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Abstract: In this paper, we present the optical image simulation from synthetic aperture radar (SAR)
data using deep learning based methods. Two models, i.e., optical image simulation directly from
the SAR data and from multi-temporal SAR-optical data, are proposed to testify the possibilities.
The deep learning based methods that we chose to achieve the models are a convolutional neural
network (CNN) with a residual architecture and a conditional generative adversarial network (cGAN).
We validate our models using the Sentinel-1 and -2 datasets. The experiments demonstrate that the
model with multi-temporal SAR-optical data can successfully simulate the optical image; meanwhile,
the state-of-the-art model with simple SAR data as input failed. The optical image simulation results
indicate the possibility of SAR-optical information blending for the subsequent applications such
as large-scale cloud removal, and optical data temporal super-resolution. We also investigate the
sensitivity of the proposed models against the training samples, and reveal possible future directions.

Keywords: Sentinel; synthetic aperture radar; optical; data simulation; convolutional neural network;
generative adversarial network

1. Introduction

The optical data provided by Sentinel-2 has 13 spectral bands from visible, near infrared to short
wave infrared spectrum, with a 5-day revisit time at the equator [1]. Sentinel-2 is useful in time-series
analysis such as land cover changes and damage area detection. Change analysis using optical data
assumes that all investigated images are cloud-free to classify every pixel in the image, which is often
not possible, especially for the cloudy areas of the earth. Usually, there is only one low-cloudy image
nearly every month in the cloudy area. Some researchers have reportedly used data from alternative
months (previous or next) to composite the data corrupted by clouds [2,3]. However, these methods
remove only small clouds and also ignore the changes between monthly data. All above limitations
significantly influence the temporal resolution of optical datasets, and the subsequent time-series
analysis. In order to increase the temporal resolution, it is necessary to combine other remote sensing
data resources, and conduct multi-source data fusion to predict clean Sentinel-2 images.

The last few decades have witnessed a rapid growth in SAR data. SAR data captured by Sentinel-1
exhibits totally different characteristics from that of the optical data. Sentinel-1 has the ability to
provide routine, day and night, all-weather resolution observation, and can also overcome various
kinds of bad weather conditions such as clouds, rain, smoke and fog [4]. In particular, it is expected
to provide near daily coverage over Europe and Canada [4]. Therefore, one obvious question arises:
can we use SAR data to predict the optical image?

Recently, many researchers have contributed to the information fusion of SAR and optical images with
different motives. Researchers [4] have adopted Intensity Hue Saturation (IHS) to integrate hyperspectral,
and Topographic SAR into a single image to enhance urban surface features. Some groups [5] tried to
remove speckle noise from SAR data via fusion of two data sources. Inspired by the image-to-image
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translation technique [6] in the field of computer vision (known as pix2pix), Merkle et al. generated
SAR-like images based on deep learning to increase the number of precise ground control points for
SAR and optical image matching [7]. The previous works conducted the fusion of SAR and optical data
to produce an intermediate image [7] or final application results. Whether or not the SAR data can be
directly translated to optical data remains a concern. Very recently, Wang et al. [8] tried to generate high
quality visible images from SAR images using the convolutional neural network (CNN) based method.
Merkle et al. [9] proposed to generate artificial optical images from SAR datasets via the pix2pix model.
Following [9], Schmitt et al. further investigated the potential of the pix2pix model for the simulation
of Sentinel-2 imagery from Sentinel-1 data [10]. Unfortunately, from the visual results presented in the
reference [10], the generated optical images are far from the original images.

In this work, we aim to investigate the possibility of optical data simulation from SAR data.
We have adopted deep learning based methods for the optical simulation for the following three reasons.
First, a deep CNN can efficiently capture the image characteristics. Second, several smart techniques
have been proposed for training CNN, such as batch normalization (BN) [11], residual networks
(ResNets) [12] and Rectifier Linear Unit (ReLU) [13]. Recently, a generative adversarial network (GAN)
has been proposed and demonstrated to be useful in data generation. Third, a deep architecture can be
accelerated by a graphics processing unit (GPU).

We chose to use two methods: CNN with ResNets and cGAN [6] to complete the task. Equipped with
state-of-the-art data simulation algorithms, we investigated the possibility of optical image simulation
from single SAR imagery acquired at a similar period, and multi-temporal SAR-optical images
(SAR imagery with the side information from previous or next time pairs of SAR and optical images).
Our experiments on Sentinel-1 and -2 data demonstrate the necessity of using multi-temporal images as
input and the effectiveness of cGAN.

