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Abstract: Virtual Geographic Environment Cognition is the attempt to understand the human
cognition of surface features, geographic processes, and human behaviour, as well as their
relationships in the real world. From the perspective of human cognition behaviour analysis and
simulation, previous work in Virtual Geographic Environments (VGEs) has focused mostly on
representing and simulating the real world to create an ‘interpretive’ virtual world and improve
an individual’s active cognition. In terms of reactive cognition, building a user ‘evaluative’
environment in a complex virtual experiment is a necessary yet challenging task. This paper discusses
the outlook of VGEs and proposes a framework for virtual cognitive experiments. The framework
not only employs immersive virtual environment technology to create a realistic virtual world
but also involves a responsive mechanism to record the user’s cognitive activities during the
experiment. Based on the framework, this paper presents two potential implementation methods:
first, training a deep learning model with several hundred thousand street view images scored
by online volunteers, with further analysis of which visual factors produce a sense of safety for
the individual, and second, creating an immersive virtual environment and Electroencephalogram
(EEG)-based experimental paradigm to both record and analyse the brain activity of a user and
explore what type of virtual environment is more suitable and comfortable. Finally, we present some
preliminary findings based on the first method.

Keywords: virtual geographic environments; spatial cognition; brain-computer interface;
street-level imagery; deep learning

1. Introduction

Human–environment relationships represent a traditional aspect in the study of geography [1,2].
Understanding the mechanisms underlying human–environment interactions and what factors in the
urban built environment influence human perception and sentiments has long been of interest to a
wide variety of research fields [3,4]. In previous studies, VGEs was initially proposed in the field of
geography and geographic information, with the objective of integrating the virtual environment and the
real world and ultimately exploring universal geographic processes, phenomena and laws of things [5–7].
Accordingly, virtual geographic environment cognition is the attempt to understand the human cognition
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of the real-world phenomena of surface features, geographic processes, human behaviours and their
relationships [8].

From the perspective of environmental psychology, the fundamental processes of human
environment transaction include the following: the interpretive, evaluative, operative, and responsive
modes of interacting with one’s surroundings [9,10]. As Figure 1 depicts, ‘interpretive’ is an
active-cognitive form of transaction, which involves the individual’s cognitive representation of
the surroundings; ‘evaluative’ is in a reactive and cognitive form, indicating the individual’s attitudes
and assessment [9]. For years, VGEs has been demonstrated as an effective tool to represent and
simulate the real world [11–13]. Users can improve their cognition to geographic objects, processes and
phenomena through VGEs. However, research on virtual geographic environment cognition still stops
at the interpretive phases. How to collect a user’s evaluative and responsive information concerning
their surroundings and how to build a feedback loop from environmental controlled stimuli to the
individual’s assessment and reaction to the environment remain open issues.

Evaluative

Interpretive Operative

Responsive

Cognitive Behavioral

Active

Reactive

Figure 1. Modes of human-environment transactions from the perspective of environmental psychology [9].

In the early stage, efforts were made using questionnaire, interviews and online surveys
through case studies. These traditional experimental paradigms have been considered as costly,
time consuming, and of low throughput [14,15]. Various studies conducted with these paradigms
were faced with difficulty in terms of a lack of resolution, scale and throughput in understanding the
human–environment interactions [3,16]. The last several years have witnessed the rapid development
of sensor networks, map services and artificial intelligence, which have not only provided extensive
amounts of geotagged data from around the world but also brought about approaches to handle
these data [15]. The new available rich data and potential methods provide opportunities to better
understand the mechanisms of human–environment reciprocal interactions in VGEs.

In addition, brain–computer interfacing and artificial intelligence have benefited from the rapid
development of high-performance computing systems and the availability of large-scale annotated
datasets. As a popular representative technology of artificial intelligence, deep neural networks,
which were initially inspired by the neural networks of human brains, have drawn significant
attention in many fields in recent years and have proved to be very effective and efficient for data
feature extraction and representation [17–19]. In terms of brain-computer interfacing, devices such as
EEG [20,21], Functional Magnetic Resonance Imaging (fMRI) [22,23], and eye-tracking [24,25] have
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been widely used to simulate and model human brain activity and human behaviour. In particular,
EEG and fMRI are used to map and record the electrical activity in the brain. Combined with
state-of-the-art deep learning techniques, researchers have decoded the fMRI data for dynamic natural
vision [26]. In addition, eye-tracking devices have been designed to measure eye position and eye
movement, to acquire an individual’s area of interest in their field of view (FOV), and to understand
an individual’s cognition processes [26]. These techniques prospectively advance the field of virtual
cognitive experiments in VGEs.

