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Abstract: The potential of multi-sensor fusion for indoor positioning has attracted substantial
attention. A ZUPT/UWB data fusion algorithm based on graph optimization is proposed in this
paper and is compared with the traditional fusion algorithms, which are based on particle filtering.
With a series of observations, the proposed algorithm can achieve higher precision with acceptable
computational complexity. Two methods for dynamically determining the confidence level are also
presented. The first method can reduce the confidence level of ZUPT at corners, and the second
method can determine the lower bound on the UWB sensor’s confidence level through the UWB
optimized residual. Experimental results demonstrate the ability of the proposed method to achieve
a positioning accuracy of 0.4 m, which is better than the 0.7 m achieved by the particle-filtering-based
fusion method.
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1. Background Description

Indoor positioning has made considerable progress in the context of the popularity of
location-based services, but progress concerning positioning accuracy has come to a standstill
due to limited hardware performance and costs. Recent years have witnessed a growing need
for high-accuracy indoor positioning techniques, underscoring the necessity for developing a
high-accuracy low-cost indoor positioning system. As a result, multi-sensor data fusion methods have
been brought to the fore [1]. Algorithms of this type include the IMU (Inertial Measurement Unit) and
wireless positioning techniques such as UWB (Ultra-wideband) [2,3], WiFi [4,5], and Bluetooth [6].
An accurate location can be obtained in the short term through integrating the IMU measurements,
but this approach belongs to an incremental positioning system that produces cumulative error.
Wireless positioning techniques perform poorly for single-point positioning, and their positioning
accuracy and stability fall short of expectations, especially in complicated scenarios. However,
the wireless positioning techniques are free from cumulative error. By combining the two
types of sensors, it is possible to overcome their disadvantages and produce exceptionally high
positioning accuracy.

The general multi-sensor fusion methods are largely dependent on the Bayes filtering framework.
Typical examples include EKF (Extended Kalman Filter) [7,8] and PF (Particle Filter) [9–11]. The basic
idea behind these methods is to assume that the current status is correlated only with the previous
status and the current observation. Although the information from previous moments is still
incorporated into the estimate of the current status, these methods naively assume that the current
status is related only to the previous status [12–14]. As a result, the sequence of previous statuses and
the information contained in their corresponding observations must be compressed, thereby leading to
underuse of information. To address this problem, a graphical-description-based optimization method
was proposed in the visual positioning field; this method is also known as graph optimization.
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The largest difference between the graph optimization method and the Bayes filtering method
is that the former makes no Markov assumption and directly maintains the previous statuses [15].
The solution obtained with the graph optimization method is the optimal result under a series of
constraints. Although the graph optimization method determines its optimal solution through linear
iteration near the operating point while solving the Jacobian matrix, its solution is more accurate than
those of EKF, IEKF (Iterated Extended-Kalman Filter) and PF, which easily fall into a local minimum of
the real probability distribution function due to the absence of long-term memory during the state
estimation process. Because the observation model in the ZUPT/UWB fusion algorithm is far from
being a linear model, the probability distribution function is complex and difficult to reduce to a
simple function such as the Gaussian distribution function in EKF or a non-linear distribution function
simulated by particles in PF. Given that premise, even EKF and PF can easily find the global minimum
of the simplified distribution function, and there is a considerable difference between this solution and
the global minimum of the real probability distribution function.

Graph-optimization-based back-end optimization plays a crucial role in many of the state-of-art
SLAM algorithms that have been proposed in recent years. The Direct Sparse Odometry method, which
was proposed by J. Engel et al. [16,17], was characterized by considerable accuracy and robustness.
The graph optimization scheme was successfully applied to feature-based visual SLAM [18] and laser
SLAM [19]. By fully exploiting the correlation between previous statuses, these SLAM algorithms
achieved remarkable performance gains in terms of positioning accuracy over the traditional SLAM
algorithms, which are based on EKF or PF. However, they are rarely used for multi-sensor data fusion
in the IMU-based positioning framework.

IMU and UWB are combined in this paper through graph optimization. The paper is organized
as follows. Section 2 covers the description of the algorithm. We first discuss the basic UWB
positioning method in Section 2.1 and briefly introduce the particle-filtering-based IMU/UWB
fusion algorithm in Section 2.2. The basic theory of graph optimization is discussed in Section 2.3.1.
In Section 2.3.2, we present the graph-optimization-based IMU/UWB fusion algorithm. In Section
Method for Dynamically Determining the ZUPT Confidence Level and Section Method for Dynamically
Determining the UWB Confidence Level, we propose two methods for dynamically determining
the confidence level of the ZUPT (Zero-velocity Update) output data and the UWB output data,
respectively. Section 3 covers the experiments and results. We compare the proposed algorithm with
other algorithms and prove the validity and effectiveness of the two confidence-level calculation
methods. Finally, we present our conclusions in Section 4.