Our method can be regarded as the extension of the pix2pix model adopted in the reference [10]
with two advantages. Firstly, our model utilizes the ResNets, which have been proved to be more
suitable for the image simulation task [14] compared to the Unet network adopted in the pix2pix
model [6]. Secondly, we extend the input from SAR data only to the multi-temporal SAR-optical
dataset, which will be justified to be very useful in the optical data simulation. Besides the temporal
super-resolution of optical datasets, our model can also be extended to other applications, such as
cross-domain remote sensing image classification [15] and retrieval [16].

2. Approaches

2.1. Problem Formulation

The purpose of this work is to simulate an optical image using either a single SAR image or
multi-temporal SAR-optical images, which is outlined in Figure 1. The figure illustrates two tasks
of optical image simulation. Task A shows the optical image simulation directly from the SAR data,
and Task B displays the simulation from SAR (S2) combined with the additional information from the
previous time pairs of SAR and optical data (S1 and O1). Task B is also referred to as multi-temporal
fusion based optical image simulation. The CNN and cGAN are adopted to complete the simulation
tasks, and the details of the investigated methods are presented in the subsequent section.

Figure 1. Illustration of two optical simulation tasks.
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2.2. Architecture of CNN Network

The CNN optical generation network is illustrated in Figure 2. The network consists of nine
ResNets blocks and six non-ResNets blocks. Excluding the last layer, non-ResNets convolutional layers
are composed with Conv(convolution)-BN-ReLu. The BN layer is used for the reason of avoiding
the gradient vanishing and divergence issue. ReLu is to increase the nonlinearity of the network.
The last layer consists of conv-tanh, which can help to ensure that the output image has pixels in the
scale range as reported in the reference [17]. In Figure 2, n64k7 means the corresponding number of
output features is 64 and the kernel size is 7× 7. Except the first layer which uses 7 × 7 kernels, the
convolutional layers adopts 3× 3 kernels. The input image is of size 256× 256× n (e.g., n = 2 for Task
A when dual-polarimetric channels are used; n = 8 for Task B when bi-temporal dual-polarimetric
channels and four spectral bands are used), and the output image is of size 256 × 256 × 4.
ResNets have been demonstrated to be very useful in the restoration task [14]. However, ResNets
identify network by shortcut, which is inconsistent with our generator network (the features of
input is not equal to that of output). In the first three layers, the features rise to 256 dimensions,
followed by nine ResNets blocks. Each ResNets block layer is completed by the modules of the form
Conv-BN-ReLu-Drop-Conv-ReLu [18]. Here, “Drop” stands for dropout and is adopted to increase the
robustness of the network. In this case, the ResNets are used in the 256 feature space, and concluded by
three layers to reduce the feature dimension to 4. To keep the spatial size of input and output images,
the pooling step is left out and the stride size is set as 1. We used zero-padding to make up for the
spatial size reduction cased by the convolution kernels.

Figure 2. Illustration of the CNN generation network.

2.3. cGAN

Conditional GAN is extended from GAN [19] and deep convolutional GAN (DCGAN) [17],
which describes a mini-max game between a generative model G and a discriminative model D.
The generator G is trained from the input image x, and random noise z to generate the output image
y: G : x, z → y. The discriminator D is trained to distinguish the fake image G(x, z) from the real
image y. The adversarial processing of the cGAN is presented as follows. The discriminator D tries to
distinguish the realistic input-real pairs as 1, i.e., D(x, y) = 1, and detect the simulated input-fake pairs
as 0, i.e., D(x, G(x, z)) = 0. From a second perspective, the generator G tries to generate a fake image
to fool the discriminator D, in order to increase the accuracy of D(x, G(x, z)) to 1. If at any instance
the discriminator D cannot distinguish between input-real and input-fake pairs, then the fake image
generated by G can be regarded as the predicted optical image (we call it real image). The cGAN loss
of this adversarial processing can be detailed as:

min
G

max
D
LcGAN(G, D) = E(x,y)∈pdata(x,y)[logD(x, y)] + Ex∈pdata(x),z∈pdata(z)[1− logD(x, G(x, z))]. (1)

Here, log function is adopted to relax the gradient insufficient at the beginning of the training [19].
From a second perspective, the generator’s objectives are not only to fool the discriminator, but also to
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generate the image near the real output y in the sense of L1/L2 distance. To encourage less blurring,
L1 distance is absorbed into the cGAN loss

LL1(G) = E(x,y)∈pdata(x,y),z∈pdata(z)‖y− G(x, z)‖L1 (2)

resulting in the final objective function:

G∗ = min
G

max
D
LcGAN(G, D) + λLL1(G). (3)

Here, parameter λ demonstrates the trade-off between the cGAN loss, and L1 loss.
The cGAN network requires the simultaneous training of generative and discriminative networks.