VGEs attempts to represent the geographic subject and phenomena in the real world. Indeed,
immersive 3D virtual environments have demonstrated their importance in the learning and education
fields [11,27]. Conroy’s work focused on employing immersive virtual environments to understand
the behaviour of pedestrians and facilitated research in spatial navigation [28]. The effort made by
Dias et al. aimed at detecting participants’ emotional changes with virtual reality and biometric sensing
techniques to inform architecture design [29,30]. Additionally, virtual environments can facilitate the
exploration of human behaviour during indoor way-finding and evacuation scenarios [31,32].

In terms of building realistic three-dimensional (3D) environments, Juřík et al. compared the
human ability to reckon altitude information in different settings of 3D visualization environments [33];
they also demonstrated the importance of interactions in the human cognition process in the virtual
world—the flexibility of interaction can improve the extent and speed of users in acquiring knowledge
in the virtual world. Research effort has also been made to understand the cognitive aspects with
different levels of immersion [34]. Moreover, the choice of device type for use in interacting with the
virtual environment also matters to the users [35]. The settings of the virtual environment should vary
based on the given issue and case. Replicating increasingly more details of the real world should not
be the aim of VGEs; the objective should be to provide a “realistic” feeling. An excessive amount of
irrelevant details can possibly dilute the actual critical information and lead to cognitive overload
for users [36]. Indeed, the trade-off between experimental control and mundane realism has long
been discussed in the literature advanced by psychologists [37]. Additional cognitive experiments
should be conducted to understand what types of elements and features in virtual environments are
more sensitive to individuals, thus building an experimental-controlled and realistic experimental
environment for specific research issues [36].

To advance the progress of virtual geographic environment cognition, from the “interpret”
phase to the “evaluative” phase, this study proposes a new experimental framework under the
concept of VGEs. For demonstration, two potential implementation methods are presented in this
paper. First, by mining hundreds of thousands of street view images scored by individuals in terms
of sense of safety, we explored what visual factors produce the different levels of perception for
individuals. In this case, the urban visual environment is simplified and represented by the street view
images to balance the experiment control and the sense of realism. Second, an EEG and immersive
virtual environment-based approach is proposed to measure human perception and emotion from
the perspective of physical-psychological-emotional mechanisms. The visual variables (enclosure,
openness, and permeability) of the virtual environment can be controlled by adjusting the position
and shape of the constructions. Accordingly, participants’ psychological processes can be recorded by
the EEG devices. The proposed method can be used to explore the type of virtual environment that is
more suitable and comfortable.

2. Discussion on Future Geographic Cognitive Experiment in VGEs

In this era of big data and artificial intelligence, researchers from various fields and disciplines
have been faced with the same issues: how to make good use of extensive data and information
with limited data mining and knowledge discovery approaches; how to both incorporate the data
from multiple sources and link the data together automatically and intelligently; and how to combine
the Internet of Things, sensor networks and the real world for information acquisition and quick
response to satisfy the requirements of human activities [38,39]. Indeed, by integrating the physical
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geometry model, human behavioural model and geographic process model, the development of
VGEs is facilitating the establishment of a geographic knowledge engineering and sharing system
by incorporating geographic knowledge, brain-computer interfaces, and human social simulations,
with the final goal of improving our abilities to understand, replicate natural and social phenomena
and handle dig new geographic knowledge.

Embodied cognition suggests that cognition is not only a course of processing information in the
brain but also the product of the reciprocal interactions among the cognition, body, and context of
the subject [40]. Embodied cognition emphasizes understanding the relationship between physical
experience and psychological processes. Benefiting from the rapid development of cognition science
and cognitive experiment technology, embodied cognition has moved from philosophical speculation
to an experimental and empirical research field [41,42].

