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Abstract: As wetlands are one of the world’s most important ecosystems, their vulnerability
necessitates the constant monitoring and mapping of their changes. Satellite-based remote sensing
has become an essential data source for mapping and monitoring wetlands. As wetlands are dynamic
ecosystems, their classification depends on many different parameters. However, considering their
complex structure; wetlands tend to be challenging land cover for classification, which sometimes
requires the use of multi-sensor remote sensing techniques. The objectives of this study were:
(i) to investigate the monthly dynamics of several wetland classes using multi-sensor parameters;
(ii) to find correlations between the investigated parameters. Thus, we extracted the Land Surface
Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from Landsat 8, and extracted
dual polarization backscatter values (VH-VV) from the Sentinel-1 satellite at a monthly period
over a year. The results showed strong correlation between the LST and the NDVI values of 0.94,
and strong correlation between the microwave (VH) and both thermal and optical parameters with a
0.81 correlation coefficient, while there was weak or no correlation between the VV and the other
investigated parameters. We strongly recommend that future studies clarify the Sentinel-1 backscatter
values in wetland areas, by taking multiple field measurements close to the image acquisition time.
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1. Introduction

As one of the world’s most productive natural ecosystems, wetlands are of significant importance
in hydrological and ecological processes. Although wetlands have many definitions in the literature,
they can simply be defined as areas filled or soaked with water for at least part of the year. Wetlands
have many curtail functions such as providing habitats for wildlife and plants, cleaning and storing
water, and holding flood water [1]. The complex hydrology of wetlands controls the source, amount,
and temporal and spatial distributions of sediment and nutrient movements and influences the
distributions of flora and fauna [2]. In addition, wetlands are vital for storing carbon to help ameliorate
the side effects of anthropogenic greenhouse gases on the atmospheric temperature [3]. Although
their importance is high, both natural and human-induced forces threaten wetlands [4]. According to
The United Nations World Water Development Report, around two-thirds of wetlands have been lost
or degraded since the beginning of the 20th century [5], from which has emerged the need for their
continuous mapping and monitoring.

Remote sensing techniques have proven to be a successful tool for mapping and monitoring
wetlands in the past few decades. Satellite remote sensing techniques are often less costly and
time-consuming for large geographic areas compared to conventional field mapping [6].

Wetlands as a transitional between terrestrial and open-water aquatic ecosystems [7], contains
open water bodies, vegetation, and mixture. Optical satellites are mostly effective in vegetation
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monitoring as well as the change detection of wetland areas [8]. Images from optical satellites like
Landsat have been used for mapping surface wetland water using different techniques that applied
range in complexity and general applicability [9–11]. However, taking in consideration the confusion
between different wetland classes [12], using moderate resolution optical satellite imagery such as
Landsat images, can be very challenging. Unlike optical passive satellite sensors, Synthetic Aperture
Radar (SAR) data are collected by active sensors sampling the electromagnetic spectrum at longer
wavelengths [13]. SAR data are more responsive to differences in water content, size/roughness,
and relatively broad scale structural differences than the optical sensors. The ability of SAR sensors to
penetrate through clouds and different vegetation covers (depending on the density), take day and
night measurements, makes SAR data highly important, complementing data from optical satellites for
land cover classification, as well as for wetland mapping and monitoring. The use of multi-source and
multi-temporal remotely sensed data can provide information for mapping and monitoring of wetlands
in addition to the use of single date optical imagery traditionally used for wetland classification.
Surface features, such as the extent of inundation, vegetation structure, and the likelihood of wetlands
can be better resolved with the addition of longer wavelength radiometric responses [14].

