvX(i, j, k) = X(i, j + 1, k)− X(i, j, k),

DzX(i, j, k) = X(i, j, k + 1)− X(i, j, k),

(6)

where X(i, j, k) denotes a pixel at spatial location (i, j) in the kth band. By enforcing the constraints on
two spatial dimensions and one spectral dimension, the piecewise smoothness in both domains can
be pursued.

3.2. Proposed 3DATVLR Model

By integrating the low rank constraint and 3DATV regularization into a unit framework,
we propose a new model for HSI restoration:

min
X,S∈Rm×n×l

||X||∗ + λtv||X||3DATV + λs||S||1,

s.t. ||Y− X− S||2F ≤ ε, rank(X) ≤ r
(7)

where λtv and λs are two parameters that represent the trade-off of the three terms, ε represents the
noise level of the Gaussian noise, and r is the desired rank of matrix X.

This proposed 3D anisotropic total variation regularized low rank model, termed the 3DATVLR
method, can explore the spectral similarity and spatial-spectral smoothness simultaneously. Not only
can it remove the heavy Gaussian noise and structured stripes or deadlines by pursuing the
spectral-spatial smoothness with 3DATV, but it can also remove the random sparse noise,
thus preserving the spectra and keeping the fine spatial details in the original HSI.
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3.3. Optimization Algorithm

To effectively solve the optimization Equation (7), we first convert it to the following equivalent
constrained formulation:

min
L,X,S
||L||∗+λtv(||V1||1 + ||V2||1 + ρ||V3||1) + λs||S||1,

s.t. ||Y− L− S||2F ≤ ε, L = X,

V1 = DhX, V2 = DvX,

V3 = DzX, rank(L) ≤ r.

(8)

Up to this step, Equation (5) has been separated into five simper subproblems by the ADMM
method [59], which then solves it by minimizing the following Lagrangian function of Equation (8):

minL(L, X, S) = min
L,X,S∈Rm×n×l

||L||∗ + λtv(||V1||1 + ||V2||1

+ ρ||V3||1) + λs||S||1 + 〈Λ1, Y− L− S〉
+ 〈Λ2, X− L〉+ 〈Λ3, V1 − DhX〉
+ 〈Λ4, V2 − DvX〉+ 〈Λ5, V3 − DzX〉

+
µ

2
(||Y− L− S||2F + ||X− L||2F

+ ||V1 − DhX||2F + ||V2 − DvX||2F
+ ||V3 − DzX||2F)

s.t. rank(L) ≤ r,

(9)

where µ is the penalty parameter, and Λi, i = 1, 2, ..., 5 are the Lagrangian multipliers.
Generally, we optimize the Lagrangian Equation (9) iteratively over one variable while fixing the

other variables. The detailed pseudo-code for solving the proposed model via ADMM is summarized
in Algorithm 1.

Line 4 in Algorithm 1 is related to variable L, which is a nuclear norm subproblem and that can
be effectively solved by the singular value shrinkage method [60], given by

L(k+1) = argmin
rank(L)≤r

L(L, X(k), S(k))

= argmin
rank(L)≤r

||L||∗ + µ||L− 1
2

(
Y + X(k) − S(k)

+(Λk
1 + Λk

2)/µ
)
||2F

= D 1
2µ

(
1
2
(Y + X(k) − S(k) + (Λk

1 + Λk
2)/µ)

)
,

(10)

where

Dλ(W) = UDλ(Σr)VT

= Udiag{max(σi − λ, 0)}1≤i≤rVT .
(11)

Here, UΣVT is the singular value decomposition of the given matrix W, and {σi}1≤i≤r are the
first r singular values of W in descending order.
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Algorithm 1 Extended ADMM for the 3DATVLR method.

