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Abstract: Due to climate change, the frequency and intensity of Hydro-Meteorological disasters,
scuh as floods, are increasing. Therefore, the main purpose of this work is to assess tangible future
flood damage in the urban watershed of the To Lich River in Hanoi, Vietnam. An approach based on
spatial analysis, which requires the integration of several types of data related to flood characteristics
that include depth, in particular, land-use classes, property values, and damage rates, is applied
for the analysis. To simulate the future scenarios of flooding, the effects of climate change and
land-use changes are estimated for 2030. Additionally, two scenarios based on the implementation
of flood control measures are analyzed to demonstrate the effect of adaptation strategies. The findings
show that climate change combined with the expansion of built-up areas increases the vulnerability
of urban areas to flooding and economic damage. The results also reveal that the impacts of climate
change will increase the total damage from floods by 26%. However, appropriate flood mitigation
will be helpful in reducing the impacts of losses from floods by approximately 8% with the restoration
of lakes and by approximately 29% with the implementation of water-sensitive urban design (WSUD).
This study will be useful in helping to identify and map flood-prone areas at local and regional scales,
which can lead to the detection and prioritization of exposed areas for appropriate countermeasures
in a timely manner. In addition, the quantification of flood damage can be an important indicator to
enhance the awareness of local decision-makers on improving the efficiency of regional flood risk
reduction strategies.
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1. Introduction

Disasters are considered a substantial problem to the functioning of society. They can be classified
into natural and human-induced disasters [1]. Natural disasters are caused by a natural hazard, scuh as
a geophysical, meteorological, hydrological, or climatological hazard, and its magnitude depends
on meteorology, topography, etc. Additionally, the occurrence of natural disasters is expected to
increase due to global warming, which may lead to significant negative economic growth in poor
countries in particular [2]. Over the past 30 years (1986–2015), approximately 470 natural disaster
events occurred, and the average overall losses were estimated at Dollar US (USD) 126 billion and are
continuously increasing [3]. Indeed, in 2016, natural disaster losses increased compared to the averages
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from previous decades, up to USD 175 billion [4]. Climate change may contribute to the frequency
and intensity of extreme weather and climate events [5]. In past decades, natural disasters, scuh as
flooding, have become more common and more severe. Flood hazards induce catastrophic and severe
consequences to affected people and national economies. The impacts can be divided into three categories:
social, economic, and environmental effects [6]. The effects of climate change and of unplanned
urbanization on developing countries, in particular, are the main drivers resulting in the increase in
the frequency and strength of urban flood disasters [7]. Future climate change can also result in increases
in flood damage [8]. The increase in potential damage and the vulnerability of people has led local
decision-makers and governments to adopt and to implement flood control to attenuate disasters in urban
areas. International communities are also interested and aware of the risk of natural disasters. Accordingly,
three international frameworks, namely, Sustainable Development Goals (SDGs), the Paris Agreement
on Climate Change, and the Sendai Framework for Disaster Risk Reduction, were adopted in 2015.
In addition, many institutions, scuh as public agencies, insurances companies, and academia, in many
countries generate and apply flood damage models to assess the expected economic flood impacts [9].
In fact, the assessment of flood damage is characterized by a degree of uncertainty [10]. Uncertainties are
mainly associated with flood risk assessments [11]. For this reason, risk-based approaches have recently
been applied in flood management [10,12]. Indeed, flood risk is identified as the damage due to inundation
that is exceeded by a given probability [11]. Moreover, the quantification and the valuation of flood
damage are significant factors to take into account for decision-making strategies about specific flood
risk management measures. Additionally, flood losses are estimated to support policy analysis and flood
insurance [13]. Damages from floods can be classified as both tangible and intangible damages and direct
and indirect damages [14]. Tangible damages can be measured in monetary terms, but intangible damages
cannot be directly measured. Direct damages are mainly due to the physical impacts of the hazard.
Flood impacts can cause damage to or failure of buildings [15]. However, the impacts on national
economies and business interruptions can be related to indirect damages. Several tools and parameters
have been developed and applied to accurately estimate flood losses. In cases of direct flood damage
estimation, the flood depth-damage function is the most accepted and applied approach. It is used
to predict direct or physical flood damages [16–18]. This function represents the relationship between
expected loss and flood water depth [19]. Other models, scuh as Flood Loss Estimation MOdel for
the private sector (FLEMOps), Hazards U.S Multi-Hazard (HAZUS-MH), or Flemish model, are also used
to estimate flood losses and to simulate tangible damage in particular. These models are characterized by
the scale of application and their inputs. As an example, FLEMOps is mainly related to the estimation
of the direct loss of residential buildings and household contents while taking into account water levels
and buildings [20]. However, the HAZUS-MH software includes three types of models (earthquake, wind,
and flood). This software is used in the U.S., and it requires several types of input data to estimate the direct
tangible damages and indirect damages [21]. Recently, some researchers determined flood risks and
damages at a large scale with the application of geographic information systems (GISs) [22–24]. Indeed,
a GIS is a useful and an effective tool for risk analysis and mapping flood risk areas [25]. In addition,
free and open-source software for modeling flood risk has also been developed and it can be easily applied
by stakeholders to establish efficient mitigation strategies [25,26]. Flood risk assessment is also important
to estimate the benefit of flood mitigation strategies and to quantify residual risk [27]. The identification
of flood hazard areas will contribute to prioritizing risk prevention measures to optimize investments [23].
Flood hazard mapping can also be used to conduct more efficient and sustainable flood risk management
useful for current flood protection and for future generations. Indeed, the implementation of structural
and non-structural measures to mitigate flood risks can be sustainable strategies.