Sentinel-1 is the first of the Copernicus Programme satellite constellation created by the European
Space Agency. This space mission is composed of two satellites, Sentinel-1A and Sentinel-1B, caring a
C-band (~5.7 cm wavelength) SAR instrument offering data products in single (HH or VV) or double
(HH + VH or VV + VH) polarization. Although L-band data was found to be best suited for monitoring
wetlands, depending on the growth stage of vegetation and water level, good results could also be
obtained using C-band data [15,16]. Thus, Kasischke et at. [17] studied the potential of C-band using
multi-year ERS SAR images and noted a decrease of the C-band backscatter values with the increasing
of the water levels. Reshke et al. [18] mapped the maximum inundation of peatlands with the use
of multi-temporal ENVISAT Advanced SAR. A seasonal variation in SAR values for reed marshes
and rice fields have been done by Zhang et al. [15]. In this study, they also used the combination of
SAR backscatter intensity from ENVISAT ASAR and ALOS PALSAR, and NDVI values obtained from
Landsat-7, and a positive correlation between the NDVI and the HH SAR values have been observed.
Li et al. [19] compared the capabilities of radar and optical remote sensing data for estimating wetland
biomass, and they tried to find the best method for biomass estimation. The study does not confirm
a high correlation between the NDVI and SAR values but rather implicates significant confusion of
the NDVI values in the wetland biomass estimation as NDVI can only obtain canopy information.
However, it should be mention that in this study only one SAR and one optical image has been
used. Coarse spatial resolution long time series of NDVI data from National Oceanic Atmospheric
Administration (NOAA) Advanced Very High-Resolution Radiometer (AVHRR) have been used for
the assessment of the annual greenness cycle of vegetation and the hydrological behavior of the
wetlands [20]. The monthly mean NDVI values showed minima occurring during the winter months
and maxima during the early summer.

One of the important parameter to understand the extensive range of existing processes in the
wetland areas is the Land Surface Temperature (LST) [21], which can be described as one of the most
important variables in physical processes of the Earth, and it is one of the unexplored parameters for
studying wetland dynamics [22]. LST is closely related to the surface energy balance and the water
status of the land cover, and it depends on the radiative energy that the land absorbs [23]. With the
latest technological developments in remote sensing, many Earth observation satellites like Landsat,
Sentinel-3, MODIS, ASTER, operate in the thermal infrared region offering thermal bands for retrieving
thermal maps of the Earth’s surface. Landsat-8 is the latest satellite from the Landsat legacy and offers
100-m thermal data. Retrieving LST using Landsat data has been the subject in many studies, resulting
in several methods and algorithms [24,25].

Although several studies have investigated the relation between SAR data and data from optical
satellites [26], the relation between SAR values and LST values within a wetland have not been a
subject of a detailed investigation. A spatial and temporal modeling of the wetland surface temperature
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has been done by Eisavi et al. [21], where they used time series from Landsat. Also, they employed
correlation analysis to assess the relationship between the vegetation cover and the wetland surface
temperature changes, where they found a high correlation of 0.8, and the results indicate that the
wetland temperature is substantially affected by the air temperature.

The goal of the presented study is to explore the potential correlation between several parameters
from both optical and SAR data for better understanding of wetlands dynamics. For this purpose,
eleven Landsat-8 and twelve Sentinel-1 images have been downloaded, pre-processed and used in
the analyses. Since researchers have had difficulties using low and middle spatial resolution images
for mapping wetlands because the majority of the pixels were a mixture of several land cover types,
in this paper the average monthly values were used to analyze the monthly dynamics for each
class determined in the study area. Thus, monthly LST and NDVI values have been retrieved from
optical/thermal Landsat-8 data, while, the monthly SAR data values (dual polarization VV + VH),
were retrieved from Sentinel-1 satellite images. The findings of this study will redound to the benefit of
monitoring wetlands considering that the world’s most productive natural ecosystems are threatened
by both natural and human-induced changes. From a remote sensing point of view, this paper connects
both thermal and visible with the microwave portion of the electromagnetic spectrum for the interest
of wetland areas.

2. Materials and Methods

2.1. Study Area

Sakarya River is the third longest river in Turkey and is 824 km length, while Balikdami is
one of the wetlands formed along Sakarya riverbed. Located in the central Anatolian part in Turkey,
Balikdami is a unique wetland containing rich flora and fauna and more than 256 bird species. This area
is one of Turkey’s few wetlands, and it is one of the most important accommodation points for birds
that migrate seasonally between northern and southern countries. The reed areas in Balikdami are
used as a shelter and breeding area for many birds.

The central Anatolian region has natural vegetation cover that starts forming after a harsh winter.
The vegetation cover starts drying in the summer season due to lack of rainfalls. It should be noted
that in the study area, the leaf-on season starts in April and ends before November, while the leaf-off
season is between November and March.