1: Input HSI matrix Y ∈ Rm×n×l , desired rank r, regularization parameters λtv and λs, maximum

iteration kmax

2: Initialization L(0) = X(0) = S(0) = 0, Λ
(0)
i = 0, i = 1, .., 5, V(0)

i = 0, i = 1, 2, 3, µ = 0.05,

µmax = 106, γ = 1.2, ρ > 0 and k = 0

3: While k < kmax

4: L(k+1) = arg minrank(L)≤r L(L, X(k), S(k))

5: X(k+1) = arg minX L(L(k+1), X, S(k))

6: S(k+1) = SoftTH(Y− L(k+1) + Λ
(k)
1 /¯, ˘s/¯)

7: V(k+1)
1 = SoftTH(DhX(k+1) −Λ

(k)
3 /µ, λtv/µ)

8: V(k+1)
2 = SoftTH(DvX(k+1) −Λ

(k)
4 /µ, λtv/µ)

9: V(k+1)
3 = SoftTH(DzX(k+1) −Λ

(k)
5 /µ, ρλtv/µ)

10: Update Lagrangian multipliers

11: Λ
(k+1)
1 = Λ

(k)
1 + µ(Y− L(k+1) − S(k+1))

12: Λ
(k+1)
2 = Λ

(k)
2 + µ(X(k+1) − L(k+1))

13: Λ
(k+1)
3 = Λ

(k)
3 + µ(V(k+1)

1 − DhX(k+1))

14: Λ
(k+1)
4 = Λ

(k)
4 + µ(V(k+1)

2 − DvX(k+1))

15: Λ
(k+1)
5 = Λ

(k)
5 + µ(V(k+1)

3 − DzX(k+1))

16: Update the parameter µ = min(γµ, µmax)

17: Update iteration k = k + 1

18: End While

Line 5 in Algorithm 1 is for solving a convex subproblem related to the variable X, as follows:

X(k+1) = argmin
X
L(L(k+1), X, S(k))

= argmin
X

(
||X− L(k+1) +

Λ
(k)
2
µ
||2F + ||V

(k)
1 − DhX

+
Λ

(k)
3
µ
||2F + ||V

(k)
2 − DvX +

Λ
(k)
4
µ
||2F

+||V(k)
3 − DzX +

Λ
(k)
5
µ
||2F

)
.

(12)

The solution to Equation (12) is equivalent to the following liner system of equations:

(I + ∆)X(k+1) = L(k+1) −
Λ

(k)
2
µ

+ ξ1 + ξ2 + ξ3, (13)

where

∆ = DT
h Dh + DT

v DT
v + DT

z Dz, ξ1 = DT
h

(
V(k)

1 +
Λ

(k)
3
µ

)
,
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ξ2 = DT
v

(
V(k)

2 +
Λ

(k)
4
µ

)
, ξ3 = DT

z

(
V(k)

3 +
Λ

(k)
5
µ

)
,

and T is the matrix transpose. By treating DhX, DvX, and DzX as convolutions along two spatial
directions and one spectral direction, this problem has a closed form solution via the nFFT.

X(k+1) = F−1

F
(

L(k+1) − Λ
(k)
2
µ + ξ1 + ¸2 + ξ3

)
1 + Σi∈{h,v,z}F (Di)HF (Di)

 , (14)

where F is the fast nFFT operator, F−1 is the inverse nFFT operator, and H is the complex conjugate.
For the rest of the variables, i.e., S, Vi, i = 1, 2, 3, the related problems can be solved easily

by a soft threshold operator, i.e., SoftTH(x, λ) = sign(x)×max {0, |x| − λ/2}. More details can be
found in [42,48].

The convergence of Algorithm 1 using ADMM is guaranteed theoretically in [59].
Moreover, the convergence rate of the ADMM algorithm depends on the parameter µ, which is
first initialized as µ = 0.05 and then updated automatically in the algorithm according to the formulate
µ = min(γµ, µmax in each iteration, here γ = 1.05 and µmax = 106. This strategy has been proved to be
an effective method for setting the value of µ for practical applications [42,61].

3.4. Parameters Determination

As presented in Algorithm 1, there are four parameters in total, λtv, λs, the desired rank r, and the
spectral proportion ρ in the proposed method. λs is related to the density of sparse noise, which is set
as λs = 10/

√
(m× n) in all the experiments. What we need to discuss is the desired rank r, the 3DATV

regularized parameter λtv, and the spectral proportion ρ.
According to the linear mixture model of hyperspectral image, the desired rank r represents

the number of endmembers in the scene, and it can be estimated by the HSI subspace identification
method termed HySime [62]. However, due to the complexity of mixed noise in the scene, we still
need to slightly tune it accordingly.