Inspired by the theory of embodied cognition and enabled by the advancing cognition science,
the development of VGEs in terms of human behavioural cognition and analysis is moving towards
the combination of geographic environment, brain-computer interfacing, and physical-psychological
integration, thus building up realistic and hyper-reality geo-spatial cognitive environments, facilitating
research in geo-spatial cognition and further improving human understanding in the geographical
space [7]. With respect to simulating real geographical environments, this framework will utilize
typical features of VGEs—dynamic geographic process simulation—to present both static features
and dynamic phenomena [13]. To model and simulate the mechanisms underlying human
information acquisition processes from the surrounding environment, the framework should employ a
multi-channel sensing mechanism [43]. Moreover, the framework should incorporate the traditional
research paradigm of environmental psychology and cognitive science into the rapid development of
artificial intelligence, cognitive techniques and affective computing, thereby facilitating the analysis
of human perception, cognition and behaviour in virtual geographic cognitive environments [10].
Generally, future VGEs for conducting geographic cognitive experiments requires the following:
(1) a special emphasize on the individual’s sense of reality and immersive feeling, letting the individual
interact with the virtual environment in a natural manner; (2) the introduction of geographic process
simulations into the cognitive environment, where a sensor network will gather information about the
surrounding conditions and the real-time changes in the real world to reconstruct the real world in the
virtual environment dynamically; and (3) the simulation and analysis of human behaviour in virtual
cognitive environments based on cognitive techniques and affective computing.

Based on the above general thinking and discussion for human behavioural simulation and
analysis in VGEs, future research on VGEs suggests paying greater attention to the following aspects.

2.1. Building Virtual-Reality Geographic Subject in 3D VGEs

A virtual geographic environment initially indicates an environment that includes the subjects,
such as avatars, avatar groups, and avatar-based individuals, as well as all the objects that surround
and support the existence of the subjects [5,44]. Compared with traditional geographic information
systems, VGEs inherently suggests representing natural geographic objects, rather than interacting
with static objects based on spatial geometry [8]. This feature will contribute to enhancing the user’s
sense of presence. On the other hand, it is possible to explore the user’s interaction, collaboration,
reactivity, mobility, etc. in a natural manner. Future VGEs is aimed at mapping the virtual world to the
real world, including social relationships and information sharing between individuals and groups [11].

Geographic behavioural subject modelling. Geographic behavioural subject modelling is a
general concept. The modelling of the subject will include all the possible forms in the intelligent
space [11]. At the virtual level, the subject may include avatars, intelligent agents, and even robots;
at the reality level, the subject refers to users, individuals, social groups, etc. These two levels will
interact, communicate, and negotiate with each other to shape and form the virtual-reality world in
the user’s brain towards specific application scenarios.
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Information sharing, communication, and collaboration. Future VGEs will put special emphasis
on building communication networks through the Internet or Internet of Things. The network will enable
users to share information and interoperate with each other [45]. On the one hand, the behavioural
subjects (users, avatars, and geo-objects) can interact with each other and perform tasks collaboratively
in the virtual world and real world simultaneously [46], which provide a potential solution to a
challenging issue—online and offline among multiple ends. On the other hand, the real world
can be mapped to the virtual word seamlessly through location-based information, which can not
only support research on augmented reality in virtual environments but also facilitate research on
augmented virtuality in real environments.

2.2. Multi-Dimensional Visual Representation and Multi-Modal Sensing

VGEs provides the basic 3D spatial cognitive platform for users. It integrates numerous types
of scenarios and scene details to give the users corresponding visual experiences. Moreover, VGEs is
able to simulate dynamic geographic phenomena with real-time data acquired from sensor networks
in the real world to recover the real environment to a large extent, thereby allowing users to “feel it
in person” and “know it beyond reality” [5]. The users will perceive the environment actively
and participate in decision making as an avatar in the virtual environment, whose behaviour
and reaction will be observed and recorded for psychological and cognitive experiments [47,48].
More specifically, the multi-dimensional visual representation is aimed at building an environment with
static scene information and dynamic geographic phenomena to present the real-world information
from different levels of ontology for assisting in sensing static objects and monitoring dynamic events.
For multi-modal sensing, the users are allowed to perceive the environmental information (such as
temperature, vision, and sounds) in a more natural manner [49]. This is achieved by introducing
numerous types of sensors and augmented reality devices. Based on multi-modal sensing mechanisms,
the users will gain information and communicate with the environment seamlessly.