According to the yearly hydro-meteorological reports, the rainfalls in the Anatolian region in the
2017 winter season, has been slightly below the average amount, while the highest average temperature
has been reported in the summer period, in July, with 26 ◦C.

The study area has been visited for inspection in April 2017. However, since the bigger part of the
wetland was inaccessible, it was decided to collect high-resolution optical data from an Unmanned
Aerial Vehicle (UAV), and afterward to determine the classes with a wetland expert.

2.2. UAV Data

The structure of Balikdami wetland is complex and contains several different classes of wetlands.
In order to be able to separate and investigate the differences and relations between the classes, in a
leaf-on season, data from UAV with a resolution of 8 cm were collected over the study area, Balikdami.
UAV platforms are nowadays a valuable source of data for surveillance, inspection, mapping, and 3D
modeling issues. New applications in the short- and close-range domain are introduced, being the
UAVs low-cost alternatives to the classical manned aerial photogrammetry [27]. Today the UAVs
images and 3D data are used in many different fields such as forestry and agriculture [28], archeology
and cultural heritage, environmental surveying, traffic monitoring [29], 3D reconstruction etc.

In this study, a UAV was used for collecting data over the Balikdami wetland area on August
10, 2017. The steps followed for obtaining the UAV data were: (i) Flight Planning; (ii) Taking real
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images; (iii) Data processing; and (iv) Results. The UAV and the integrated camera, as well as their
characteristics, are given in Table 1.

Table 1. Flight planning details.

Camera S.O.D.A.
Resolution 7.00 cm/px

Lateral overlap 70%
Longitudinal overlap 65%

Area 850.5 ha/461.5 ha
Altitude 297.6 m

Flight lines spacing 115 m
Distance between photos 89 m

Image coverage 383 × 255 m

The data were processed in the Pix4D software. The details for every flight data are given in
Table 2 and the orthophoto mosaic of all flight is given in Figure 1.

Table 2. Details of the flight results.

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6 Flight 1–6

Avg GSD 7.37 cm 7.32 cm 7.35 cm 7.45 cm 7.59 cm 7.72 cm 7.37 cm
Area Covered 460.8 ha 549.7 ha 547.9 ha 574.0 ha 167.4 ha 162.2 ha 1891.8 ha
No of Images 393 425 451 486 113 81 1949
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Using the high-resolution imagery obtained with the UAV, in consultation with a wetland
expert, we were able to distinguish six different classes within the study area. The classes and
their characteristics are given below in Table 3.
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Table 3. Classes within the study area viewed from high-resolution unmanned aerial vehicle
(UAV) images.

Class Description Image

Swamp Tall, grass-like plants of
wetlands (Reed).
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In order to collect detailed information about every class separately, according to the area of
the classes, a number of random points were created and the values from every month from both
Landsat-8 and Sentinel-1 satellite images were obtained. A total of twenty-three satellite images were
used in this paper (Table 4).

Table 4. Landsat 8 and Sentinel 1 images used in this study.

Landsat-8 Sentinel-1

Day Month Year Day Month Year

01 2 2017 01 2 2018
17 2 2017 21 2 2018
05 3 2017 28 3 2017
24 5 2017 27 4 2017
25 6 2017 15 5 2017
11 7 2017 02 6 2017
27 7 2017 02 7 2017
12 8 2017 13 8 2017
13 9 2017 06 9 2017
31 10 2017 12 10 2017
16 11 2017 05 11 2017
/ / / 11 12 2017

The Sentinel-1 images were downloaded for every month of the year, while the images from
Landsat-8 were downloaded only in the cloud-free condition. Some of the dates of both satellites are
close to each other with only a few days’ difference. Images from both satellites represent one annual
cycle. After the download of the images, NDVI was calculated and LST maps were obtained for the
Landsat-8 images, while Sentinel-1 images were pre-processed.

2.3. LST Estimation

The LST has been retrieved using a tool developed in ERDAS Imagine. First, the top of
atmospheric (TOA) spectral radiance (Lλ) has been calculated using Equation (1).

Lλ = ML ∗Qcal + AL −Oi (1)

where ML represents the band-specific multiplicative rescaling factor, Qcal is the Band 10 image, AL is
the band-specific additive rescaling factor, and Oi is the correction for Band 10 [30]. After the digital
numbers (DNs) have been converted to reflection, the TIRS band data has been converted from spectral
radiance to brightness temperature (BT) using the thermal constants provided in the metadata file
Equation (2). K1 and K2 are taken from the Landsat 8 metadata file.