The regularized parameter λtv controls the trade-off between the nuclear norm and the 3DATV
norm. As analyzed in [42], the role of the 3DATV regularization in (7) gets smaller as the iteration
progresses. Thus, it is vital to determine the initial value of λtv.

The parameter ρ controls the proportion of spectral TV in the 3DATV term. When it is set to
zero, the contribution of spectral smoothness is omitted and the proposed model degrades to LRTV
model. Generally, ρ is set in the range of [0–1] for most of the noise cases, and a larger value of ρ is
recommended for heavy noise case, and vice versa.

4. Experimental Results and Discussion

To validate the effectiveness of the proposed method, the simulated Indian Pines and real Urban
datasets are employed for the experiments. It is worth mentioning that the gray values of each band of
the HSI are normalized to the range of [0–1], and, after the restoration, they are stretched back to the
original range.

4.1. Comparison Methods and Assessment Metrics

To thoroughly evaluate the performance of the proposed 3DATVLR method for HSI restoration,
the block matching 4-d filtering (BM4D) [17], the principal component analysis based BM4D
(PCABM4D) [18], parallel factor analysis (PARAFAC) [63], the decomposable nonlocal tensor
dictionary learning (TDL) [64], the GoDec based low-rank matrix recovery (LRMR) [37], 3DTV
in Equation (3), and the band-by-band total variation regularized low rank matrix factorization
(LRTV) [42] are employed as the benchmark methods. BM4D and PCABM4D are two representative
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tensor based methods by exploiting nonlocal similarities in wavelet domain. PARAFAC is a powerful
rank-1 multilinear algebra model and TDL is a decomposable nonlocal tensor dictionary learning
method. Both PARAFAC and TDL are proposed for Gaussian noise removal. LRMR is one of the
outstanding methods with low rank property for HSI restoration, 3DTV is a 3D spatial-spectral
TV based mixed noise removal method without low rank constraint, while LRTV is the most
relevant method to the proposed one, which employs the low rank constraint with band-by-band TV
regularization.

As in [37,46], the mean peak signal-to-noise ratio (MPSNR) index, the mean structural similarity
(MSSIM) index [65], the mean feature similarity (MFSIM) index, erreur relative globale adimensionelle
de synthese (ERGAS) [66] and the mean spectral angle (MSA) are employed to give a quantitative
assessment of the HSI denoising results. It is worth noting that the larger values of MPSNR, MSSIM,
and MFSIM represent the better performance while the smaller values of ERGAS and MSA represent
the better performance.

4.2. Experiments on Simulated Datasets

4.2.1. Datasets and Experimental Settings

Following the experiment in [42,67], the simulated data were generated using the ground truth
of the Indian Pines data set (https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html)
and the spectral signatures were extracted from the USGS digital library (http://speclab.cr.usgs.gov/
spectral.lib). The pixels of the same class are replaced by a specific spectrum from the library. All of
the unlabeled pixels were also replaced by the same signature. The final scene has 17 pure classes with
17 endmembers from the USGS library and the size of the scene is 145× 145× 224. The simulated
dataset, illustrated in Figure 3, is available online (https://sites.google.com/site/rshewei/home).

Figure 3. Simulated Indian Pines dataset used in the experiment (false color image composed of bands
6, 88, 220 for the red, green and blue wavelength, respectively).

After generating the clean dataset, five cases of noises are added to simulate the real HSI dataset
according to the following rules:

(1) Case 1: Zero-mean Gaussian noise with the same variance of 0.01 was added to each band.
(2) Case 2: Zero-mean Gaussian noise with the same variance of 0.01, as well as the impulse noise

with the same density of 15%, was added to each band.
(3) Case 3: In this case, the Gaussian noise and impulse noise were added just like that in Case 2.

In addition, the deadlines were added from band 111 to band 150 with the number of deadlines
being randomly selected from 3 to 10, and the width of each deadline was randomly generated
from 1 to 3.