2.3. Behavioural Simulation and Analysis Based on Cognitive Psychology

The human brain is one of the most complex organized structures [50] and is the centre of a
human psychological and cognitive activities. Hence, to simulate human behaviours, preliminary
studies on human brain simulation, perception modelling and formulation, and the inference and
behavioural processes in individuals need to be conducted. As described above, VGEs provides
a multi-modal sensing and real-time dynamic information collection environment, which supports
human behaviour simulation and analysis from the perspective of realistic representations (context) and
multi-channel information acquisition (individual). In addition, future VGEs will integrate cognitive
psychology frameworks and build individual behaviour paradigms [51], thereby informing and
guiding related behavioural cognitive experiments for dynamic processes. With controlled experiments,
correlation analysis and optimization methods, future VGEs is set to build an ideal urban environment
under different scenarios and scenes and towards different user groups. Furthermore, benefiting
from affective computing [52] and deep learning [53] techniques, a virtual environmental-physical
psychological emotion model can be designed and built to better understand and simulate the
influencing and reciprocal mechanisms between real urban environments and human behaviour.

2.4. Framework of Virtual Cognitive Experiments

Based on the thinking and discussion above, Figure 2 demonstrates the framework of a virtual
cognitive experiment in VGEs. The framework follows the human-environment transaction modes in
environmental psychology [9]: Interpretive, Evaluative, Operative, and Responsive. For each phase,
the framework indicates the description, key issues and technologies.
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Figure 2. Framework of virtual cognitive experiments in vges.

Current studies on virtual cognitive experiments pay greater attention to improving the
cognition of individuals to the virtual environment by involving immersive technologies, realistic 3D
environment modelling, and multi-modal sensing to build geographic subjects in 3D VGEs [7].
As discussed above, the future development of virtual cognitive experiments should integrate
individual and social behavioural models to understand how people interact, operate, and influence the
geographic environment by combining theory and simulation modelling in environmental psychology
and social psychology.

In this study, we focus on the evaluative phase, and we propose two potential implementation
methods. The evaluative phase aims at recording an individual’s cognitive and perceptual reactions to
environmental stimuli. To obtain and quantify the response, EEG, fMRI can be employed to record
human brain activity; eye tracking can be used to record an individual’s focus of attention [25].
In addition, with deep-learning-based data mining methods and human evaluation data collected
from large-scale online surveys, it is also possible to explore the latent human preference knowledge.

3. Computer-Vision-Based Cognition Experiment Using Street-Level Images

In this section, a deep-learning-based urban cognition-perception experiment is presented.
The objectives of this experiment are two-fold: modelling and predicting an individual’s sense of
safety in certain urban visual environments and exploring which visual elements produce the sense of
safety. For the urban scenes, the experiment simply employs street-level images. Millions of street-level
images and their online rating scores from volunteers have been obtained from the MIT Place Pulse
dataset [54]. A Deep Convolutional Neural Network (DCNN) model [19] is trained with the dataset
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to understand and evaluate new street view images from a human perspective and to analyse how
different visual elements impact an individual’s perception.

3.1. Human-Rated Street View Image Database

The MIT Place Pulse project was launched in 2013. In this project, online data collection was
performed to collect the reactions to different urban images from volunteers. In addition, these datasets
contained 110,988 street view images captured between 2007 and 2012, covering 56 cities from
28 countries on six continents. Figure 3 shows four image samples with their corresponding six
perceptual scores: the degree of safety, depressing, boring, beautiful, lively and wealthy. These ratings
have expressed the different characteristics of these images and could potentially be used to both
reflect people and train the human rating prediction model. This dataset was also employed due to its
high data quality: the locations for the images were dense and random, the meta-data of these images
were provided, and 1,169,078 pairwise image comparisons had been collection by October of 2016 [55].
More detailed information can be accessed through the project page (http://pulse.media.mit.edu).
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Figure 3. Image samples in the MIT Place Pulse dataset with their perceptual score along the six dimensions.