BT =
K2

Ln
[(

K1
Lλ

)
+ 1
] − 273.15 (2)

The calculation of NDVI is needed for further calculation of the proportion of vegetation.
The NDVI equation for Landsat 8 bands is as given in Equation (3), where Band 4 is the Red and Band 5
is the near infra-red band.

NDVI =
NIR(band5)− R(band4)
NIR(band5) + R(band4)

(3)

The Proportion of Vegetation represents the fractional vegetation cover and it is calculated based
on the NDVI values (Equation (4)). Thus, NDVI values for vegetation and soil (NDVIv = 0.5 and
NDVIs = 0.2) are suggested to apply in global conditions [31].
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PV =

(
NDVI − NDVIs

NDVIv − NDVIs

)2
(4)

The emissivity can be calculated following Equation (5).

ελ = εvλPv + εsλ(1− Pv) + Cλ (5)

where εv and εs are the vegetation and soil emissivities, respectively, and C represents the surface
roughness (C = 0 for homogenous and flat surfaces) taken as a constant value of 0.005 [32].
The condition can be represented with the following formula and the emissivity constant values
are; 0.991 for water, 0.962 for built-up areas, 0.966 for soil, and 0.973 for vegetated areas [24].

ελ =


εsλ, |NDVI < NDVIs

εvλPv + εsλ(1− Pv) + C, |NDVIs ≤ NDVI ≤ NDVIv

εsλ + C, |NDVI > NDVIv

(6)

Water class has been assigned, for NDVI values lower than 0, and the emissivity value of 0.991
should be assigned. NDVI values between 0 and 0.2, are considered to be soil, with an emissivity value
of 0.996. NDVI values between 0.2 and 0.4 are considered to be mixtures of soil and vegetation cover,
and in the case, when the NDVI value is greater than 0.4, it is considered to be covered with vegetation,
and the value of 0.973 need to be assigned.

The LST or the emissivity-corrected land surface temperature Ts is computed with Equation (7) [33]:

Ts =
BT{

1 +
[

λBT
ρ lnελ

]} (7)

where Ts is the LST in Celsius, λ is the wavelength of emitted radiance (for which the peak response
and the average of the limiting wavelength (λ = 10.895) [34] will be used), and ρ is a constant calculated
with Equation (8).

ρ = h
c
σ

(
1.438 × 10−2 m K

)
(8)

where σ is the Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant (6.626 × 10−34 J s), and c
is the velocity of light (2.998 × 108 m/s).

2.4. Sentinel-1 Pre-Processing

Images acquired by spacecraft sensors usually can be distorted in brightness and geometry
as a result of a number of environmental circumstances and system factors [35]. Before using the
products in any analyses, the radiometric and geometric distortions should be removed, or minimized.
In this study, the preprocessing of the Sentinel-1 SAR data with the Sentinel-1 Toolbox intergraded
in SNAP contains few steps: (i). Data preparation; (ii). Radiometric Calibration; (iii). Multilooking;
(iv). Spackle Reduction; (v). Terrain Correction; (vi). DN to dB Conversion.

The data preparation consists of selecting the study area, selecting the data type needed for the
study, selecting the date, and downloading the SAR product. In this study, twelve Ground Range
Detected (GRD) Interferometric Wide (IW) swath Sentinel-1 images taken over the Balikdami wetland
in Turkey, were downloaded from the Copernicus Open Access Hub.

After the download, radiometric and terrain calibration, as well as speckle reduction on the
images has been performed. Radiometric calibration corrects the SAR image so that the pixel values
represent the radar backscatter of the reflected surface. Compared to the optical image data, the biggest
difference in the appearance of radar imagery is its poor radiometric quality [35], thus it is difficult
to make a visual interpretation of a SAR image. Speckle can be caused by random constructive and
destructive interference resulting in salt and pepper noise over the SAR image [36]. As speckle is one
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of the biggest noise in SAR data, it should be reduced before performing any analyses. The products
have been filtered with Lee Sigma filer 5 × 5 window size. Terrain correction geocodes the image by
correcting SAR geometric distortions with the help of a digital elevation model (DEM) and it produces
a map projected product. With Geocoding the image is being converted from Slant Range or Ground
Range Geometry into a Map Coordinate System. Terrain correction corrects SAR geometry effects
such as foreshortening, layover, and shadows. For the terrain correction, a Range Doppler Terrain
Correction with a digital elevation model of 30 m has been used. All the pre-processing steps have
been performed in the SNAP software by ESA using the Sentinel-1 toolbox. The digital number values
have been converted into backscattering values in decibel (dB) scale following Equation (9).