 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html 
 http://speclab.cr.usgs.gov/spectral.lib
 http://speclab.cr.usgs.gov/spectral.lib
https://sites.google.com/site/rshewei/home
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(4) Case 4: In this case, the noise intensity was different for each band. First, zero-mean Gaussian noise
with different variances varying from 0 to 0.02 was added to each band randomly. Second, impulse
noise with a density percentage varying from 0 to 20% was randomly added to each band.
Finally, dead lines were simulated the same as that in Case 3.

(5) Case 5: In this case, the Gaussian noise, impulse noise and dead lines are simulated the same as
that in Case 4. In addition, some periodical stripes are added from band 146 to 165; the number of
stripes in each band is 30.

(6) Case 6: In this case, the Gaussian noise, impulse noise and stripes are simulated the same as that
in Case 5. However, the dead lines are simulated to be located in the same place as the 40 bands
randomly selected from all of the bands; the number of dead lines in each band is 15. This case is
to simulate the structured sparse noise for the most severe noise situation.

For the simulated Indian Pines datasets with different noise levels, the parameters for the
competing algorithms are set as follows: For the BM4D and PARAFAC methods, both of them
are parameter free. For the PCABM4D method, the only parameter is the number of first principal
components k; it is generally chosen from the set {0, 1, 2, 3}. For the TDL method, the only parameter
is the deviation of the noise which is set to 0.1. For the 3DTV method, we set λtv = 0.01 and ρ = 10.
For the LRMR method, we set window size q = 20, rank r = 5, and the cardinality of sparsity k = 4000.
For the LRTV method, we set the parameter related to the band-by-band TV as τ = 0.005, and rank
r = 5 according to the corresponding references. For the proposed 3DATVLR method, parameter
λtv is set to 0.005 while desired rank r is set to 6 to obtain optimal results. It is worth noting that
the parameters for the competing methods are tuned slightly for different noise intensities to obtain
optimal results, and the detailed description of the parameters are provided in Table 1.

Table 1. The parameters setting of the competing methods in the simulated experiments.

Noise BM4D PCABM4D PARAFAC 3DTV TDL LRMR LRTV 3DATVLR

Case 1 - k = 0 - λtv = 0.01 σ = 0.016 rank(L) = 5 τ = 0.015 λtv = 0.009
λs = 0.05 card(s) = 0.0 r = 10 ρ = 0.3

ρ = 11 r = 10

Case 2 - k = 0 - λtv = 0.01 σ = 0.01 rank(L) = 5 τ = 0.01 λtv = 0.009
λs = 0.05 card(s) = 0.04 r = 9 ρ = 0.3

ρ = 11 r = 10

Case 3 - k = 0 - λtv = 0.01 σ = 0.01 rank(L) = 5 τ = 0.005 λtv = 0.009
λs = 0.05 card(s) = 0.07 r = 10 ρ = 0.5

ρ = 11 r = 10

Case 4 - k = 0 - λtv = 0.01 σ = 0.012 rank(L) = 5 τ = 0.006 λtv = 0.01
λs = 0.05 card(s) = 0.07 r = 10 ρ = 0.5

ρ = 11 r = 10

Case 5 - k = 0 - λtv = 0.01 σ = 0.009 rank(L) = 5 τ = 0.007 λtv = 0.01
λs = 0.05 card(s) = 0.06 r = 8 ρ = 0.5

ρ = 10 r = 10

Case 6 - k = 0 - λtv = 0.01 σ = 0.014 rank(L) = 5 τ = 0.005 λtv = 0.014
λs = 0.05 card(s) = 0.05 r = 10 ρ = 5

ρ = 10 r = 10
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4.2.2. Visual Performance Evaluation