3.2. Human Perception Modelling and Prediction

In the first part of this case, we train a model to predict the score of the sense of safety from a street
view image. In a previous study, a large number of image feature representation methods, such as DeCAF
features [14], Dense SIFT [56], were used. In addition, Support Vector Machine, Linear Regression [14],
and RankingSVM [57] have been used to model the process with the image features. Compared with
previous work, the recently developed DCNN outperformed these traditional methods in combining
feature extraction and task modelling [19,55]. This study also introduced a state-of-the-art DCNN
architecture—Deep Residual Network (ResNet) [58]—to predict human perceptions.

In Figure 4, we demonstrate the methodology. We formulate the image score prediction problem
as a binary classification task. Using the binary classification model instead of a regression model
is more generalizable for human-perception-related tasks since human perceptions are inherently
unstable and uncertain, however, we can still obtain a continuous score through the probability of label
predictions [59–61]. To organize the training dataset, we use a threshold to determine the selection of
positive and negative samples. In the training phase, we will conduct the training task with different
threshold values. The image feature is extracted by Places365-ResNet, which is a deep learning feature
extractor trained on the Places2 database [62]. With the high-dimensional deep image features, we use
the Radial Basis Function (RBF) kernel Support Vector Machine (SVM) [63], which is a binary classifier,
to perform the classification task.

http://pulse.media.mit.edu
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Figure 4. An overview: Modelling human perception to urban visual environment. First, we extract
the image features using DCNN and annotate the image with a binary label. Second, an SVM classifier
is trained to predict the human perception of a new region.

3.2.1. Experiment and Results

In the experiment, we trained the model using the pipeline described above. Figure 5 shows
the training samples (a) and and prediction accuracy (b) with different positive-negative thresholds.
The model was validated using five-fold cross-validation. We can see that the prediction performance
varies with the size of the training set.

(a)
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Figure 5. Sample number (a) and the average accuracy (b) in the experiment. The vertical bars in the left
figure show the positive and negative samples used in the training task with different threshold values.
The red curves in the right figure indicate the average accuracy with different training sample sizes.

As we can see from Figure 5b, we achieved 88.2% accuracy in predicting whether a street view
image looks safe. As described in the methodology section, we can obtain a continuous score by
referring to the probability of each prediction. For instance, a high probability of one image that is
considered to be safe indicates a high safety score of the image.

In addition, we employed the well-trained model to predict the distribution characterizing the
sense of safety around a new area. In this experiment, the downtown area of Chengdu, China has been
selected as the research area. We collected approximately 420,000 street view images for Chengdu
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from Tencent Maps (http://map.qq.com). All images were predicted by the model with a safety score.
Next, we aggregated all the images into their corresponding streets to obtain the safety score of each
street. Figure 6 presents the results.

Figure 6. Spatial distribution of the sense of safety in Chengdu. Green indicates higher values of the
sense of safety. Streets in red mean low safety values.

The experiment demonstrates the feasibility and effectiveness of the proposed method in
modelling human perception of street view images or urban scenes. By applying the model
to large-scale geotagged street view image data, we are able to plot the spatial distribution of
human perception of a specific area. More in-depth studies can be conducted by integrating other
social-economic data and analysing spatial patterns.

3.3. Exploring the Visual Features that Produce Human Sense of Safety

Second, DCNN was employed to explore how different visual features impact the sense of safety,
which would influence daily life significantly. For example, people may choose to take a different
route if a neighbourhood is believed to be unsafe [64]. Previous traditional studies have noted that the
personalization of property, the presence of street lights, and private plantings would produce a safer
feeling and that litter, graffiti and poorly maintained buildings would make a street appear much less
safe. In this study, semantic scene parsing techniques will be used to facilitate a more quantitative and
comprehensive analysis.