As stated in the preceding section, the generator produces a fake image from the input data, and the
discriminator tries to classify the input-fake pair and input-real pair. The discriminator is first trained
to improve the classification accuracy. A trained discriminator is then used to train the generative
network. The process alternates until the end. The flowchart of the proposed cGAN is presented in
Figure 3. The CNN model (described in Section 2.2) is regarded as the generative sub-network and
incorporated in an adversarial framework, regularized by a discriminative sub-network.

The discriminative sub-network described in Figure 4 is borrowed from [6] with patchGAN to
capture high-frequencies and reduced parameters. The discriminative sub-network consists of five
layers and the components of each layer are illustrated in Figure 4. What we need to clarify is that
the striding size of the first three layers are set as 2× 2 and 1× 1 for the last two layers. For the input
image with 256× 256, the spatial size of each output ranges 128→ 64→ 32→ 31→ 30 for all layers
and the output of the network is a 30× 30× 1 image between the range [0, 1]. At last, this output
image is adopted to classify the input pair to be real or fake.

Figure 3. The flowchart of the cGAN architecture.

Figure 4. Illustration of the discriminative sub-network.
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2.4. Implementation Issues

Previous works on GAN have demonstrated the importance of using Gaussian noise as input
in the generative network. In this work on cGAN, the input is x and the noise is absorbed into the
dropout part, which can also produce reasonable results [6]. In our experiments, the dropout rate is
set as 0.5. Mini-batch stochastic gradient decent with Adam solver is adopted to train the particular
model. The model is trained on 200 epochs with batch size 1 and learning rate 0.0002. As suggested in
literature [20], λ in the loss objective (3) is set to 100 to encourage both reconstruction accuracy and
object sharpness, simultaneously.

3. Dataset Description and Experimental Setting

3.1. Dataset

Sentinel-1 and -2 data (download website: https://scihub.copernicus.eu/dhus/) were adopted
in our experiments to confirm the possibility of optical simulation from SAR data. The data
were pre-processed and co-registered by Sentinel Application Platform (SNAP) software provided
by European Space Agency (ESA) [21]. We processed the SAR image with the flowchart of
calibration-despeckling-Range Doppler Terrain, and two bands of VV (for vertical transmit and vertical
receive)/VH (for vertical transmit and horizontal receive) intensities with a pixel spacing of 10 m.
For Sentinel-2 data, we chose four bands (R-G-B-NIR) with a ground sampling distance of 10 m for the
experiments. The SAR and optical images were co-registered by reprojection; SAR and Optical data
pairs from three areas (Iraq, Jianghan, and Xiangyang) were used in the experiments. The acquisition
time for each image is presented in Table 1. The absolute difference in acquisition time between S1 and
O1 (or, S2 and O2) is ensured to be less then five days. Images from Iraq, Jianghan and Xiangyang are
of size 8460× 5121, 10657× 8659 and 6801× 7651, respectively. An earthquake happened in the Iraq
area between time T1 and T2, which caused many changes in the terrain. Jianghan and Xiangyang
images are from two similar areas of China and were sensed at the nearby time. The O2 images of
these areas are presented in Figure 5.

Table 1. Sensing time of optical and SAR image pairs used in the experiments.

Y-M-D S1 O1 S2 O2

Iraq 12 November 2017 10 November 2017 6 December 2017 10 December 2017
Jianghan 14 November 2017 12 November 2017 20 December 2017 19 December 2017

Xiangyang 14 November 2017 12 November 2017 20 December 2017 19 December 2017

Figure 5. O2 images of Iraq, Jianghan and Xiangyang pairs. The training patches are selected from the
red rectangle and the test patches are from the blue area.

https://scihub.copernicus.eu/dhus/
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3.2. Training and Test Setup

The images were segmented into non-overlapping patch pairs of spatial size 256 × 256.
The training data were then selected from the area inside the red rectangle, and the test data from
the blue ones. Figure 6 illustrates the training and test patch pairs generation with the Iraq dataset.
The purpose of Task A and Task B is to simulate the blue rectangle area of O2 image. For Task A,
the image patch pair consists of two patches cropped from the same location of S1-O1 or S2-O2 images.
Since Task A only needs SAR image to generate the optical image, the patch pairs from the blue
rectangle are adopted as test samples, and the rest are regarded as training samples, as presented in
Figure 6a. For Task B, each patch set consists of four patches cropped from the same area of S1, O1, S2
and O2. Task B needs S1, O1 and S2 as input, and O2 as output. Examples of training and test patch
sets are presented in Figure 6b. The number of training and test patch sets of Task B are summarized
in Table 2. Models specific to each test area were designed according to the respective training dataset
as per the details given below.