2. Algorithm Description

2.1. UWB Positioning Based on a Single Measurement

The UWB sensor positioning algorithm is largely dependent on the TOA (Time of Arrival) and
TDOA (Time difference of Arrival) methods [20]. Let Beaconi denote the ith UWB station in the
plane positioning scenario and (xi, yi) denote its coordinates. Let Tag denote the UWB tag used for
positioning and (x, y) its coordinates. The measurement collected by the UWB sensor based on TOA
represents the distance between Tag and Beacon. Let ri denote the actual distance between Tag and
Beaconi, and r′i denote the measured distance. As shown in Figure 1, ideally, r′i = ri. Note that a
point can be identified uniquely from the intersection of the three circles, and the coordinates of this
point denote the Tag location obtained from the current observation. We have two approaches for
determining this point: We can adopt the trilateration method, in which a location is calculated directly
using the coordinates of three points, or we can define the constrained relationship between Tag and
Beacon, define an error function, and then determine the coordinates of Tag by minimizing the error
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function. The latter approach is more general because more beacons are available under important
scenarios for improving the positioning accuracy. A feasible error function is

E(x, y) =
N

∑
i

abs
(√

((x− xi)
2 + (y− yi)

2)− r′i

)
(1)

where abs() denotes the absolute value function. The coordinates (x′, y′) can be determined by
minimizing E(x, y). (

x′, y′
)
= argmin(x,y)E(x, y) (2)

This method is called UWB-optimize in this paper, and it is mainly used to indirectly represent
the quality of UWB observations. The minimal value of E(x, y) is 0 in the ideal scenario of Figure 1.
However, there are measurement errors in real-world applications from system noise and NLOS (Non
Line of Sight) environments [21,22]. To describe this situation, we still let ri denote the actual distance
and let ∆ri denote the deviation of ri. To measure Beaconi, we use r′i = ri + ∆ri. Assuming that the
beacon measurement corresponds to a circle, Figure 2 shows the overlapped region of three circles
that correspond to three beacons near Tag. When the measurements contain errors, the three circles
intersect in a pairwise manner rather than at one point. In this case, the estimated coordinate of
Tag (x′, y′) can still be determined by minimizing E(x, y). E(x′, y′) is positively correlated to ∑ ∆ri.
That is, E(x′, y′) increases with ∑ ∆ri. This property will be used afterwards to dynamically obtain the
confidence level of the UWB observations.
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Single-measurement-based UWB positioning systems are easy to implement and incur only small
computational loads. Because only one measurement is used for positioning, when the quality of that
measurement is poor, the accuracy of this method will be seriously affected. Moreover, UWB sensors
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are expensive and their sensing error is significant in NLOS environments, which highlights the need
for fusion with other sensors in real-world applications. Hence, a more general approach is to improve
the positioning accuracy and robustness through multi-sensor fusion with the Bayes filter.

2.2. Particle-Filtering-Based UWB and UWB/INS Fusion Algorithm

The Bayes filter is the most commonly used method for state estimation. In the particle filter, many
particles are used to estimate the state’s a posteriori distribution. Compared with the EKF method,
which addresses non-linear problems through linear approximation, the particle filter is more effective
in terms of UWB positioning. The reason is that the observation model of the UWB sensor is highly
non-linear and linearizing this model will cause serious error. Therefore, it is of great significance to
study the particle-filter-based UWB positioning method and the UWB/INS fusion-based positioning
method. In this paper, we describe the pure UWB algorithm based on a particle filter (UWB-PF) and
the UWB/INS fusion algorithm based on particle filter (Fusing), which are used for comparisons with
the proposed method based on graph optimization.

Assume that there are N known beacons in total and that the coordinates of these beacons are
known in advance; we denote them as [Bk]

N
k=1. Let [S[i]

t−1]
M

i=1 and
[
weight[i]t−1

]M

i=1
denote the set of

particles and their weights at t − 1, respectively, where s[i]t−1 denotes the status of the ith particle at

t − 1, and weight[i]t−1 denotes the weight of the ith particle at t − 1. Note that these quantities are
known at t. Assume that the system status of the current moment is related only to the status of the
previous moment and the input of the current moment. The system status can be updated by collecting
samples, updating the weights using the observation model and then calculating the positioning result.
The Resample step should be added to inhibit particle attenuation. Note that when we determine the
position by computing the weighted average of the particle statuses, the weight is the normalized
value of all weights.

The sampling process of particle filtering is responsible for obtaining the particle’s a priori
distribution at t by sampling the particles at t − 1 through the output ut of the IMU. The particle
updating process follows the distribution p

(
s[i]t

∣∣∣ f(s[i]t−1, ut

))
, where f denotes the system’s status

transition equation. Due to loose coupling between IMU and UWB, we define the rates of change of
the speed and angle in terms of the relationship between the two sensors to simplify the calculations
and the model. Under this strategy, the particle’s status includes its coordinates, line speed and angle,
and its status vector can be written as st = [xb

t , yb
t , vb

t , θb
t ]. Let ut = [δvb

t , δθb
t ] denote the input of IMU

to the particle filter, which represents the variations in speed and moving direction from the previous
moment to the current moment. (In UWB-PF, the variations are zero.) Obviously, this form of status
transition equation is not linear, and each quantity can be updated as follows:

vb[i]
t = vb[i]

t−1 + δvb
t (3.1)

θ
b[i]
t = θ

b[i]
t−1 + δθb

t (3.2)

xb[i]
t = xb[i]

t−1 + vb[i]
t × cos

(
θ

b[i]
t

)
× ∆t (3.3)

yb[i]
t = yb[i]

t−1 + vb[i]
t × sin

(
θ

b[i]
t

)
× ∆t (3.4)

These equations can be used to approximate the a priori distribution at t. In what follows,
we need to determine the particle’s a posteriori distribution by updating the particle weights using the
observations. Each particle weight is in direct proportion to the posterior probability, and the posterior
probability can be obtained by computing the product of the prior probability and the likelihood
probability. It can be updated as follows:

weight[i]t ∝ weight[i]t−1 × p(zt

∣∣∣s[i]t ) (4)



ISPRS Int. J. Geo-Inf. 2018, 7, 18 5 of 23

where zt =
[
dt1, dt2, . . . , dtj

]
denotes the distance between each station and tag, and dtj denotes the

distance between the jth station and the current tag at t. We can normalize all the weights. Because the
weight represents the posterior probability of the corresponding particle’s status, the scalar form of the
likelihood function can be written as

p
(

zt

∣∣∣s[i]t

)
=

N

∏
j=1

p(ztj|s
[i]
t ) (5)