The dataset used in this experiment was also from MIT Place Pulse. Basically, we obtained the
perceptual rating scores of each image from the calculation. Meanwhile, to represent the street scene
elements, we employed semantic scene parsing techniques to calculate the area ratio of semantic objects
in the Field of View (FOV)). Semantic scene parsing is a key technique in scene understanding [65]
and aims at recognizing and segmenting object instances in a natural image. Given an input image,
the model is able to predict one class label for each pixel. The state-of-the-art scene parsing model,
PSPNet, has achieved 79.70% pixel-wise accuracy in classifying 150 object categories [66] and has been
employed in this study.

http://map.qq.com


ISPRS Int. J. Geo-Inf. 2018, 7, 36 10 of 18

Figure 7 is an overview of the multivariate regression analysis. The safety score of each image
sample was obtained from the Place Pulse dataset, and the FOV ratio of each object category in the
image was calculated by counting the number of pixels in the segmentation mask.

Image 

Segmentation

 Safe 6.3

 wall 0.0013

 building 0.1071

 sky 0.1700

 tree 0.2843

 road 0.2251

 grass 0.1020

 sidewalk 0.0033

 plant 0.0001

 car 0.0973

 sign 0.0035

Place Pulse 

Perception Score

Objects Viewshed Ratio

Multivariable Linear Regression Analysis

Figure 7. Overview of multivariable linear regression analysis between perceptual scores and object
FOV ratio. The image samples were selected from the Place Pulse dataset with the perceptual scores.
The object FOV ratio was calculated from the image using the image semantic segmentation model.

A multivariate regression analysis was conducted to investigate the dependence between multiple
variables. In this case, the safety score was taken as the dependent variable, and the 150 object categories
were treated as the predictors. The contribution of each object to a specific perceptual attribute was
compared by observing the standardized coefficient of that object in the regression analysis.

In Figure 8, we present the results, where the top eight objects that positively (red bar) or negatively
(blue bar) contributed to each perceptual indicator are ranked and listed. The length of the bar indicates
the value of beta—standardized coefficients—and * indicates the significance level.

Figure 8. Results of multivariable regression analysis between scene elements and perception scores.
For each pair, the pixel number of a particular object category and perception score along a specific
dimension are given. The top eight objects that positively/negatively contributed to each of the six
perception types are shown.
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The positive objects could be separated into two categories sparsely. One category indicates the
presence of human activities, including roads, cars, side walks, houses and windowpanes. The other
type is natural elements such as grass, flora and trees. These elements can increase the sense of safety
mainly because they are more vivid and creative. The negative group contains sky, mountains, fields,
and buildings, walls, and bridges, which are intuitively more closed and depressed. Although street
lights and traffic signs were labelled as important safety indicators, they have not been identified in
this research. A major reason for this could most likely be their low frequency in the sample images.
Indeed, the results are consisting with classical theories. For example, greenery was considered to
provide greater quietness and peacefulness [67].

This case demonstrated the possibility of using human-rated street view images and deep
learning techniques to explore human cognition and perception and the reciprocal mechanism with
the surroundings. In future work, the pipeline and deep-learning-based methodology can potentially
be used in realistic 3D scenarios in VGEs, thus allowing one to explore more factors (other that visual
factors) that produce different human perceptions.

4. EEG-Based Cognitive Experiment in 3D VGEs

Human environmental perception is a comprehensive experience when stimulated by circumstances
such as an individual’s specific activity, event or physical environment (as depicted in Figure 9). Actually,
the process starting from context to human physical responses, human psychological responses
and further to human perception and cognition is a rather complex dynamic. Understanding
the mechanisms and relationships among these aspects provides the potential of exploring the
dynamic emotion process as well as the key factors in spatial-temporal serial events that affect human
psychological activities. Among the factors, the visual quality of the environment has been identified as
an important dimension of the human environmental perception in urban design [68,69]. It may evoke
strong emotional responses such as the aesthetic experience of the surroundings. More specifically
in urban spaces, the visual quality is generated by spatial variables (e.g., openness) and is reflected
on the psychological state of individuals (e.g., frustration), leaving a gap in between. The majority of
empirical studies on the visual quality of surrounding environments have mostly focused on the users’
perceived visual experience of the spatial variables rather than the change in their psychological state.