To thoroughly show the performance of the competing methods, the results in Case 4, Case 5 and
Case 6 are chosen for illustration. Figure 4 illustrates the false-color composite and corresponding
zoomed-in portions of the denoising results with noise of Case 4. Figure 5 shows the mean spectra of
the difference between the original spectra and the constructed ones in class 4 of the simulated Indian
Pines dataset. From them, it is obvious that 3DATVLR produces the best visual quality among those
competing methods, that is, 3DATVLR reconstructs the closest result to the original one in Figure 4j
and plots the smoothest mean difference spectrum in Figure 5i. BM4D, PCABM4D, PARAFAC and
TDL methods all remove the Gaussian noise well; however, four of them can not remove the sparse
noise completely and produce some distortions around the sparse noise. LRMR performs the worst
for preserving the spatial details among the four mixed denoising methods due to its poor ability
to remove heavy Gaussian noise, as observed in the zoomed-in portion of Figure 4h. 3DTV can
remove those mixed noises effectively, but the fine details of the images are somewhat oversmoothed,
as observed in Figure 4f. The false color image shown in the zoomed-in portion of Figure 4i and the
mean difference spectrum shown in Figure 5h both show that even LRTV can remove the Gaussian
noise and impulse noise effectively, but it fails to preserve the spectra and spatial fine details; see the
ellipse and rectangle zones in Figure 4i.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. False color image composed of bands 6, 88, 220 (top row) and its corresponding zoomed-in
portion (bottom row) marked with white rectangle in the clean image of the simulated Indian
Pines dataset with noise Case 4. (a) clean image; (b) noisy image (PSNR = 15.67 dB); (c) BM4D
(PSNR = 30.01 dB); (d) PCABM4D (PSNR = 30.40 dB); (e) PARAFAC (PSNR = dB); (f) 3DTV
(PSNR = 32.44 dB); (g) TDL (PSNR = 30.40 dB); (h) LRMR (PSNR = 35.63 dB); (i) LRTV (PSNR = 38.06 dB);
(j) 3DATVLR (PSNR = 39.65 dB).
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Figure 5. Mean spectra of the original spectra and the reconstructed spectra in class 2 of the simulated
Indian Pines dataset with Case 4. (a) Noisy. (b) BM4D; (c) PCABM4D; (d) PARAFAC; (e) 3DTV; (f) TDL;
(g) LRMR; (h) LRTV; (i) 3DATVLR.

Figures 6 and 7 illustrate the denoising results of band 123 in Case 5 and band 166 in Case 6 of
the simulated dataset, respectively. Both of them are heavily corrupted by Gaussian noise, impulse
noise, and dead lines. The difference is that the dead lines in Case 6 are located at the same place of the
40 randomly selected bands. From them, it easily leads us to conclude that the proposed 3DATVLR
method produces the best performance in both cases. For BM4D, PCABM4D, PARAFAC and TDL
methods, they all fail to remove the impulse noise and dead lines. For the LRMR method, if the
dead lines are not structured, it can easily get rid of them completely; however, it is still not good at
removing the heavy Gaussian noise and the structured dead lines. A similar performance happens for
the LRTV method; it can only improve to remove the heavy Gaussian noise while failing to get rid of
the structured dead lines.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Restored results of band 123 in Simulated Indian Pines dataset with noise of Case 5.
(a) original; (b) noisy; (c) BM4D; (d) PCABM4D; (e) PARAFAC; (f) 3DTV; (g) TDL; (h) LRMR; (i) LRTV;
(j) 3DATVLR.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Restored results of band 166 in Simulated Indian Pines dataset with noise of Case 6.
(a) original; (b) noisy; (c) BM4D; (d) PCABM4D; (e) PARAFAC; (f) 3DTV; (g) TDL; (h) LRMR; (i) LRTV;
(j) 3DATVLR.

4.2.3. Quantitative Performance Evaluation

Table 2 exhibits the quantitative values in terms of MSPNR, MSSIM, MFSIM, ERGAS and MSA
for the eight denoising methods above with different noise intensities. From Table 2, it can be observed
that the proposed 3DATVLR method exhibits overwhelming superiority in terms of all assessment
indexes among all the compared methods in each noise intensity. In addition, the MSPNR, MSSIM,
MFSIM, ERGAS and MSA values have great consistency with the visual evaluations. From Table 2,
we can also find a strange phenomenon that, when there are stripe noise or dead lines, the LRTV
method works even worse than LRMR does in preserving the spectra; see the MSA values in Cases 4,
5 and 6.
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Table 2. Metrics values of the denoising results in simulated Indian Pines dataset (The best results are
in bold type).