According to the UWB observation model, the likelihood function can be rewritten as

p
(

ztj

∣∣∣s[i]t

)
∼ N

(
ztj

∣∣∣g(dis
(

s[i]t , j
))

, σd

)
(6)

where σd denotes the standard deviation of the UWB observation, g denotes the error model of the
UWB sensor, and dis

(
s[i]t , j

)
denotes the distance between the i-th particle’s current status and the j-th

station. Because the UWB sensors are not in same plane, the observation values of UWB should be
projected into the x-o-y plane, which is easy to implement because the differences in altitude between
the UWB stations and the tags are measurable in real applications. It is assumed in this paper that the
sensor’s measurements follow the normal distribution with a mean equal to the actual value and a
standard deviation of σd.

The particle filter describes the system status using many particles. By jointly considering the
outputs of two types of sensors, it achieves a remarkable improvement in positioning accuracy, even
when the UWB observations are highly erroneous. In contrast, the Bayes filter considers only the
relationship between the current status and previous status. The path obtained using the Bayes filter
will deviate greatly from the ground truth when errors occur at consecutive moments.

2.3. Graph-Fusing Model

2.3.1. Fundamentals of Graph Optimization Theory

The graph optimization technique is designed to intuitively describe the complex relationship
between statuses and convert it into a cost function for optimization purposes. Generally, the system
status is formulated as a vertex of a graph in graph optimization theory, and the relationship between
statuses is represented by an edge of a directed graph [23]. Figure 3 shows a typical example of
the graph optimization structure, where each blue round spot represents a status during graph
optimization and a vector between vertices represents the relationship between statuses. Specifically,
eij denotes the difference between the observation Oij and the relationship between Xi and Xj. Note that
eij is zero when the relationship between Xi and Xj is completely consistent with Oij. The larger the
deviation from the observation is, the larger the value of eij is. We can construct a cost function and
then obtain an estimate of each status by minimizing this function. Consider the example in Figure 3.
Its cost function is defined as follows:

Cost(X) = eT
12Ω12e12 + eT

14Ω14e14 + eT
24Ωe24 + eT

23Ω23e23 + eT
34Ω34e34 (7)

where X = (XT
1 , XT

2 , XT
3 , XT

4 )
T denotes all the statuses and Ωij denotes the information matrix of eij,

which represents the confidence level of the current status. Obtaining the optimal estimate X∗ of the
statuses involves minimizing Cost(X).

X∗ = argminXCost(X) (8)

The quantity eij is related to Xi, Xj, and Oij. For the sake of simplifying notation, the cost function
is defined as

eij = eij
(
Xi, Xj, Oij

)
(9)
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Oij is omitted, as it remains unchanged during optimization. Thus, the cost function can be
written as

eij = eij
(
Xi, Xj

)
(10)

and further rewritten as
eij = eij(X) (11)

The general methods for obtaining the optimal estimate of a status are the Gauss-Newton and
LM algorithms. Both involve linearizing the cost function at the current guess status (denoted by X̌).
That is, they approach the cost function through the first-order Taylor expansion of X̌, and then obtain
X∗ by iteratively computing the local extreme value. In fact, the EKF algorithm is an incremental
algorithm for solving the same cost function. Because the cost function for each part is linearized only
once in the whole process, the computational complexity of EKF is lower than that of the Gauss-Newton
or LM algorithms. Let ∆X denote the status increment. The cost function is represented by ∆X and the
current guess, X̌, can be written as follows:

Cost
(
X̌ + ∆X

)
= ∑

(
eij
(
X̌ + ∆X

)TΩijeij
(
X̌ + ∆X

))
(12)

The quadratic form of the cost function of ∆X can facilitate the calculation of the local extreme
value. Hence, eij(X̌ + ∆X) in the equation needs to be expressed as a linear function of ∆X. Through
the use of its first-order Taylor expansion, it can be written as

eij
(
X̌ + ∆X

)
= eij

(
X̌
)
+ Jij ∆X (13)

where Jij = ∂eij(X̌)/∂X̌.
Substituting the Taylor expansion into the cost function, we have

Cost
(

X̌ + ∆X
)
= ∑

((
eij
(
X̌
)
+ Jij∆X

)TΩij
(
eij
(
X̌
)
+ Jij∆X

))
= ∑

(
eT

ijΩijeij + 2eT
ijΩ

T
ij Jij∆X + ∆XT JT

ij Ωij Jij∆X
) (14)

Regarding its quadric form, we can compute its extreme value by setting its partial derivative to 0:

∂Cost
(
X̌ + ∆X

)
∂∆X

= 0 (15)

We then have

∑
(

2eT
ijΩij Jij + 2JT

ij Ωij Jij∆X
)
= 0 (16)

After simplifying the above equation while taking the matrix form into account, it is shown that
the solution to the equation for ∆X∗ satisfies the following condition:

b + H∆X∗ = 0 (17)

where b is a constant term and H denotes the coefficient of ∆X∗.
The Levenberg-Marquardt algorithm provides an effective and robust approach for solving this

problem; in many cases, it finds a solution even if it starts very far from the final minimum [24].
By introducing a damping coefficient into this formula to control the convergence rate, we obtain the
following linear expression:

(H + λI)∆X∗ = −b (18)

where λ denotes the damping coefficient, which is used to adjust the step length during optimization.
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After obtaining the locally optimal estimate using the LM algorithm, we must update the
current guess:

X∗ = X̌ + ∆X∗ (19)