Urban Environment

perceive our surroundings 

Human Environment

Emotions

Spatial Factors

Relationship?Weather

Noise

Traffic condition

Air condition

Temperature

Figure 9. Multi-modal sensing for understanding human environmental perception.
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Previous approaches have relied on interviews and questionnaires to collect urban users’ physical
responses and the related emotional changes to which they are confined, making quantitative analysis
difficult to conduct. This study presents an EEG and immersive virtual environment-based framework
for exploring the quantitative relationships among the spatial features of urban environments and the
psychological responses of individuals, thereby facilitating visual quality assessment in urban design.
The framework consists of the following three components:

(a) Multi-Modal Immersive 3D Urban Virtual Environments

VGEs is capable of simulating real environments at different scales to satisfy the requirements
of human cognitive experiments. To provide a life-like geographical experience to the users,
VGEs implements multi-dimensional representations of urban spaces and multi-modal immersive
devices for human perception in a virtual-reality-mixed manner. A collaborative modelling approach
to creating 3D contents at multiple levels of detail (LODs) will be provided to support the whole scene
of the virtual urban environment, from a simple bounding appearance to real 3D interior layouts.
Figure 10 depicts the virtual urban environment designed and controlled by three spatial variables:
enclosure, openness, and permeability.

(a) Virtual urban environments
(b) Viewshed simulation and 

computing in virtual urban environment

(c) Visual enclosure (d) Visual openness (e) Visual permeability

Figure 10. Controlled spatial relationships in virtual urban environments.

In addition, a set of immersive virtual-reality devices will be seamlessly integrated into the
virtual urban environment platform to create an immersive experience for participates and eliminate
unnecessary natural effects simultaneously. As shown in Figure 11, a virtual-reality headset and an
immersive movement platform are provided for the participant. The virtual-reality headset offers
a basic visual environment, and the immersive movement platform provides a basic interactive
environment for users.

The immersive virtual environment with 3D spatial features and immersive device utilized
by participants provide a potential solution for incorporating individuals’ feelings from the visual
assessments into a dynamic simulation of complex urban environments.
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(a) (b) (c)

Figure 11. Implementation of Immersive Virtual Geographic Cognitive Environments. (a) Virtual
urban environment (Virtual CUHK Campus as a case study); (b) Immersive virtual-reality headset
(Oculus Rift from Samsung); (c) Immersive movement platform (Virtuix Omni).

(b) Real-Time Collaborative Sensing with Mobile EEG Device

EEG is an electrophysiological monitoring method to record electrical activity of the brain.
To measure the human response under different virtual environment settings, this study employs a
type of mobile EEG device—the EMOTIV(www.emotiv.com) (EMOTIV) mobile neuroheadset [70]
(as shown in Figure 12). The EMOTIV mobile neuroheadset is used to monitor and record the brain
activities of participants during the virtual cognitive experiment. Compared with a traditional EEG
recorder, which is highly sensitive to the participants’ movements during the experiment, EMOTIV
allows motion by the user to a certain extent [71]. Compared with the traditional EEG device in
neuro-science, this feature enables the participants to move or even walk around to a certain extent.
Using the mobile EEG recorder, and combined with the immersive class and walking platform, it is
possible for users to enter the virtual world immersively and interact with the virtual environment not
only visually but also using interoperation as in the real world.

Figure 12. EMOTIV mobile neuroheadset for measuring an individual’s brain activities in virtual
cognitive experiments.

Figure 13 demonstrates the implementation of the EEG-based cognitive experiment. The participant
(Figure 13a) enters the 3D virtual world as an avatar (Figure 13b). As the participants “feel” and
experience the visual changes in the virtual environment during their movement, their brain activity
will be recorded in real time (Figure 13c). The experiment will help to understand which visual features
in urban environments positively/negatively impact human perception.
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(a) (b) (c)

Figure 13. Implementation of EEG -based Virtual Geographic Cognitive Experiment. (a) Participant in
the real world; (b) Avatar in the virtual environment; (c) Participant’s real-time EEG wave.
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Figure 14. Affective-Computing-based Immersive Virtual Geographic Cognitive Experiment Framework.