β◦db = 10 ∗ log10(β◦) (9)

where β◦ is the digital number value of the image, and β◦db is the backscattered value in dB.

2.5. Collecting Samples

The sample collection of every class (Swamp, Water, Bog, Land, Wetland Mixture, Sediment Bogs)
has been performed using random points on every class using the UAV image. Thus, 88 random points
were added to the swamp class, 14 to the water class, 158 to the bog class, 73 to the land class, 187 to the
wetland mixture class, and 35 to the sediment bog class, making a total of 555 points. After the points
were added, LST and NDVI values were extracted for all eleven Landsat-8 images, and VH and VV
values were extracted for all twelve Sentinel-1 images. The average values and the standard deviation
values were calculated for every class. The relations between the LST, NDVI and, SAR values were
made on an annual level based on monthly periods.

3. Analyses and Discussion

3.1. NDVI Results

The pattern of NDVI time series has been closely analyzed in order to demonstrate its sensitivity in
vegetation growth dynamics and its relation with LST and SAR data. As it is known, NDVI values vary
from −1 to +1, where values smaller than 0 are classified as non-vegetated areas such as man-made
objects, or water areas. Since in the study area no man-made objects were present, values lower than 0
were considered to be water areas. Values higher than 0 can be classified into three classes; values from
0–0.2 are considered to be bare lands, values from 0.2–0.4 are considered to be a mixture of land and
small vegetation or unhealthy vegetation, while values higher from 0.4 are considered to be healthy
vegetated areas. In Figures 2–4 are presented the NDVI time series results. Since the results of the
same season months were similar, in Figure 3, with respect to the date, the seasonal NDVI values of
each class are compared. The full NDVI results are presented in Figure A1.

As it can be seen from the NDVI results, every class taken into consideration in this study
has different characteristics. As expected, the values of the water class are below or around zero.
After March, when the leaf-on season begins, the NDVI value of the water class it is slightly above
zero, indicating the presence of vegetation in the water. The NDVI value changes stay around zero
depending on the water level until September, when the leaf-off season starts and the values drop
below zero. The other five classes also tend to have low NDVI values at the beginning of the year,
start to rise after March and stay stable until September, when the leaf-off season starts and the NDVI
values drop. Swamps have the highest NDVI values generally varying from 0.4 to 0.6 in the leaf-on
season. In the leaf-off season, NDVI value is close to zero and varying from slightly below zero to 0.2.
The NDVI value of the Bog class can vary from −0.2 to 0.4 which makes is the most unstable wetland
class in this study. The reason for this is the complex structure of Bogs, which contain soaked dry
vegetation, wetlands, and shallow open water area. The NDVI values of the land class are much similar
to the Swamp class, reaching the maximum NDVI value in July of 0.43. Similar to Bogs, the Wetland
Mixture class defined in this study has a very complex structure. However, Wetland Mixture has
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higher NDVI values in the leaf-on season. Since there is the presence of small open water bodies,
the NDVI values vary from slightly below zero to 0.3. The last class, Sediment Bog, is similar to the
Bog class with the main difference of the land structure. While the land structure of Bog is formed of
land, in the Sediment Bog the land is formed out of white sediment deposits formed over the years.
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3.2. LST Results

The results of the LST analyses can be seen in Figures 5 and 6. The wetland area has temperatures
below zero in the winter period and has its maximum temperature at the end of July for all classes.
Compared with the average air temperatures of the central Anatolian region, the correlation is more
than 0.9, which indicates that the LST of the wetland is substantially affected by the air temperature [21].
The Water class has the highest temperature in the leaf-off season, and lowest in the leaf-on season.
The full LST results are presented in Figure A2.
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Figure 6. Statistical results of observed LST of the six different wetland classes in the leaf-on season.