In essence, the entire optimization algorithm is an iterative execution of Equations (13), (18) and
(19) performed until the convergence condition is satisfied or the maximum number of iterations is
reached. In other words, each iteration consists of linearizing the cost function around the current
guess, solving the least-square problem for ∆X, and then updating the current guess according to ∆X.ISPRS Int. J. Geo-Inf. 2018, 7, 18  7 of 23 
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2.3.2. UWB/INS Graph-Fusing Model

The graph optimization method is used in this paper to fuse the UWB and INS data. It first
involves formulating the UWB/INS fusion-based positioning problem as a graph. The model
constructed in this paper is shown in Figure 4, where there are two types of vertices. The first type of
vertex corresponds to a UWB station and is represented by a blue ellipse in the figure. The information
contained in this type of vertex is the 3-D coordinates of the UWB station, and its degree of freedom
is 3. The status of the kth beacon vertex is denoted by Bk ∈ R3. The second type of vertex is the virtual
status vertex. Zero-speed detection is performed via the IMU. The posture that an IMU exhibits when
the foot lands is defined as a vertex, and is represented by the blue circle in the figure. The information
contained in this type of vertex, which is denoted by a four-element tuple, is the 3-D coordinates of its
location and the status. The degree of freedom is 6, and the status of the ith status vertex is denoted by
Fi ∈ SE(3). The data from the UWB and INS sensors are used to form respective edges to represent
the constraint on each vertex.

a. UWB-Measurement-Based Edge

First, we consider an easy scenario, where the UWB data are used to form a distance-constraining
edge represented by the yellow lines in Figure 4. The measurement from the UWB sensor is the
distance between Beacon and Tag. Let dik denote the measured distance between the ith status vertex
and the kth beacon vertex. To construct a graph optimization model, we need to define a cost function:

eik = eik

(
Bk, Fi, dik

)
(20)

Because only the distance constraint is considered, the elements in the status Ti of the status node
that describe posture are no longer useful. For clarity of presentation, Ti can be divided into two parts:
Fi = {o f f seti, qi}, where o f f seti ∈ R3 denotes the coordinates. and qi denotes the posture, which is a
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four-element tuple. After simplification, the cost function of the distance-constraining edge can be
written as:

eik = eik

(
Bk, o f f seti, dik

)
=
(

norm
(

Bk − o f f seti

)
− dik

) (21)

where norm() denotes the operation of computing the vector modulus. Note that the error function in
the graph-optimization-based method uses the measurements of UWB in 3D directly. In addition, there
is a method for dynamically determining the information matrix of the UWB-measurement-based
edge, which is discussed in Section Method for Dynamically Determining the UWB Confidence Level.

b. Edge Based on Adjacent ZUPT Gait Relations

Now, we discuss the edge between the status node at j and the status node at i, which is represented
by the green lines in Figure 4. This type of edge computes the integral of INS, performs zero-speed
detection to obtain the constraint that the speed is zero, and then outputs the observation as the final
result. Let Ti ∈ SE(3) denote the observation. Because this constraint is applicable only to the vertex
of the current moment and the vertex of the previous moment, there is only one possibility: j = i− 1.

The cost function can be defined as:

eji = eij
(

Fj, Fi, Ti
)

= distanceSE(F−1
j Fi, Ti)

(22)

where distanceSE denotes the set of distance metrics in SE(3). Consider the right distance metrics,
namely, Ta and Tb ∈ SE(3)

distanceSE3(Ta, Tb) = |ln
(

T−1
a Tb

)∨
| (23)

where ln() denotes the matrix logarithm. In the form of a sequence expansion, it can be written as:

ln (T−1
a Tb) = ∑

(
(−1)n−1

n
(T−1

a Tb − I)
n
)

(24)

where ()∨ denotes the inverse operation of the skew-symmetric operator, which produces a vector.
After calculating the modulus, we can obtain the distance measurement.

Note that Fj and Fi are elements in SE(3), and no definition of addition is directly available
because the sum of elements in SE(3) does not necessarily belong to SE(3). An alternative is to
transform Fj and Fi into a Lie algebra, perform the Lie-algebra additive operation, and then transform
the result to SE(3). Section Method for Dynamically Determining the ZUPT Confidence Level covers
the method for dynamically determining the information matrix for this type of edge.
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Method for Dynamically Determining the ZUPT Confidence Level

We accumulatively compute the posture and coordinates of the IMU through integration.
The system posture is usually described by a four-element tuple in this method to simplify
the calculations, because the use of the four-element tuple can reduce the computational load.
The Runge-Kutta method updates the tuple by computing the integral through the collected angular
speed ω =

[
ωx, ωy, ωz

]
[25]. Let q =

[
qx, qy, qz, qw

]T denote the four-element tuple that describes the
posture. Consider an interval of ∆t. The updating formula can be written as

q = q +
∆t
2


0 ωz −ωy ωx

ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 q (25)

This formula intrinsically causes serious error in the case of a large angular speed, thereby
resulting in grave error in the integration of the posture exhibited during walking and turning. It has
been learned from real-world applications that the ZUPT positioning method is very accurate for
straight lines. Error mainly occurs in the angle estimation. A slight error in angle may be magnified
after a segment of a straight line, thereby causing glaring overall positioning error. A low confidence
level can be allocated to the corner to improve the overall positioning accuracy and the algorithm’s
sensitivity to the corner.

The variation of the IMU’s direction in the x-o-y plane is used in this paper to check whether the
angle changes violently at the current moment. The confidence level of the current estimate is reduced
if a large angular variation is detected. In this way, we can quickly correct the error of the IMU at the
corner using the UWB observation, because the relative magnitude of UWB’s covariance matrix is
larger, even if the absolute confidence level has not changed.