(c) Affective Computing and Cognition Techniques

With the EEG data recorded in the virtual cognitive experiment, the next step is to analyse
and interpret the brain activity and understand human emotion and perception changes during the
experiment. Affective computing involves new technologies and theories that advance the basic
understanding of affective phenomena and their role in human experience. It is the study and
development of systems and devices that can recognize, interpret, process, and simulate human
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affects [52,72]. An affective-computing-based machine should interpret the emotional states of humans
and adapt its behaviour to them, therein giving an appropriate response to those emotions. Enabled by
the proliferation of artificial intelligence technology and deep learning, interpreting complex human
psychological activity has moved from an elusive goal to a recent multi-discipline focus [72]. In this
study, the framework will follow the paradigm in affective computing research to explore participants’
emotional changes in different visual variable settings of the virtual urban environment. Furthermore,
by employing a series of statistic tools, it is feasible to further quantify the connections between
visual features in the urban visual environment and different perceptions of individuals. Figure 14
demonstrates the overall framework of affective-computing-based immersive virtual geographic
cognitive experiments.

5. Conclusions

In this era of big data and artificial intelligence, researchers from various fields and disciplines
have been facing the same issues: how to make good use of extensive data and information with
the limited data mining and knowledge discovering approaches; how to incorporate the data from
multiple sources and link the data together automatically and intelligently; and how to combine
the Internet of Things, sensor networks and the real world for information acquisition and quick
response to satisfy the requirements presented by human activities. Actually, by integrating physical
geometry models, human behavioural models and geographic process models, the development of
VGEs facilitates the incorporation of geographic knowledge, brain–computer interfacing, and human
social simulation, therein building a geographic knowledge engineering and sharing system and
improving the ability for handling and mining new geographic knowledge and understanding natural
and social phenomena.

From the perspective of human cognition-behaviour analysis and simulation, previous work in
VGEs has focused mostly on representing and simulating the real world to create an ‘interpretive’
virtual world and improve an individual’s active cognition. In this paper, we discussed the outlook
for VGEs in terms of human environment perception and cognition, and we proposed a framework
for virtual cognitive experiments. Moreover, two potential implementation methods were proposed.
Using deep-learning-based data mining methods, new knowledge can be potentially discovered
with large-scale survey data. In addition, by integrating brain-computer interfacing techniques and
affective computing technology, we are able to conduct cognitive experiments in immersive virtual
environments to explore the key factors in suitable and sustainable environments.

Nevertheless, the scope that this paper discussed on future VGEs in terms of human cognition
and behaviour analysis is limited by the specific domain and scenario. The implementation framework
and case study introduced in this paper are set to enlighten future studies and gain further insight into
bringing VGEs—the new generation of geographic cognition and analysis tools—into wider and more
in-depth research areas.
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27. Juřík, V.; Šašinka, Č. Learning in Virtual 3D Environments: All About Immersive 3D Interfaces.
In Proceedings of the International Conference on Education and New Learning Technologies, Barcelona,
Spain, 4–6 July 2016.

28. Conroy, R.A. Spatial Navigation in Immersive Virtual Environments. Ph.D. Thesis, University of London,
London, UK, 2001.



ISPRS Int. J. Geo-Inf. 2018, 7, 36 17 of 18

29. Dias, M.; Eloy, S.; Carreiro, M.; Proênça, P.; Moural, A.; Pedro, T.; Freitas, J.; Vilar, E.; d’Alpuim, J.;
Azevedo, S. Designing Better Spaces for People. In Rethinking Comprehensive Design: Speculative
Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research;
Kyoto Institute of Technology: Kyoto, Japan, 2014.

30. Dias, M.; Eloy, S.; Carreiro, M.; Vilar, E.; Marques, S.; Moural, A.; Proênça, P.; Cruz, J.; d’Alpuim, J.;
Carvalho, N.; et al. Space perception in virtual environments-on how biometric sensing in virtual
environments may give architects users’s feedback. In Proceedings of the 32nd eCAADe Conference,
Newcastle upon Tyne, UK, 10–12 September 2014; Volume 2, pp. 271–280.

31. Vilar, E.; Rebelo, F.; Noriega, P.; Duarte, E.; Mayhorn, C.B. Effects of competing environmental variables
and signage on route-choices in simulated everyday and emergency wayfinding situations. Ergonomics
2014, 57, 511–524.

32. Vilar, E.; Rebelo, F.; Noriega, P. Comparing Three Stimulus Presentation Types in a Virtual Reality Experiment to
Human Wayfinding Behavior During Emergency Situation; Springer: Berlin, Germany, 2017.
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