Table 2. The training and test Patches provided by the images.

Iraq Jianghan Xiangyang

Train 561 1188 754
Test 99 165 None

Figure 6. Illustration of training and test patch pairs with Iraq dataset for (a) Task A, and (b) Task B.

Case (1) In this case, we evaluate the O2 image simulation performance of different tasks and
methods, with the training and test patch pairs/sets fixed. The test patches were taken from Iraq
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image. The optical image simulation results of Tasks A and B were verified with different models,
i.e., CNN (the generation model described in Figure 2) and cGAN. To make the fair comparison,
the training patch pairs of Task A were from the whole Iraq image pairs of T1 and areas of T2 marked
with the red rectangle, with 1221 pairs in total. For Task B, the training patch sets were only from the
areas of Iraq image marked with the red rectangle. The four methods were denoted as CNN (Task A
with CNN), cGAN (Task A with cGAN), MTCNN (Task B with CNN), and MTcGAN (Task B with
cGAN), respectively. In addition, the pix2pix method mentioned in the reference [10] is adopted as the
state-of-the-art comparison method.

Case (2) The purpose of the second experimental study is to investigate the influence of different
training sets for the final optical image simulation. The test patches were taken from Jianghan image.
In this case, we performed only Task B, and train MTCNN and MTcGAN models with four different
training sets. For the first three sets, the samples were selected from the training parts of the Jianghan,
Iraq, and Xiangyang images, respectively. In this case, the simulated optical images of MTCNN and
MTcGAN methods can be with different training sets. We also added the whole training patches
together to formulate the final training set, denoted as “Mixed”.

3.3. Evaluation Index

In this paper, three evaluation indicators: the peak signal-to-noise ratio (PSNR), the structural
similarity (SSIM), and the mean spectral angle (MSA) were used to assess the quality of the simulated
optical image. For the multispectral image, we calculated the values of PNSR and SSIM of each band
between simulated optical image and the reference image, and determined the average [22].

4. Results

The training program was completed on a single GTX1080 GPU. The PSNR, SSIM and MSA values
of different simulation results for Case 1 are evaluated and listed in Table 3. The values of the three
indices for input O1 data are regarded as the baseline for the other sets. The best of the values for each
quality index in the table are shown in bold. From visual and quantitative evaluation results, the cGAN
method can achieve better results than the method of [10], demonstrating the advantage of ResNets in
our model. Table 3 also shows that CNN and cGAN achieve lower values for all three quality indices
compared to the baseline. This essentially concludes that Task A, which describes the optical image
simulation from single SAR imagery, fails to predict the image. On the other hand, Task B related
methods, i.e., MTCNN and MTcGAN, are found to achieve higher values for each index type compared
to the baseline. The results indicate that, compared to the input images, MTCNN and MTcGAN can
successfully simulate the optical images. Furthermore, higher index value of MTcGAN than that of
MTCNN suggests the advantage of an adversarial network in our simulation task. The training time
of different methods are also presented in Table 3. Task A related methods have light networks, but
more training samples compared to Task B. The differences of the training time between these methods
are finite.

Table 3. The evaluation values of PSNR, SSIM, MSA and training time of different methods in Case 1.