Due to various factors, Asian regions are considered the most exposed areas in the world to
flood hazards. The occurrence of natural disasters has risen considerably, and the risk of natural
disasters in Asia is higher than in Europe and Africa. Between 1980 and 2009, an estimated 38%
of global economic losses attributed to natural disasters occurred in Asia [28]. Different studies have
focused on flood damage, but only a few have emphasized future assessments considering the impacts
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of climate and land-use changes. For this reason, it will be valuable for the local policy-makers to
have efficient tools to predict the future impact of climate and land-use changes on urban flooding
damage. The main objective of this research is to estimate future urban tangible direct flood damage in
Hanoi using an approach based on the integration of hydrologic and economic data in geographic
information systems (GISs). The impact of flood risk management will also be assessed in this study
by an analysis of the scenarios related to the implementation of structural and non-structural flood
protection measures. Indeed, the paper is organized as follows. Section 2 introduces the study area and
describes in detail the methodology and data applied for the analysis. In this section, flood risk and
damage components used for the assessment are presented. The main results related to flood risk and
damage are proposed and discussed in Section 4. The paper concludes with a conclusion section to
emphasize the efficiency of the outcomes and future analysis.

2. Materials and Methods

In this research, a spatial analysis approach is applied to assess future urban flood damage in
the To Lich River watershed in Hanoi. Specific parameters and datasets were used and integrated into
a GIS to determine the flood conditions in 2015 and 2030 at river basin scale. This approach, which is
used to evaluate the total direct tangible flood damage, required several data types, scuh as satellite
images, topographic data, soil characteristics, property prices, and flood damage rates. Figure 1 shows
the flowchart of the methodology. These parameters and components applied for the assessment
of flood damage were mainly converted to raster format with a cell size of 60× 60 m and georeferenced
to WGS1984 UTM Zone 48N. However, the implementation of appropriate measures can be a solution
to reduce the effect of flood hazards and to protect people and buildings. For this reason, in this
study, simulations of the implementation of adaptation measures were also performed. In this study,
ArcGIS 10.4.1 was used for data processing and analysis.
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2.1. Study Area