The experimental results in Section 3.2 will demonstrate the ability of this method to improve the
positioning accuracy.

Method for Dynamically Determining the UWB Confidence Level

UWB produces no accumulative error during UWB/INS fusion and this is very instrumental
in limiting the error accumulation of INS. Ideally, the accuracy of the UWB sensor is on the order of
magnitude of decimeters. However, the accuracy of the UWB sensor is usually reduced due to various
real-world factors, such as ambient temperature, power supply stability, fixed obstacles, the moving
body and object, and even the body to be positioned. Therefore, the UWB sensing accuracy is not
stable in practice and varies with location and time.

This leads to the following problems: If a low confidence level is allocated to all UWB observations,
the high sensing accuracy of UWB is not fully exploited most of the time. However, allocating a high
confidence level to all UWB observations will destabilize the positioning results and make it impossible
to correct highly erroneous UWB observations using the IMU data. Moreover, because the UWB sensing
accuracy varies with the environment, the confidence level should be adapted to the current scenario
to ensure high positioning accuracy, which limits the application scope of UWB sensors.

To address these problems, we estimate the measurement accuracy using the residual of the
optimization result that was obtained in Section 2.1, i.e., the obtained minimal value of Error(x, y).
Consider the most common scenario, which is shown in Figure 5, where only one beacon produces very
erroneous measurements, and the UWB measurements are usually larger than the actual distance [26].
Without loss of generality, it is assumed that only Beacon 1 is erroneous. Under this scenario, the sum
of the errors in the measurements is

∆r = ∑ ∆ri (26)
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Consider a position distant from the Beacon. The circle’s radius is so large that the intersection
of the three circles in the figure can be approximately regarded as a triangle. Because the radius is
undoubtedly perpendicular to the circumference, it can be inferred that the circle is approximately
perpendicular to the side of triangle. Therefore, ∆r is approximately equal to the sum of the distances
between the real coordinates and each of the triangle’s sides.

The optimization result (x′, y′) should be a point within the triangle. Because its radius is
approximately perpendicular to the triangle’s side, it can be inferred that the cost function is
approximately equal to the sum of the distances between this point and each of the triangle’s sides.
Based on the geometric relationship that the sum of the distances between any point within the triangle
and the triangle’s sides is fixed, we can approximately establish an equivalence relationship as

∆r = Error
(
x′, y′

)
(27)

With this relationship, we can determine the information matrix of UWB measurements by
substituting the minimized cost function for the measurement error. The observation of the UWB cost
function is a 1-D variable; thus, the information matrix can be directly defined as follows:

Ω = [Error
(
x′, y′

)−1
] (28)

Section 3.3 analyzes the relationship between the UWB signal’s optimized residual and the sum of
measurement errors, and identifies a strongly linear relationship when the distance is large. Section 3.5
compares the influences of this method on the positioning accuracy under different scenarios and
discovers the ability of this method to greatly improve positioning accuracy in complex scenarios.
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3. Experimental Results and Analysis

3.1. Experimental Method and Scenario

The experiment is performed in a hall with two load-bearing pillars as the major fixed obstacles,
whose locations will be labeled in the subsequent tracking figure. The experimental devices include
a UWB positioning system (four stations, namely, Beacon 0–Beacon 3, a positioning tag, and a UWB
server responsible for receiving and pre-processing the UWB data), a camera, a foot-mounted IMU,
a laptop, and a wireless router, which is responsible for providing a wireless network. The data



ISPRS Int. J. Geo-Inf. 2018, 7, 18 11 of 23

transmission directions are shown in Figure 6, where a solid line indicates a wired connection and a
dotted line indicates a wireless connection. Each beacon measures its distance from the tag, and the
data are transmitted to the UWB server via Beacon 0. The UWB server pre-processes the data and
delivers the data to the laptop via the WiFi network. The camera is directly connected to the laptop
via USB and its data are used to provide the actual track. The camera determines the location of an
object through ArUCO and its accuracy reaches approximately 7 cm after back-end optimization [27].
The foot IMU is connected to the laptop through Bluetooth to upload the 6-DOF data (acceleration
and angular speed along the three axes). The laptop is responsible for data collection and time
synchronization using the time stamps of the data. The camera and tag are installed at the head,
as shown in Figure 7, and the IMU is installed at the foot, as shown in Figure 8.ISPRS Int. J. Geo-Inf. 2018, 7, 18  11 of 23 
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The camera has a resolution of 1080 × 1920 and a frame rate of 30 FPS. Other parameters of the
camera are also calibrated. The UWB chip is a DWM1000, which has an operational frequency of
3.5~6 GHz and an ideal positioning accuracy of 3 decimeters. The UWB system returns the distance
measurement results at 2 Hz during the experiment. The IMU sensor is an MPU9250-based XIMU,
which outputs data at a frequency of 128 Hz.

Three paths are tested in the experiment. In the first path, the object moves directly around
the hall three times while trying to ensure the smoothness of the track. This path forms a rectangle.
The second path is similar to the first, but involves more turns and passes through some regions that
cause serious errors. The third path is characterized by small changes of angles during normal walking,
changes of speed and short-term pauses in some regions. The ground truths of the first and second
paths are presented in Section 3.4, while the ground truth of the third path is presented in Section 3.5.

Another experiment is conducted for performance evaluation in an underground parking which
is a typical realistic scenario. In Section 3.6, trajectories of each algorithm with or without enough
beacons have been tested.