Index [10] CNN cGAN MTCNN MTcGAN O1

PSNR (dB) 26.50 26.60 26.79 30.61 32.32 29.77
SSIM 0.6419 0.6477 0.6519 0.9028 0.9110 0.8528
MSA 0.6545 0.6769 0.6581 0.3796 0.3146 0.5529

Training Time (s) 4252 3747 4025 3506 3892 None

Figure 7 shows several patches of input S2 and O1, and output reference O2, compared with
our optical image simulation results. In Figure 7, MTCNN and MTcGAN demonstrate much better
results than that of CNN and cGAN from a visual perspective. In fact, SAR image and optical image
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being totally different from each other, it is extremely difficult to learn a mapping between the two.
The optical simulation results of Task A and method [10] presented in Figure 7 are hence blurred,
and we can not distinguish objects from these simulated images. However, with multi-temporal fusion
based optical simulation of Task B, one can learn the changed information between S1 and S2, and then
accordingly reconstruct the change on the basis of O1 image. As illustrated in the red rectangle of
Figure 7, one can see that a change has happened between O1 and O2. Our goal is to pass this change
from the SAR image to the optical image, and then reconstruct the same in the simulated O2 image.
Following this strategy, the complexity of Task B can be significantly reduced, and the optical image
can thus be successfully simulated.

We also investigated the influence of different training samples on the final optical image
simulation results of MTCNN and MTcGAN methods in Case 2. Table 4 presents the values for
the three quality indices, and Figure 8 illustrates the simulated optical images of different methods
from different training sets. It can be easily seen that the two methods with Jianghan image as training
samples results in the best values and visual quality. On the other hand, MTCNN and MTcGAN
methods with an Iraq image as training samples have the lowest PSNR, SSIM and MSA values.
Interestingly, the simulation results with Iraq training samples are of high visual quality, but with
a significant change in spectral information compared to the reference optical image. This model has
thus simulated a new style of optical image, guided by the Iraq training set. The main reason behind
the observed result is that the test samples are composed of flat areas, even though the Iraq training
samples are filled with mountains. Xiangyang training samples are more similar to the test Jianghan
image patches. As a result, the models with Xiangyang training samples can produce much better
results than that with the Iraq samples. Thus, selection of training samples can largely influence the
final simulation results; more similarity between test data of the training samples results in better
optical image simulation. Accumulation of training sets is one way to improve the reliability of
simulation results. However, the simulation results obtained with the whole training data together are
worse than the one with only Jianghan data.

The experimental part is thus concluded with the verification of two hypotheses. First, a multi-
temporal fusion based optical simulation in Task B is valid and effective. Second, a GAN based method
can produce better results than that of CNN. However, the corresponding simulation results are not so
perfect. As illustrated in the red rectangle of Figure 7, MTcGAN, standing for the best method, can
only simulate a blurred object of the change information compared to the reference one. Additionally,
the model is sensitive to the training samples. If the training samples are improper, it may lead to the
production of some fake results with the trained model. From another aspect, if we simply add the
whole samples for training, we can obtain the satisfied results. However, it leaves much room for the
performance improvement by mitigating the negative effects from improper samples.

Table 4. Simulation accuracy of MTCNN and MTcGAN with different training samples in Case 2.

Method Index Jianghan Iraq Xiangyang Mixed O1

PSNR 35.08 29.44 34.30 34.38 34.01
MTCNN SSIM 0.9508 0.8585 0.9412 0.9479 0.9401

MSA 0.4684 0.8400 0.5138 0.4774 0.5319

PSNR 35.25 31.09 34.44 34.83 34.01
MTcGAN SSIM 0.9509 0.8850 0.9413 0.9463 0.9401

MSA 0.4629 0.6137 0.5070 0.4649 0.5319
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Figure 7. Simulated images of different methods in Case 1, companied with the input images (S2 and O1)
and output reference image (O2).

Figure 8. Simulated images of different methods in Case 2. The input images (S1, S2 and O1) and
output reference image (O2) on the left side, and simulated images with different training samples on
the right side.

5. Conclusions

We have investigated the possibility of optical image simulation from single SAR imagery and
multi-temporal SAR-optical images, in this paper. Two deep learning based methods have been
designed for the said tasks, i.e., CNN with ResNets and cGAN. We tested our models on Sentinel-1 and
-2 datasets and compared them with the state-of-the-art method and drew the following conclusions.
First, multi-temporal data fusion based optical image simulation can successfully generate the optical
images. The simulated optical images show more similarity to the reference optical images, both in
visual and quantitative evaluation, compared to those obtained by the state-of-the-art method and the
input optical images. Second, an adversarial network is proved useful and effective in our task.

Despite the satisfactory performance of multi-temporal fusion model with the cGAN method,
there is still much room for improvement. The simulated optical images, especially in the changing
part of S1 and S2 images, are blurred and need improvement. Selection of the training samples is also
a big concern for our model since, without proper samples, the models may create fake optical images.
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Finally, in our model, we have chosen only two time periods of information, i.e., T1 and T2, and it may
be possible to choose a few more to obtain better simulation results.
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