Hanoi is located in the northwestern area of the Red River Delta. After the expansion of
the administrative boundary in 2008, the area is now 3358.9 km2, and it contains urban and rural
districts, towns, wards, and communes [29]. The climate is characterized by hot summers and rainy
and cold winters. The river network in Hanoi is dense and considerable, and it includes the Red River,
the Day River, and the Nhue River; many ponds and lakes are also located in the city [30]. In 2015,
its population was 7,328,400 (density, 2182 person/km2), and it is continuously increasing [31]. Due to its
geographical location and features, Hanoi as well as almost all Vietnamese cities are prone to flooding.
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Topographic conditions are low and flat, with the ground level being lower than the high-water levels
of the rivers and channels, which contributes to the increased risk of floods in Hanoi. The To Lich River,
which flows inside central Hanoi, was selected as the study area to assess the impact of floods in urban
areas in Hanoi (Figure 2). The watershed mainly covers the urban area and in particular old Hanoi.
The area of the catchment is approximately 113 km2. The study area is located between 21◦2.704′ N and
20◦55.462′ N latitude and 105◦47.009′ E and 105◦52.231′ E longitude. The area covers many districts in
Hanoi, which can increase the vulnerability for people and infrastructures.
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2.2. Flood Risk Assessment

Flood risk is defined as the probability that a loss will occur [31]. The accuracy of an assessment
of flood risk depends on information related to three main components: hazard assessment, exposure,
and vulnerability [32,33]. Furthermore, the evaluation of the expected annual flood damage is linked
with an exceedance probability [34]. The approach applied is based on spatial analysis, and all inputs
are converted to a grid with a 60-m pixel size.

2.2.1. Flood Hazard

This component is mostly related to inundation characteristics, scuh as area, depth of water,
velocity, and duration. In this study, water depth is applied as the main factor in the flood hazard
assessment. Duration and velocity are not included in the analysis. Moreover, the simulation of flood
characteristics, scuh as peak discharge and flood inundation, is obtained through computer and
mathematical models, which can be grouped into one-dimensional (1D), two-dimensional (2D),
and three-dimensional (3D) models [35]. These models are widely applied in urban areas because they
can contribute to the representation and the simulation of the physical situation that can occur during
floods [36,37]. For this research, FLO-2D was selected to simulate flood inundation for the current
and future climate, corresponding to a 50-year return period. FLO-2D can generate the temporal
change in the flow depth, flow velocity, and affected areas [38]. Several data are employed to simulate
floods, scuh as a digital elevation model (DEM) with a 30 m resolution, soil type from the Food
and Agriculture Organization (FAO), and land-use data derived from Landsat satellite images [36].
The DEM represents the land elevation data, which are crucial for estimating the storage volume
of surface flooding. Hence, the quality of the output depends on the quality of the DEM. However,
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time of simulation, which largely depends on cell size, computer system efficiency, size of modeling
area, level (scope) of study, and several other parameters, should be also taken into account while
defining the cell size of the flood inundation simulation. These factors were considered in determining
the grid size of 60 m for the flood inundation simulation, although a higher spatial resolution (5 to 20 m)
is suggested for a detailed flood inundation simulation study. Loss of flood storage due to buildings and
other urban features can be graphically assigned using individual or polygon grid element selection.
In this study, the “Area Reduction Factor” (ARF) is used to indicate storage loss caused by buildings.
This command enables us to compute the blockage using a polygon shapefile of a built-up area.

For the future simulation, climatic variables are applied to predict the change in flood hazards
from global warming. Global Climate Models (GCMs) indicate that increasing greenhouse gas
concentrations will have an important implication for the climate at global and regional scales [39].
For a more accurate climate change analysis, different GCMs are integrated into the model.
For the climate change impact assessment, daily precipitation outputs from an average of three GCMs
(MRI-CGCM3, MIROC5, and HadGEM2-ES) and two representative concentration pathways (RCP),
4.5 and 8.5, were employed. Due to the great amount of uncertainty associated with the scenarios
and projections (the 50-year daily maximum rainfall was estimated as 416 mm, 297 mm, and 411 mm
for RCP4.5 and 412 mm, 593 mm, and 411 mm for RCP85 for the MRI, MIROC5, and HadGEM2-ES
GCMs, respectively, over the Hanoi region), the use of multiple GCMs is recommended to provide
the range of recommendations for addressing various climate change impacts. The quantile-quantile
bias correction technique was applied to downscale or minimize the biases in the GCM data. Gumbel
frequency analyses were conducted to estimate the 1-day maximum precipitation for the current
and future flood assessments. The flood hazard was calibrated and validated using a 2008 flood
event, which occurred in Hanoi between 30 October and 3 November 2008. The model parameters
were adjusted by comparing the observed and simulated inundation depths at multiple locations.
The roughness coefficient was adjusted to fit the simulation results with observations by applying
a “trial and error” procedure. A range of roughness coefficients were tried for different land use classes.
An overall value of 0.04 was allocated for the Manning’s roughness parameter. The simulation time for
the inundation modelling was 48 h, which accounted for the modelled 1-day maximum precipitation
of the 50-year return period floods, and the output time step was 1 h.