3.2. Relationship between Attitude Change and Transform Change

As mentioned earlier, the ZUPT algorithm usually produces significant error when the angular
speed is large. That is, these grave errors occur at turns. To better understand this phenomenon,
we compare the original constraint and the optimization result along the second path. Figure 9 shows
the variations in Transform after graph optimizations that correspond to angular changes, where ∆θ

denotes the change of the IMU’s orientation in the xoy plane in units of rad, and the unit of the y-axis
is also rad. Transform Changed denotes the difference in the relationship between two nodes after
optimization, where the relative relationship is directly obtained using the ZUPT algorithm. Let Fi−1
and Fi denote the location and posture of the two nodes, which are represented by a transform matrix,
after optimization. The relative relationship between the two nodes can be represented by F−1

i−1Fi.
Here, Ti is the relative relationship, which is directly obtained using the ZUPT. The data labelled
Transform Changed in this figure represent the difference. Note that to present the results more
intuitively, the scale of the output results has been adjusted to guarantee that they are of the same
order of magnitude as ∆θ.

According to the figure, the larger the angular variation, the larger the variation in Transform
Changed. Because the optimization result is very close to the ground truth, it is inferred that Transform
Changed indirectly reveals the difference between the value of Ti, which is produced by ZUPT, and the
ground truth. Therefore, we conclude that the error of ZUPT at each step is large when the angular
variation is large. This indicates that it is feasible to dynamically determine the confidence level of
ZUPT results using the angular variation. Because a better-estimated value for the covariance matrix
of the ZUPT edge is obtained, more accurate positioning can be achieved.
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3.3. Relationship between the UWB Measurement Error and the Optimization Residual

Previously, we used the geometrical relationship to predict the relationship between the UWB
optimization residual and the UWB measurement error, and concluded that they should be roughly
equal. However, this conclusion is valid only if we simplify the three stations and make several
approximations in the typical scenario. To support this conclusion, we computed the deviation of
UWB measurements from the track obtained using the visual algorithm. The red line in Figure 10
shows the absolute values of the measurement errors of the four stations, and the blue line denotes the
optimization residuals. Note that the four stations share the same optimization residuals. The UWB
sensor is highly accurate and only one station produces erroneous measurements for most stages of
the process. By examining the relationship between the UWB measurement error and optimization
residual, we find that the latter is strongly correlated with the former. That is, the optimization residual
is large when the UWB measurement error is large, and the optimization residual is small when the
UWB sensing data are accurate.
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The optimization residual effectively indicates the lower bound of the sum of the measurement
errors. As shown in Figure 11, the abscissa represents the optimization residual in m and the ordinate
represents the sum of the measurement errors in m. The red scattered points denote the data points
that were collected in the experiment, and the black dotted line is an auxiliary line with a gradient
of 1. Because the points on the auxiliary line represent the moments at which the optimization residual
and the sum of the measurement errors are equal, most data points fall above the line. Thus, given
an optimization residual, the lower bound of the sum of the measurement errors is equal to this
optimization residual. Therefore, it is feasible to determine the confidence level of UWB measurements
using the optimization residual.ISPRS Int. J. Geo-Inf. 2018, 7, 18  14 of 23 
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3.4. Comparison of Graph-Fusing with Other Methods

To evaluate the performance gain of GraphFusing, it is compared with the following methods:
the IMU-based ZUPT positioning algorithm (ZUPT), the pure UWB positioning algorithm based on
minimization of the error function (UWB-Optimize), the pure UWB positioning algorithm based on
particle filtering (UWB-PF), the UWB/INS fusion algorithm based on particle filtering (Fusing), and
the UWB/INS fusion algorithm based on EKF (EKF-Fusing) [7]. Figure 12 shows the positioning
performances of all these methods for the first path. The black rectangles denote the obstacles.
The ground truth, which was obtained through visual positioning, is denoted by RealPose in the figure.
The object starts in the lower-left corner and then moves clockwise along the first path for three rounds.
Figure 13 shows the positioned track of each algorithm for the second path. The second path shares
the same starting point and moving direction as the first path, but an extra track is added, which has
serious UWB errors. The object moves at almost constant speed during the experiment; its movement
is quite smooth when it moves in a straight line and tries to turn at a right angle. The initial value for
all the algorithms is determined by the ground truth, and the initial orientation of ZUPT is determined
by the moving direction of the ground truth for the previous five seconds.

To optimize the performances of the two algorithms based on particle filtering, we increase the
number of particles to 5000. Note that further increasing the number of particles is no longer helpful
in increasing the particle filter’s positioning accuracy. The performance of the EKF-Fusing method
has been optimized through the choice of parameters, such as the covariance matrix of observation
measurements and system noise. The two methods that were proposed above for dynamically
determining the confidence level are used to improve the positioning accuracy of GraphFusing.
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According to the results, for each of the two paths, ZUPT is very accurate in positioning the
straight line, but it produces serious error when estimating the turning angle. This is consistent
with the discussion above. The effect of the grave error of ZUPT can be reduced by decreasing the
confidence level of the results output by ZUPT. UWB-Optimize is chosen here to indirectly determine
the error of each UWB measurement at each moment and the overall deviation. By incorporating
speed and moving speed into the positioning process, UWB-PF tries to ensure uniform linear motion.
Therefore, the track produced by UWB-PF is very smooth throughout the positioning process. UWB-PF
is very accurate when the UWB error is small or of short duration. However, due to its use of UWB
sensors only, UWB-PF cannot fix the position accurately when the error is large or of long duration.
According to Figures 14 and 15, EKF-Fusing, Fusing and GraphFusing are more accurate than the other
methods, and GraphFusing is vastly superior to Fusing and EKF-Fusing in terms of accuracy. Hence,
GraphFusing is mainly compared with Fusing in the remainder of this paper.ISPRS Int. J. Geo-Inf. 2018, 7, 18  15 of 23 
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The analysis of the results for the first path indicates that the Fusing algorithm, which fuses
the IMU data, considerably reduces the local error of the UWB signal. Even when the data anomaly
persists for a relatively long time, the Fusing algorithm is highly accurate after benefiting from the IMU
data. When errors occur in the UWB data, the particle filter tries to estimate the status’s maximum
posterior probability using many scattered particles. Because its particles utilize only the status of
the previous moment and the IMU input of the current moment, the weights of the particles close to
the global minimum will be increased enormously. However, the output positioning result remains
accurate because many particles are close to the real value when computing the weighted average.
However, the generated track fluctuates substantially. The track generated by GraphFusing is both
accurate and smooth in comparison.