Noise Metrics Noisy BM4D PCABM4D PARAFAC 3DTV TDL LRMR LRTV 3DATVLR

Case 1 MPSNR (dB) 20.12 37.91 41.22 31.92 33.32 37.24 37.91 38.24 40.32
MSSIM 0.3710 0.9695 0.9876 0.8946 0.9395 0.9758 0.9695 0.9884 0.9909
MFSIM 0.4724 0.9617 0.9860 0.8655 0.9344 0.9635 0.9617 0.9863 0.9885
ERGAS 230.15 30.72 21.00 61.97 69.23 33.17 30.72 29.93 23.91
MSA 0.1949 0.0234 0.0158 0.0391 0.0497 0.0201 0.0234 0.0174 0.0161

Case 2 MPSNR (dB) 12.78 28.50 28.36 25.70 32.14 26.88 35.12 38.13 39.24
MSSIM 0.1682 0.8534 0.9287 0.6819 0.9183 0.9030 0.9168 0.9844 0.9894
MFSIM 0.3397 0.8535 0.9372 0.7047 0.9140 0.8876 0.9156 0.9774 0.9868
ERGAS 538.15 91.90 93.51 125.09 78.58 110.59 42.00 30.57 26.79
MSA 0.4268 0.0673 0.0682 0.0937 0.0568 0.0805 0.0282 0.0198 0.0179

Case 3 MPSNR (dB) 12.63 26.93 26.83 24.48 32.03 26.18 34.62 37.30 38.50
MSSIM 0.1656 0.8100 0.8437 0.6698 0.9259 0.8390 0.9112 0.9781 0.9892
MFSIM 0.3372 0.8269 0.8653 0.7015 0.9236 0.8483 0.9099 0.9744 0.9866
ERGAS 547.23 128.70 116.59 161.51 80.27 122.68 44.59 54.83 29.29
MSA 0.4364 0.0997 0.0884 0.1289 0.0574 0.0893 0.0318 0.0430 0.0197

Case 4 MPSNR (dB) 14.26 27.62 27.27 25.62 33.16 24.46 34.06 36.09 39.02
MSSIM 0.2236 0.7976 0.8169 0.7171 0.9373 0.6328 0.9249 0.9724 0.9924
MFSIM 0.3920 0.8207 0.8253 0.7304 0.9354 0.6870 0.9211 0.9737 0.9915
ERGAS 486.26 174.99 154.37 189.63 72.96 189.56 67.05 74.54 29.46
MSA 0.3969 0.1422 0.1237 0.1597 0.0515 0.1518 0.0478 0.0578 0.0202

Case 5 MPSNR (dB) 13.94 26.92 26.86 24.87 33.19 25.24 34.76 36.40 39.19
MSSIM 0.2123 0.7635 0.7946 0.6801 0.9339 0.6845 0.9323 0.9829 0.9921
MFSIM 0.3802 0.8007 0.8098 0.7113 0.9334 0.7392 0.9285 0.9843 0.9911
ERGAS 493.39 172.68 146.17 189.80 71.39 169.86 54.56 55.00 28.21
MSA 0.4028 0.1410 0.1160 0.1594 0.0509 0.1316 0.0392 0.0398 0.0192

Case 6 MPSNR (dB) 14.28 26.78 27.59 25.14 33.32 25.18 32.10 33.86 36.73
MSSIM 0.2197 0.7328 0.8338 0.6559 0.9333 0.6592 0.8526 0.8999 0.9817
MFSIM 0.3912 0.7908 0.8793 0.7109 0.9327 0.7320 0.8902 0.9427 0.9841
ERGAS 481.82 161.46 169.65 191.34 72.67 189.90 154.02 156.26 53.69
MSA 0.3903 0.1069 0.0988 0.1281 0.0511 0.1245 0.0682 0.0751 0.0370

runtime (s) - 194.1 195.0 353.0 76.0 11.3 28.0 79.7 40.8

Figure 8 presents the PSNR and SSIM values in each band of the reconstructed results with
different restoration algorithms in all cases. It leads us to conclude that the PSNR and SSIM values
of almost all of the bands obtained by the proposed 3DATVLR are higher than those of the other
seven competing algorithms, which once again validates the effectiveness of the proposed methods at
removing the mixed noise of HSI. In addition, it is easy to see that the LRTV method always fails to
remove one or two bands of the HSI when there are stripes or dead lines. This may be the reason why
LRTV produces the worse results in preserving the spectra of the data when there are stripes noise or
dead lines.