2.2.2. Exposure

The exposure component represents the element at risk, and it is mainly linked to land-use
land cover (LULC). Remote sensing products are used to produce suitable LULC maps. Remote
sensing provides adequate tools to assess spatial and temporal land-use changes [40]. In this research,
two satellite images of our study area are employed as described in Table 1. Level 1 Landsat
images were downloaded from https://earthexplorer.usgs.gov/. Prior to image analysis, appropriate
data processing, scuh as band composites and clipping, was completed. In addition, Landsat 5
of 2007 and Landsat 8 of 2016 were not only used to establish LULC maps useful for the current flood
simulation but also used to predict the LULC of 2030. The land change modeler (LCM) for ArcGIS
Software Extension 2.0 was operated to predict the land-use pattern based on the previous change
trend (Figure 3). The LCM was developed by Clark Labs, Clark University [41]. In this work, a Markov
Chain and logistic regression were applied to determine the suitable spatial configuration considering
particular driver factors. The DEM and slope are the main driver factors, which were applied to
influence change allocation.

Table 1. Satellite images applied.

No. Path/Row Data Set Acquisition Data Cloud Cover

1 127/045 Landsat 5 TM C1 Level 1 08/05/2007 7%
2 127/045 Landsat 8 OLI/TIRS C1 Level 1 01/06/2016 13%

https://earthexplorer.usgs.gov/
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The two previous satellite images were classified using the supervised classification maximum
likelihood algorithm with the ArcGIS software and validated. Landsat sensors have a moderate spatial
resolution of 30 m. With this resolution, it was quite difficult to distinguish individual houses or buildings
and to establish a detailed land-use map. However, it was clear enough to distinguish urban growth for
a regional coverage. Therefore, four classes, namely, built-up, water bodies, agriculture land, and green
land, were identified based on the supervised classification. To measure damage in monetary terms,
data about the value of assets at risk were integrated into the analysis. The value of assets can be
indicated as the replacement cost or depreciated/repair cost [25]. This value was estimated based
on the assumption that damaged assets have to be replaced by a similar object [33]. In this study,
the values of the built-up class were expressed as replacement costs of residential and non-residential
buildings. The infrastructure damage was added into the analysis by the application of weighing
factor approaches [9–42]. Consequently, it was assumed that infrastructure losses are in proportion
to total residential losses. The average unit property value (VND/m2) by district from the residential
and non-residential sectors that was applied in the analysis was based on the 2015 constant price [43].
These prices were converted from Vietnamese Dong (VND) to US Dollar (USD). In addition, the damage
of agricultural land was mainly estimated based on the loss on productivity. However, other land-use
classes, namely, water bodies and green land, are not considered in the calculations. Indeed, the land use
layer was overlaid with flood hazard data to identify affected areas in the GIS environment. The generated
output was useful to evaluate the flood depth damage function as an indicator of vulnerability.

2.2.3. Vulnerability

Vulnerability assessments provide information on how elements at risk are being harmed by
flooding [44]. In this study, the indicator of vulnerability was evaluated based on the susceptibility
of exposed assets to contact with water. The susceptibility of the element at risk is assessed by
the establishment of the flood-depth damage function [32]. Two methods are used to generate
the flood damage function. The first method produces the function from the losses following
flooding. The second method is called the synthetic flood damage function. In this case, the function is
established from detailed inventories of the types of land use and potential losses [19]. In this study,
the flood depth damage function is derived from data collected from field surveys. A regression
analysis is applied to obtain this function. The dependent variable is the direct damage percentage,
and the independent variable is flood depth. The depth of flood has a related impact on the damage
it causes. This correlation can be a relevant way to construct the flood depth damage function
based on a past flood event. Indeed, the flood damage function is an important component of direct
flood estimation. In this work, the flood damage depth is constructed as a logistic function with
two parameters (Equation (1)), which is developed from XLSTAT software.