The UWB signal throughout the second path is more complex than that for the first path and
the second path includes more turns. A comparison between the two paths effectively reveals two
shortcomings of the particle-filter-based positioning algorithm.
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The first shortcoming of the Fusing algorithm can be identified by comparing the positioning
results in rectangle A in Figures 12 and 14. The UWB-Optimize algorithm produces similar errors
for this region along the two paths. However, the positioning results of the Fusing algorithm vary
wildly. This is because the particle filter (and other filters) incorporates the constraints of all the
previous statuses into several status variables, namely, the coordinate, speed and direction in this
paper. Consider the scenario in which the object has just made a turn in the second path. Although
an accurate positioning result is achieved quickly due to the consistency between the UWB signal
and the IMU output, the individual particles are not set to the same moving direction. Therefore,
when the maximal value of the UWB observation model’s likelihood function is biased towards one
of the previous moving directions, the particles whose moving directions have not converged to the
true direction will have a large likelihood probability. Consequently, the results drift towards these
particles. Consider the example presented in this paper. The moving direction before the turn in region
A is the positive direction along the Y-axis, and the moving direction after the turn is the positive
direction along the X-axis. Although the overall moving direction has been corrected to the correct
X-axis positive direction after the turn, some particles still move along the Y-axis positive direction.
However, before this turn in the middle of region A, the maximal value of the UWB observation
model’s likelihood function is biased towards the Y-axis positive direction (as shown in the track
of UWB-Optimize), and these particles have a large likelihood probability. Therefore, the Fusing
algorithm produces greater errors for the second path.

The positioning results for region C in Figure 14 provide evidence of this inference. Because the
maximal value of the UWB observation model’s likelihood function is opposite to the moving direction,
even when the UWB observation is highly erroneous, the positioning error of the Fusing algorithm
is limited. Desirably, GraphFusing exhibits the reverse property because it constrains the current
positioning result by directly using the information of previous moments, thereby eliminating the
need to compress the series of previous statuses. Instead of stabilizing the positioning result through
several rounds of iteration after the turn is made, GraphFusing produces a stable result based on a
series of observations. This enables GraphFusing to respond to changes more quickly. Meanwhile,
GraphFusing can utilize the relative displacement, which is accurately computed by the IMU, in a
more direct manner to fully exploit the positioning results of the IMU, which are extremely accurate
over short periods of time.

Another shortcoming of the Fusing algorithm is revealed by the results for rectangle B in the
figure, where a grave error occurs with the UWB-Optimize algorithm. Due to the long-term continuous
existence of errors, Fusing cannot guarantee that the previous status information, which consists of the
speed and direction, effectively constrains its positioning result. However, the GraphFusing algorithm
considers the information over a series of previous statuses, and the errors that occur at the turn are
corrected by the accurate UWB observations. The short-distance grave errors of UWB do not lead
to a deviation of the positioning results from the real track. Moreover, the subsequent errors in the
opposite direction may further guarantee the correctness of the moving direction.

The two shortcomings described above arise from the simplification of the previous status in the
Fusing algorithm. The previous statuses are compressed into speed and moving direction. If a high
confidence level is allocated to these elements of information, the Fusing algorithm will be unable
to respond quickly to changes of speed or moving direction. Even when the data output by the
IMU are available as a reference, the positioning accuracy still decreases because the IMU data are
highly erroneous at the turning point. If a small confidence level is allocated to these elements of
information, the positioned track will deviate quickly from the ground truth after errors occur in the
UWB observation. GraphFusing provides an effective approach that solves this problem by explicitly
incorporating the series of previous observations into the positioning process. However, because a
sub-graph that consists of UWB data and ZUPT data for 24 steps is optimized at each moment for
positioning, the computational complexity of GraphFusing is higher than that of UWB-PF. In our
experiments, the calculations were performed on a machine equipped with an E3-1230 v2 CPU. On this
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machine, UWB-PF requires only 4.1 s to calculate the data sets (that might consume up to 107 s) even
when there are 5000 particles, but GraphFusing takes 53.0 s to calculate the data sets. Therefore,
the proposed algorithm is difficult to run on a micro controller in real time, but has an acceptable
computational complexity for calculation on a CPU that is better than E3-1230 v2 in real time. It is
worth noting that in practice, the calculation of each time step is complete 3 seconds after receiving
the data.

3.5. Performance Comparison of the Two Confidence-Level Methods

This subsection compares the influences of the two confidence-level methods on the positioning
accuracy. To facilitate this illustration, we let A denote the ZUPT confidence-level method and let B
denote the UWB confidence-level method. The GraphFusing algorithm adopts A and B at the same
time; GraphFusing-AX adopts A and its UWB confidence level is fixed; GraphFusing-XB adopts B and
its ZUPT confidence level is fixed; and GraphFusing-XX refers to the method in which the confidence
levels are fixed for all sides.