3.3. SAR Results

The results from the SAR data related to the monthly changes are presented in Figures 7–9.
While the backscatter values of the water class, as expected, do not change much over the months,
the other classes’ values vary depending on the vegetation growth. Thus, the values of the swamp
class starts to rise up in March at the beginning of the leaf-on season and then drastically falls in
October at the beginning of the leaf-off season. In the leaf-off season, the swamps are generally open
water bodies, which explain the similar backscatter values with the water class. The other class values
are similar to each other. However, the land class has the lowest backscatter values through the year
except for August and September, when the bog/sediment class has the lowest values. The detailed
comparison between the classes can be seen in Figures A1–A4.
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3.4. LST, NDVI, and SAR Correlation

Several studies have investigated the correlation between the optical data and the SAR data for
different land covers [37–39]. In this study, the monthly correlation between the optical, thermal,
and radar data within a wetland area was investigated. Thus, the average value of the eleven
dates from Landsat-8, and the twelve dates from Sentinel-1 representing one year investigated in
this study were taken into consideration for every class previously determined with the UAV data.
The correlation results are presented in Table 5. The full VH and VV results are presented in Figures A3
and A4 respectively.

For the statistical comparison between the multi-sensor data were completed using correlation,
which ranges between −1 (indirect relationship) and 1 (perfect relationship), and the correlations were
supported using statistical significance variable which if it is less than 0.05 it means the results are
significant—or that they did not just occur by chance.

It should be noted that the Landsat-8 and Sentinel-1 images were not taken at the same dates,
but the used images present a one-year period presented with eleven images.
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Table 5. Monthly Correlation between the average values of LST, NDVI, and SAR data.

Relation NDVI-VH NDVI-VV LST-VH LST-VV VH-VV NDVI-LST

Classes Correlation Coefficient/Statistical Significance

Swamp 0.64/0.03 0.00/0.99 0.58/0.05 0.02/0.00 0.69/0.01 0.88/0.00
Water 0.74/0.01 0.21/0.53 0.77/0.01 0.23/0.49 0.67/0.02 0.87/0.00
Bog 0.79/0.00 0.48/0.14 0.70/0.02 0.54/0.09 0.60/0.04 0.94/0.00

Land 0.81/0.00 0.04/0.92 0.72/0.01 0.08/0.82 0.34/0.28 0.93/0.00
Wetland Mixture 0.78/0.00 −0.19/0.57 0.75/0.01 0.00/1.00 0.19/0.58 0.94/0.00

Sediment Bog 0.30/0.37 −0.34/0.30 0.30/0.36 −0.26/0.44 0.32/0.31 0.93/0.00

3.5. Discussion

In general terms, the complex structure of the wetlands, makes them a challenging land cover
class for classification. As SAR sensors can often penetrate through herbaceous vegetation (C-band),
the stronger backscatter signal is expected from wetter surfaces then the one from a drier surface [37],
thus the wetter surfaces are easier to identify through remote sensing techniques [3], which makes the
detection of open water bodies without vegetation relatively simple as weak or no signal returns to the
antenna. When the water level is high or the wetlands are dominated by lower vegetation, the radar
signal is often reduced [40], while when the water level is low related to the vegetation, double-bounce
scattering occurs [41].

In this study, the backscatter VH values from the open water class range from −25 dB in the
leaf-off season, and −23 dB in the pick of the leaf-on season, indicating low vegetation presence.
Similar results are obtained from the VV polarization, with backscatter values ranging from −16 to
−21 dB. The backscattering values of the other classes depend on both vegetation and water level.
Thus, in the leaf-off season when the water level is high, the vegetation presence is low. The swamp
class in the leaf-off season has low backscatter values, indicating low or no vegetation at all. Because of
the medium resolution of both optical and radar sensors used in this study, the other classes include
more heterogeneous land covers, which open a wide range of backscatter values and thus a mixture of
the classes can occur.