Y =
1(

1 + e(−pr1−pr2×X)
) (1)
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Y: dependent variable, damage factor; X: independent variable, flood depth; pr1 and pr2 are
parameters of the function.

The collected data from the survey were used to establish this function for buildings in residential
and non-residential sectors and consequently to estimate the flood damage rate. As it was described in
exposure section, the land-use layer used in this work is coarse, which makes it difficult to distinguish
in detail the buildings for the current situation and to predict the future condition. For this reason,
the analysis was not based on a single object and the flood depth damage function was applied for
a grouped class, namely, built-up. Moreover, the same value of the assets was employed by district.
In the study area, the majority of buildings are in concrete. Therefore, materials of construction were
not included in the analysis of vulnerability and the establishment of the damage function.

2.3. Scenarios Analysis

There are a number of measures used to reduce the risk of a hazard and to protect people, private
and public buildings, and infrastructure. However, the best approach considering risk reduction measures
should combine five stages: inherent safety, prevention, detection, control, mitigation, and emergency
response [1]. Interventions are classified into hard and soft measures [45]. In the case of Hanoi, the local
government improved flood defenses by the construction of the Yen So pumping station, and the capacity
increased to 90 m3/s. To enhance the efficiency of flood risk reduction and to limit the size of the hazard,
two scenarios based on an implementation of blue and green infrastructure (BGI) are simulated. Retaining
the water for infiltration or preserving water bodies for flood storage is a better alternative instead
of constructing larger pipes. The Hanoi Drainage Plan 2030 ensures a long-term vision for Hanoi through
the plan to provide a “green space”. The Hanoi Drainage Plan will pay special attention to preserving and
developing this characteristic following ecological and modernized criteria. The main advantage of BGI is
that it can contribute to protecting not only the city but also the environment. The first scenario is based
on the protection and restoration of lakes and ponds. It was assumed that the flood storage was 8 million
cubic meters based on the preservation/regulation of lake/ponds with an area of 4 km2 and a depth
of 2 m. The second scenario dealt with the setup of water sensitive urban design (WSUD) combined
with lake preservation. The assumption of the WSUD option is an increase of 40 mm (about 10% of total
rainfall) infiltration for extreme rainfall events. As precise details on the location of lakes or infiltration
trenches/boxes were not available, the additional infiltration losses or storages in lakes were uniformly
distributed over the inundation area.

2.4. Field Survey

A field survey was conducted at the ward level during March 2017. Interviews were conducted
with local people in affected residential and non-residential areas using specific questionnaires.
Potential respondents were selected from the flood hazard map generated and calibrated based
on the 2008 flood event. The flood map was also helpful for dividing the target population into
common groups/classes. During the survey, a global positioning system (GPS) unit was used to
determine the exact location of selected classes, and then a population for each group was chosen and
interviewed randomly. The main purpose of the field survey was to collect data about the situation
during the 2008 flood and to determine the perceptions of the people regarding flood risk management.
A face-to-face technique was employed to collect data from interviewees. The questionnaire used
during the survey was composed of three main parts: Part I: household characteristics; Part II:
flood risk/damage; and Part III: flood risk management measures. In Part II, the questions are
mainly related to the 2008 flood event, which was helpful to determine the relationship between
the impacts on properties at risk and flood characteristics and then to establish the flood depth damage
function. However, Part III is associated with the perception of local people on flood risk reduction.
Two hundred and ninety-three (293) responses were collected from residential and non-residential
sectors. The main objective of the survey was to establish the flood damage depth function of buildings
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from the relationship between flood damage and flood depth. For this reason, the questions are mainly
related to the 2008 flood event.

3. Results and Discussion

Flood depth and damage were evaluated at a grid cell scale to monitor the flood risk in the urban
watershed. Hazard maps are generated and classified based on the level of inundation and water
depth. However, damage maps depend on the impact of depth to losses. The total damage is obtained
from the analysis of three components: flood hazard, exposure, and vulnerability.