Figure 16 compares the positioned tracks of GraphFusing and Fusing under four scenarios along
the third path. The track of UWB-Optimize is mainly used to indirectly indicate the quality of the UWB
signal. The aim of the experiment along the third path is to evaluate the algorithm’s performance under
a more complicated setting. To this end, the path involves many irregular turns, arcs, acceleration,
and deceleration, and the tracked object sometimes halts directional movement and rotates in place.
As shown in the figure, a section of the track from Fusing around the point (0, −1) deviates greatly
from the ground truth and is close to the result of UWB-Optimize. This is because the object stays at
this point for some time, and the positioning result of Fusing begins to become biased towards the
maximal value of the likelihood function. It is difficult to differentiate among the positioning accuracies
of the four GraphFusing algorithms. However, GraphFusing is generally more robust. Figure 17 shows
the accumulative error distributions of the compared methods. Because the compared methods are
mainly the four GraphFusing algorithms, it is not observed that the accumulative probability of Fusing
reaches 1.0. The figure shows that GraphFusing is vastly superior to GraphFusing-XX in terms of
accuracy. Although the accumulative probability of GraphFusing-XB for error below 0.8 m is larger
than that of GraphFusing, GraphFusing maintains superiority over an error range that is smaller but
more important.
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To more intuitively reveal the differences in accuracy among the four GraphFusing variants,
Table 1 compares the positioning errors of the four algorithms for the three paths. GraphFusing is
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highly accurate and its positioning accuracy further improves by a limited margin when it adopts the
two confidence-level methods.
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Table 1. Errors of different algorithm combinations for each data set.

Path
Different Algorithm Combinations

AB AX XB XX

1 0.413 0.433 0.506 0.518
2 0.369 0.372 0.397 0.394
3 0.372 0.450 0.390 0.457

3.6. Performance Validation in Realistic Scenario

As mentioned earlier, the GraphFusing algorithm provides a better accuracy in the previous
scenario. However, the situation, simple as that, may fall short of representation of the realistic scenario.
Aiming to verify the performance of the GraphFusing algorithm, we conducted a new experiment in
an underground parking, which is a typical scene in real applications. As shown in Figure 18, the red
lines denote the reference path. Due to the complexity of the parking, it is difficult to provide a real
position through using our vision-based positioning system. Therefore, the reference path is obtained
through control points. Beacons, installed on the wall, are denoted as red circles. The black lines and
rectangles denote wall and pillars, respectively. To verify the positioning accuracy of each algorithm
under the conditions with or without enough beacons, we tested all algorithms in the two situations.
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The result of all algorithms based on measurements of eight beacons is presented in Figure 19.
Although without a real position as we provided in previous experiments, it is apparent that the
accuracy of GraphFusing is higher than that of EKF-Fusing. Benefitting from the numbers of
measurements, the trajectory of UWB-optimize, except for some outliers, has nearly approximated
the real position. Meanwhile, the trajectory of the EKF-Fusing algorithm is not good enough, which
might be caused by information loss in the measurement stage. In other words, a significant error
will be generated under NLOS conditions when using a Gaussian distribution to approximate the
probability distribution of the measurements with non-Gaussian noise. The higher accuracy of the
Fusing algorithm provided additional evidence for this hypothesis, because the only difference between
Fusing and EKF-Fusing is whether using a Gaussian distribution approximates the real distribution.

The result of all algorithms based on measurements of 3 beacons is presented in Figure 20.
Although the total number of beacons could be very large in real applications, the number of UWB
beacons in a certain sub-area is rarely more than 6, because it is unnecessary that provide more
than 6 beacons. Actually, there are often only 3 beacons in a sub-area, which is enough to provide a
position. In this situation, the adopted beacons can be observed in the figure. Because of the lack of
measurements, the accuracy of UWB-optimize is lower than when using eight beacons. The accuracy
loss of the Fusing algorithm, which can easily be found according to the paths, was caused by the
loss of previous information. However, benefitting from the non-compressed information adopted
in computation, the GraphFusing algorithm provides a good trajectory, especially compared to other
algorithms. It is worth noticing that, the EKF-Fusing algorithm shows better accuracy than the previous
situation that uses 8 beacons because the EKF-Fusing algorithm has a poor ability to process outliers.
Meanwhile, there are many obstacles between the tag to the five other beacons in the whole trajectory,
indicating that several anomalous measurements would be generated.
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4. Conclusions

The graph optimization method is utilized in this study to directly incorporate the series of
previous statuses and the relationships between statuses into the optimization process. It provides
an approach to solving the problem of information loss by the traditional method that simplifies
the series of previous statuses. Note that the confidence level of the previous status cannot be
determined during the positioning process due to the loss of information. Assigning a high confidence
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level to the previous status makes it difficult to correct the error in the track and leads to a slow
response to rapid change, while assigning a low confidence level to the previous status makes the
algorithm susceptible to erroneous observations. By completely preserving the series of previous
statuses, the graph-optimization-based fusion method can effectively process the relationship between
the current status and the previous status and achieves a considerable improvement in accuracy.
The methods for dynamically determining the confidence levels of the UWB and ZUPT observations
are presented to further improve the positioning accuracy. Higher positioning accuracy is achieved
through the application of the algorithm described above. However, the graph optimization method
has an obvious shortcoming compared to Bayes filtering: large computational complexity. To improve
the speed of the graph optimization algorithm, at least two approaches could be adopted in the future.
First, because the system states are not significantly different from the previous states at most moments
of the positioning process, an incremental optimization method could be applied to speed up the
method by linearizing only parts of the cost function. Second, the positions from EKF and PF are
sufficient, in most cases, when the measurements are reliable. Thus, the graph-optimization-based
algorithm need not calculate at every moment when the measurements are received. Hence,
the graph-optimization-based algorithm could function as a possible tool for improving the accuracy
of the ZUPT/UWB positioning system.
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