4.2.4. Parameters’ Sensitive Analysis

Figure 9 presents the relationship between the MPSNR, MSSIM and MSA values with the
regularization parameters, λtv and desired rank r. It shows that λtv and r really have an impact
on the performance. The reason for this is that rank r has an inherent relationship with the number
of endmembers in the scene, while λtv determines the strength of 3DATV regularization. Even so,
the proposed method is relatively robust and stable to these two parameters and it can produce
competitive results when λtv and r lie in the range of [0.003–0.01] and [4–8], respectively.
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Figure 8. PSNR and SSIM values in each band of the reconstructed simulated Indian Pines dataset
with different algorithms. (a,b) Case 1; (c,d) Case 2; (e,f) Case 3; (g,h) Case 4; (i,j) Case 5; (k,l) Case 6.
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Figure 9. MPSNR, MSSIM and MSA values as a function of parameter λtv and desired rank r.
(a) MPSNR versus λtv and r; (b) MSSIM versus λtv and r; (c) MSA versus λtv and r.

Figure 10 plots the MPSNR values as a function of the parameter ρ. From it, we can see that ρ

really has an impact on the reconstruction results. This also means that the spectral difference in the
3DATV regularization contributes to improving the performance of the proposed method. In addition,
we can see that if there is only Gaussian noise and impulse noise in the simulated dataset, the value of
ρ lies in the range of [0–1] to obtain optimal results. If there are stripe noise or dead lines in the dataset,
it needs a greater value of ρ, e.g., ρ = 5, to significantly improve the performance.
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Figure 10. MPSNR values as a function of parameter ρ while fixing the other variables in different
noise levels for a simulated Indian Pines dataset.

Figure 11 plots the convergence curves (PSNR as a function of the iteration and SSIM as a function
of the iteration) of the proposed method. It is quite clear that the algorithm will converge sharply as
the incensement of iteration. It experimentally validates that the proposed 3DATVLR method has
a fast convergence rate.
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Figure 11. MPSNR, MSSIM values as a function of the iterations for the proposed method in Simulated
Indian Pines. (a) MPSNR versus the iterations; (b) MSSIM versus the iterations.

In summary, the experimental results of the simulated Indian Pines dataset all indicate that
the proposed 3DATVLR outperforms the other three state-of-the-art restoration methods in terms
of quantitative assessment and visual effect. In addition, for the structured sparse noise, only the
proposed 3DATVLR method can get rid of it completely.

4.3. Experiments on a Real Dataset

The Hyperspectral Digital Imagery Collection Experiment (HYDICE) Urban dataset
(http://www.tec.army.mil/Hypercube/) is adopted for real data experiments. The size of the original
scene is 307× 307× 210. Even though bands 104–108, 139–151 and 207–210 are heavily polluted by the
atmosphere and water absorption, we still maintain them to thoroughly validate the performance of
the proposed method in removing the severe mixed noise. Therefore, the real scene employed in the
experiment is of the size 307× 307× 210. An image of band 123 is illustrated in Figure 12a. From it,
we can find that there are heavy Gaussian, strip noise and dead lines as well as the uneven illumination
in the scene. In this experiment, a new state-of-the-art denoising method, i.e., noise-adjusted iterative
low-rank matrix approximation (NAILRMA) [39] is added for comparison.

http://www.tec.army.mil/Hypercube/
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Figure 12 illustrates the image of band 139 and its corresponding zoomed-in portion of the
denoising results of the real Urban dataset. It clearly shows that our proposed method produces
the best results in visual quality. From the zoomed-in portion of Figure 12e, it is obvious that 3DTV
removes the stripe and Gaussian noise effectively, but there is some over-smoothness in the restored
image. From Figure 12g–i, we can see that LRMR, NAILRMA, and LRTV all fail to remove the stripe
noise. This is because the stripes in Urban dataset are all located at the same place from band 108 to
band 140. Moreover, a small amount of Gaussian noise still exists in the image restored by LRMR and
NAILRMA, while the proposed 3DATVLR method promotes proper smoothness and preserves the
fine details better.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Restored results of band 139 in Urban dataset. (a) Observed; (b) BM4D; (c) PCABM4D;
(d) PARAFAC; (e) 3DTV; (f) TDL; (g) LRMR; (h) NAIRLMA; (i) LRTV; (j) 3DATVLR.