3.1. Flood Hazard Simulation

The model parameters were calibrated based on the comparison of the observed and simulated
flood characteristics from the 2008 flood event. This event was selected primarily due to the heavy
rainfall with a return period of more than 50 years. In addition, the results show that inundated areas
are increasing from the northern part to southern area of the city and from east to west. The most
inundated district in the watershed was the Thanh Tri District. This situation can be explained by
topography and land characteristics, which are mostly lower in the south. These findings are confirmed
by the work of Nguyen et al. (2013) [46], who found similar results in their research on Hanoi City.
In addition, it was identified through the analysis of the satellite images developed by UNOSAT
that the southern areas were the most inundated areas during the 2008 flood event. Additionally,
high flood hazard areas are detected along the river. Similar results are generated by Bathrellos et al.
(2017) [47] in their study. They found that the high and very high flood hazards are located along
the principal stream of the Xerias drainage system. Moreover, the comparison between the current and
future scenarios in 2030 showed that the inundated areas and depth increased, as presented in Figure 4.
However, the effect of climate change simulated with a 23% increase in rainfall in 2030 indicated that
19% of inundated areas with a flood depth of more than 0.5 m will increase in the future. Additionally,
other districts, scuh as Hoang Mai, Thanh Xuan, and Ba Dinh, will be more prone to floods. In fact,
the climate change scenario revealed an increase in rainfall, which may lead to an increase in inundated
areas. This result corroborates the findings of (Arnell and Gosling, 2016) [48]. These authors evaluated
the future scenario of flood risk based on climate models and socioeconomic data.
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The impact of variability of climate was assessed to identify and to determine the spatial extent
of areas at risk. In fact, mapping the spatial distribution of risk will provide significant information for
integrated flood risk management. Indeed, areas at high risk should be prioritized [32].

The increase in frequency and magnitude of floods in urban areas is due to the suppression
of streams and ponds [49]. For this reason, the coping mechanisms implemented to mitigate floods
are based on the preservation of lakes and the enhancement of infiltration. The findings in Figure 5
indicate that inundation areas will attenuate the effects of the flood measures even under climate
change conditions. Additionally, the comparison between the current situation and scenarios based
on lake preservation and the setup of WSUD shows a reduction in inundation areas by 17% and
59%, respectively.
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As a result, it was observed that flood depth and the extent of inundation areas are the main
consequences of climate change. However, mitigation measures can be conducted to reduce the effect
of flooding by decreasing the flood depth level and limiting the affected areas, as illustrated in Figure 6.
Although there are several relevant flood characteristics, scuh as maximum water depth, flood duration,
and flow velocity, only water depth is used in the flood damage modelling [13,50]. Therefore, in this
study, water depth is considered to be the main parameter for the flood damage assessment. Moreover,
the production of a flood hazard map with the impacts of climate change and the consideration
of the contribution of flood controls will provide useful information about flood risks and will help to
assess potential vulnerabilities, scuh as physical vulnerability or economic vulnerability [1].
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3.2. Land-Use Land Cover Change

The future land use in 2030, derived from two past satellite images, showed an increase of built-up
areas by approximately 7% (Figure 7). In fact, the dynamic economic growth in Asian megacities
can lead to rapid urbanization with its negative and positive consequences. Actually, the expansion
of cities in appropriate locations may contribute to extend the exposure of buildings and infrastructures
to a high flood threat [51]. People looking for a better life migrate to cities, which results in the growth
of urban sprawl in places not suitable for buildings, scuh as along large rivers or spaces used for
floodplains. Hence, an appropriate land-use plan is required to avoid increasing the vulnerability
of people and buildings. In addition, a specific flood education program can be conducted to enhance
people’s awareness on the negative effects of floods and it may induce them to avoid living in
flood-prone spaces [52]. The comparison of urbanization in the study area between current and future
scenarios demonstrated that the urban districts, such as Ba Dinh, Dong Da, Hai Ba Trung, Hoan Kiem,
Thanh Xuan, and Hoang Mai, are mainly urbanized. However, Thanh Tri, as a rural district, will likely
be more urbanized in the future (Figure 8).
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In fact, urbanization changes hydrological processes within watersheds, resulting in fluctuating
surface infiltration characteristics [53]. Therefore, the identification of elements at risk is very useful
for flood damage assessments. In this study, the vulnerability assessment consists of the direct contact
of the buildings to water. The spatial extent is an important factor for damage assessment [17,33].
In addition, three levels of damage analysis can be determined: macro, meso, and micro [44].
Due the low resolution of the Landsat images, the built-up class is applied as an aggregated land-use
category, which includes residential and non-residential areas. Hence, our analysis is considered
a meso-scale damage evaluation, which is convenient for regional analysis.