While the NDVI and LST values only present the vegetation presence and the temperature in one
pixel, relating them with data retrieved from a sensor with different characteristics as radar can be of
great importance. As seen in Table 5, the highest relation between the investigated characteristics has
been noted in the NDVI-LST relation, which was expected as the LST calculation is directly connected to
the NDVI values and several studies have found a strong correlation between them [42]. The statistical
results in this study also showed a strong statistically significant correlation between NDVI and LST.
A strong correlation was also noted between the VH and the NDVI and LST data while there was
no strong correlation between the VV polarization and the other investigated parameters, which is
consistent with the report by Kwoun and Lu [37], who used data from the European Remote-Sensing
Satellites (ERS-1, VV polarization, C-band). There is no strong correlation between the investigated
parameters in the Sediment Bog class because of its heterogenic structure where different land cover
types can be found. This is also the case in the correlation between the VV and VH data in the
Land, Wetland Mixture, and Sediment Bog class, where the correlations are not supported by the
significance values. The results of Kasischke et al. [17], who used a multi-year model to analyze the
effects of seasonal hydrologic patterns in wetlands, indicated relatively little impact on the variation
in biomass over the variation in backscatter values. Similar to this study, Zhang et al. [15] used
multi-temporal and multi-sensor data in order to identify the backscattering characteristics of wetland
vegetation. Backscatter values of the reed marshes drastically increase at the beginning of the leaf-on
season, from −10.8 dB to −2.1 dB at the VV polarization, which is similar to the findings of this
study, where the values of the marsh class increase from −10.6 dB to −0.7 dB at the beginning of
the leaf-on season at the VV polarization. In both of the studies, the reverse situation has been
observed in the leaf-off season. Li et al. [19] reported that Radarsat data can provide more accurate
data than Landsat Thematic Mapper data for wetland biomass estimation. However, the best results
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can be obtained with a combination of the data. In the analyses of the backscatter signature in [43],
the maximum values occur when soil moisture is high and vegetation is fully developed with values
of approximately −5 dB in the HH polarization, while the minimum occurs in the leaf-off season
with values of approximately −20 dB. The results of the VH polarization in our study showed similar
results, where the minimum value is −20.15 dB and the maximum −14.22 dB. Regarding the LST data,
similar to the findings in Eisavi et al. [21], this study also indicates that the land surface temperature
of wetlands is substantially affected by the air temperature. In our study, we have confirmed this
statement by finding the correlation between the average monthly air temperatures and land surface
temperature, which is 0.9.

Observing the results in Figures 7 and 8, as well as the statistical results in Figure 9, beside their
different characteristics, the spectral signature of the Land, Wetland Mix, Bog, and Sedimentary Bog are
similar, and very unstable except for the Sedimentary Bog class in the leaf-off season. This corresponds
to the low spatial resolution of the used remote sensing images because the majority of the pixels
represents a mixture of several land/wetland cover types [44].

4. Conclusions

The objective of this research was to investigate the LST and NDVI values obtained from Landsat
8 satellite, and VV and VH backscatter values obtained from the Sentinel-1 satellite, over a wetland
area on a monthly basis and then to investigate the correlation between these values. Several studies
have investigated and discussed the relation between backscatter and NDVI values in different classes.
However, the relation between backscatter values and LST values in wetland classes have not been the
subject of a detailed investigation. The results of this study show the dynamics of the investigated
parameters within a wetland area where six different classes have been determined.

Comparing the LST results with a monthly average air temperature of the investigated region,
the correlation is more than 0.9, indicating that the LST of the wetland is substantially affected by the
air temperature. Following the LST values, NDVI values gave similar results with a correlation of
nearly 0.9 in all classes.

Although the correlation between Landsat 8 and Sentinel-1 investigated parameters are not as
high as the LST and NDVI values, and the images are not from the same dates, there is a strong relation
between LST and NDVI, and VH backscatter values on a monthly basis. Similar to the findings of other
research, VH polarization performs better than VV polarization in all of the investigated classes. For a
better understanding of the relation, the wetland vegetation stage should be closely monitored. Thus,
in the leaf-off season, when the vegetation is dry, or there is no presence of vegetation, the backscatter
values represent the surface.

Although Sentinel-2 has better temporal, spatial, and spectral resolution with three additional
bands red edge vegetation bands, Landsat-8 has been chosen in this paper because of its ability to
collect data in the thermal wavelength region. For future studies, the correlation between Sentinel-1 and
Sentinel-2 data in a wetland area should be investigated. Also, in order to clarify the representation of
the satellite data in wetland areas, for future research, field measurements close to the image acquisition
time are needed.
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