Figure 13 presents the image of band 151 and its corresponding zoomed-in protion of the denoising
results of the real Urban dataset. From it, we can draw a similar conclusion as that from Figure 12.
That is, BM4D, PCABM4D, PARAFAC and DTL methods can remove the heavy Gaussian noise to
an extent, but all of them fail to remove the stripes and dead lines. All of those LR based methods,
i.e., LRMR, NAILRMA and LRTV, fail to remove the structured stripes in the scene. Benefitting from
the 3DATV regularization, the proposed 3DATVLR is successful in getting rid of the mixed noise
completely and preserving the spatial fine details well.

Figure 14 plots the horizontal mean profile of band 151 before and after restoration. Due to the
mixed Gaussian and stripe noise, there are rapid fluctuations in the original curve. All eight competing
methods can essentially suppress the mixed noise more or less, and our method appears to produce
the best performance since it shows the smoothest and closest regression to the original curve.

To assess the spatial information restoration, Q-metric [68], which is a blind image content
measurement index, is computed by averaging the Q values (aQ) in all bands to evaluate the results.
From the above experiments, due to the poor performance of the BM4D, PCABM4D, PARAFA and
TDL methods, we do not calculate the aQ values of them for comparison. The results in Table 3
demonstrate that our method outperforms other state-of-the-art methods in restoring the spatial
details. The computation times (on a laptop with a 2.5 GHz CPU and 8 GB of RAM, running MATLAB
2016a) of the competing methods on the Urban dataset are also presented in Table 3, from which we
can conclude that our method is only slightly slower than LRTV.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Restored results of band 151 in Urban dataset. (a) observed; (b) BM4D; (c) PCABM4D;
(d) PARAFAC; (e) 3DTV; (f) TDL; (g) LRMR; (h) NAIRLMA; (i) LRTV; (j) 3DATVLR.
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Figure 14. Horizontal mean profile of band 151 in Urban dataset. (a) Observed; (b) BM4D;
(c) PCABM4D; (d) PARAFAC; (e) 3DTV; (f) TDL; (g) LRMR; (h) NAIRLMA; (i) LRTV; (j) 3DATVLR.

Table 3. Blind quantitative evaluation for real Urban dataset using the Q-metric with boldface indicating
the best results.

Methods Original 3DTV LRMR LRTV 3DATVLR

aQ 60.78 61.44 62.38 62.84 65.13
Times (s) - 3590 2811 549 648
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5. Conclusions

Hyperspectral image mixed denoising is one of the important and critical pre-processing steps
for subsequent applications. In this paper, we present a novel restoration method for HSIs mixed
denoising that uses the low-rank constraint and 3DATV regularization. The proposed 3DATVLR
method can effectively exploit the spectral similarity by low-rank representation and it can also explore
the spectral-spatial smoothness by 3D anisotropic TV regularization from the HSI cube. The problem
is finally formulated as a combination of all convex regularizations (i.e., low rank regularization and
3DATV regularization) that could be easily solved via ADMM by alternatively separating it into several
easier subproblems.

This study mainly concerns on HSI denoising with mixed noises, e.g., Gaussian noise, impulse
noise and stripes or dead lines. Two hyperspectral data sets, i.e., the simulated Indian Pines and real
Urban, were used as simulated and real data, respectively. Both simulated and real data experiments
validate that the 3DATV regularization can effectively alleviate the impact of the structured sparse noise
and finally help to improve the accuracy of the denoising results. In addition, both experiments provide
evidence that the proposed 3DATVLR method overwhelmingly outperforms the state-of-the-art
methods at removing the mixed noises and preserving the spectra of the original HSI. For an LRTV
method, it often fails to remove the sparse noise when severe strips or dead lines exist in the scene,
and the reason may be that the band-by-band TV has one of the same directions with the strips or
dead lines, whereas 3DATVLR can effectively deal with such noise case by taking advantage of the
spectral TV.

In the near future, we will implement the proposed 3DATV method in the high-performance
computing platform, such as NVIDIA CUDA and cloud computing, to accelerate the speed of it for
more applications.
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