3.3. Flood Depth Damage Function

Vulnerability is mainly related to the flood depth damage function, which is the correlation
between the flood depth and damage percentage [17,54]. In this study, this function is obtained and
established from data collected from the field survey. As the main objective of the work is to assess
the flood damage at the meso-scale, the same susceptibility function is elaborated for one homogenous
class (Built-up). The type and material of buildings are not included in the analysis. The fitted
function is illustrated in Figure 9. The statistical analysis provides a high determination coefficient (R2),
which explains the significant correlation between water depth and damage rate. The results are shown
in Table 2. This function can be considered as a significant indicator for flood damage developed for
the urban area of Hanoi.

The findings indicated that damage will be more serious with an increasing depth level. At more
than 2 m, the damage will be approximately 100%. This function provided a damage rate which was
used for a total flood damage assessment.

Table 2. Flood depth damage function analysis.

Designation Value

pr1 −5.721
pr2 4.367
R2 0.948
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3.4. Damage Assessment

Tangible direct damage is estimated in this study. The flood damage map is established with
a combination of the hazard, exposure, and vulnerability components in a GIS with a grid size
of 60 × 60 m. The calibration of the baseline results depends on the damage estimate from the Hanoi
government for the 2008 flood [55]. The results obtained depicted that total damage will increase with
the impacts of climate change, but flood mitigation will reduce the total damage in the study areas
(Figure 10).
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The comparison between the current and future scenarios with and without mitigation showed
a 26% increase in the total damage with the effect of climate change. In contrast, the restoration of lakes
and the combined flood measures scenario will decrease flood losses by 8% and 29%, respectively.
The flood damage maps in Figure 11 identify that the spatial distribution of flood damage is correlated
with the water depth and inundated area parameters. Damage is higher in the southern areas than it
is in the northern areas of the watershed. In addition, losses in the western area are more significant
than in the eastern cities. Alternatively, the implementation of flood protection measures will protect
the more vulnerable regions, and then total damage will more pronounced (Figure 12). Moreover,
the estimation of the total damage due to flooding in an urban area is very important for urban planning
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and decision-makers. Damage assessments are a relevant indicator for detecting the susceptibility
of an area to flood risks and evaluating the advantages of implementing flood risk measures [34].
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The analysis of flood damage in the main inundated district demonstrates that the damage will
increase with the magnitude of the water depth, which is explained by our approach that is based on
the application of the flood depth damage function. Figure 13 reveals that in the case of the Thanh Tri
District, the total damage is not significantly correlated with the level of water depth. In fact, in this
rural district, the average water depth is higher, but the total damage is still low. This result can be
explained by the high degree of urbanization and the property value of the assets. Indeed, floods are
a type of natural disaster that affect urban and rural areas, but their economic impacts in urban areas
are more serious because the value of the assets at risk is larger [56]. In addition, due to urbanization,
greenlands will be converted to impervious lands, scuh as roads and buildings, that will reduce
infiltration and increase runoff. Consequently, the occurrence of more severe floods is increasing [57].
Regarding the value of water depth, it was observed that the Thanh Xuan and Thanh Tri districts
are the main vulnerable areas to flooding because they are located in low-lying areas. Topography
plays an important role in the magnitude of flooding [1]. In addition, the preservation of lakes and
the improvement of drainage will contribute to reducing the damage in the inundated districts. Indeed,
the combination of several measures, scuh as retention ponds, permeable paving, or block storage,
can be conducted to reduce the peak flow and the magnitude of a flood [58].
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Climate change combined with unplanned expansion of built-up areas increases the vulnerability
of urban areas to flooding and therefore economic damage. Consequently, the adoption of appropriate
flood countermeasures, as presented in this study, is required. For this reason, local decision-makers
should emphasize flood adaptation and mitigation measures for sustainable urban development.
Several parameters, scuh as climate, land-use change, and topography, should be considered for
the design and implementation of suitable flood management measures. In addition, decision-makers
and planners should take into account hazard maps combining physical and socio-economic factors to
establish effective and suitable urban planning strategies [59].

3.5. Perception of People

During the survey, local people from residential and non-residential areas were requested to
give their opinions about solutions to reduce flood problems. Through the analysis of data collected
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from respondents in both sectors, it was observed that local people suggested priorities to prevent
and reduce the effect of flooding: 1: construction of more structural measures, 2: improvement
of the drainage system, and 3: enhancement in the efficiency of distributing flood information (Table 3).

Table 3. Flood risk reduction perception.

No Flood Measures Residential (Percentage %) Non-Residential (Percentage %)

1 Construction of structural/hard measures 18 13
2 Improvement of drainage system 54 44
3 Evacuation plan 0.5 6
4 Updated flood information 18.5 25
5 NGO/people contribution 6.8 7
6 Disaster training/education 1.8 4
7 Disaster insurance 1 1

NGO: non-governmental organization.

Respondents believe that the drainage system is the most important flood problem. Therefore,
approximately 54% and 44% of respondents from residential and non-residential areas, respectively,
agreed that improvements to the drainage system can be a solution to reduce the effects of urban
flooding in cases of heavy rainfall, scuh as in 2008. In addition, the interviewees emphasized that
the enhancement of an early warning system can also be helpful to attenuate flood risks. However,
people are not interested in purchasing flood insurance.

There were several reasons people noted for why they were not interested in flood insurance,
scuh as the price, flood magnitude, or frequency, and less assistance or information. Accordingly,
launching a national flood insurance program could be interesting for homeowners and small
businesses. A national flood insurance program should provide insurance and maps of flood
hazards and encompass regulations and incentive programs for local people to invest in flood risk
reduction [60].

Although people are not interested in insurance, they are aware of the risk of floods. Therefore,
they suggested combining flood mitigation measures (hard and soft measures) to avoid flood problems
and to improve the efficiency and effectiveness of the mitigation strategies. The findings obtained
from the flood simulation and scenarios are correlated with the perceptions of the local people. In fact,
it was observed that a flood hazard map is useful for early warning by identifying high risk areas.
In fact, the implementation of non-structural measures, scuh as an early flood warning system for
flood-prone areas, can lead to reduce flood risk [52]. In addition, the implementation of WSUD can
contribute to reducing the effect of a flood by improving the drainage system.

4. Conclusions

The assessment of flood hazards and damages in an urban watershed shows that the risk to
buildings will be more serious in the future. The impacts of climate change and rapid urbanization may
affect the level of flood hazard and loss. Nevertheless, the implementation of flood countermeasures,
scuh as the preservation of lakes and the implementation of WSUD, may contribute to decreased flood
impacts. Additionally, the identification of priority areas for flood risk reduction using flood hazard
and damage maps will be helpful to decision-makers as they adopt strategies at local and regional
scales. Flood hazard mapping can be useful for land-use planning in flood risk areas and can help urban
planners prioritize their response measures. Furthermore, the uncertainty and the unpredictability
of flooding are making local governments pay attention to this type of natural disaster. For this reason,
a better understanding of projected flood risks will be very useful to decision-makers in adopting
suitable flood control strategies and enhancing the efficiency of mitigation measures. Moreover,
quantification of the annual flood loss can help establish national flood insurance programs with many
options. To conclude, the prediction of future flood situations will be useful for planning and designing
structural and non-structural measures. Moreover, a flood risk map might be used for early warning
systems. Finally, this work can be improved by the use of high-resolution satellite images, which can
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lead to an improved identification of land-use classes. Moreover, the application of high-resolution
DEM, scuh as LIDAR, can provide relevant results for urban flood assessments. Moreover, this study
will be more significant with the assessment of a cost benefit analysis of the flood mitigation scenarios.
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