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Abstract: Spatial–temporal analysis of land-use/land-cover (LULC) change as well as the 
monitoring and modeling of urban expansion are essential for the planning and management of 
urban environments. Such environments reflect the economic conditions and quality of life of the 
individual country. Urbanization is generally influenced by national laws, plans and policies and 
by power, politics and poor governance in many less-developed countries. Remote sensing tools 
play a vital role in monitoring LULC change and measuring the rate of urbanization at both the 
local and global levels. The current study evaluated the LULC changes and urban expansion of 
Jhapa district of Nepal. The spatial–temporal dynamics of LULC were identified using six 
time-series atmospherically-corrected surface reflectance Landsat images from 1989 to 2016. A 
hybrid cellular automata Markov chain (CA–Markov) model was used to simulate future 
urbanization by 2026 and 2036. The analysis shows that the urban area has increased markedly and 
is expected to continue to grow rapidly in the future, whereas the area for agriculture has 
decreased. Meanwhile, forest and shrub areas have remained almost constant. Seasonal rainfall and 
flooding routinely cause predictable transformation of sand, water bodies and cultivated land from 
one type to another. The results suggest that the use of Landsat time-series archive images and the 
CA–Markov model are the best options for long-term spatiotemporal analysis and achieving an 
acceptable level of prediction accuracy. Furthermore, understanding the relationship between the 
spatiotemporal dynamics of urbanization and LULC change and simulating future landscape 
change is essential, as they are closely interlinked. These scientific findings of past, present and 
future land-cover scenarios of the study area will assist planners/decision-makers to formulate 
sustainable urban development and environmental protection plans and will remain a scientific 
asset for future generations.  
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1. Introduction 

Policy makers in developing countries face unprecedented challenges with regard to governing, 
urban planning and land-use/land-cover (LULC) management because of the prevailing high 
dynamic growth. Therefore, knowledge concerning past, current and future growth plays an 
important role in the decision-making process [1]. The conversion of natural habitats into 
agricultural land for the maintenance of human livelihoods has been identified as the greatest driver 
of global environment change [2]. The spatial distribution of agricultural land for urban 
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development [3–5] and heterogeneous settlement patterns over agricultural land is a universal trend 
[6]. Changes in LULC and rapid urban growth are subjects of great concern worldwide. Rural–urban 
migration, natural population growth and administrative reclassification of rural areas to urban 
areas are the major components [7,8] of global patterns of urbanization [9,10]. World population 
crossed the first billion mark in 1830, reached 2 billion in 1930, 3 billion in 1960, 5 billion in 1987, 6 
billion in 1999 [11], 7.6 billion in 2017 and is projected to reach 8.6 billion in 2030, 9.8 billion in 2050 
and 11.2 billion in 2100 [12]. The world urban population has increased much faster than with rural 
population and it was 14% in 1900 to 29.1% in 1950, 47% in 2005 [11] and 2014 accounted for 54% and 
projected about 66% by 2050 [13]. As a result of various anthropogenic and natural factors, 
developing countries experience relatively more rapid urban growth and LULC changes than 
developed countries [14] and this growth triggers several environmental and ecological problems at 
multiple spatial scales [1,14–17]. 

In recent decades, Southeast Asia and other developing countries under transitional economies 
(e.g., Cambodia, Laos, Myanmar and Vietnam) [18] as well as their cities have recorded a higher rate 
of urbanization [14]. There was an increase in urban population from 9%, 12%, 24% and 19% in 1980 
to 20%, 32%, 33% and 35% in 2012 regarding Cambodia, Laos, Myanmar and Vietnam, respectively 
[18]. Despite its short urban history, Nepal has recorded the highest urban growth rate (6.6%) in 
South Asia exceeding Sri Lanka (2.2%), India (2.9%), Pakistan (4.4%) and Bangladesh (5.3%) [19]. In 
the last 50 years, Nepal’s population has increased nearly threefold, but the area of cultivated land 
has only increased twofold during the same period [20]. The urban population of Nepal was 2.9% in 
1952/54 and increased to 40.49% in 2015 [21]. Such trend of urban expansion is a serious issue for 
sustainable urban development in developing countries [22]; since it is directly associated with 
sustainability issues such as food security and a secured urban future. 

Remote sensing and a geographical information system (GIS) have been applied extensively to 
help understand the spatiotemporal patterns of urbanization [11] and urban planning [23]. They 
have proven to be significant, powerful [16,17], cost effective and accurate [14,18,24,25]. Different 
simulation and empirical models have been applied to predict changes in LULC [26,27]; however, 
few have used system dynamics models to determine the main drivers [28]. Spatial simulation 
models are efficient tools for quantitative simulation [29] and integrating the Markov-chain model 
and cellular automata (CA) is considered by some to be one of the best options for the analysis of 
LULC on different spatial scales [30]. One of the basic assumptions of the Markov chain LULC 
change is a stochastic process which describes the probability of one state i changing to another state 
j [25,29,31]. The CA model predicts spatial change over a specific time period using a probability 
matrix [29].  

Economic growth is indicated by the occurrence of urban sprawl and population growth. 
However, human-induced deforestation and development of the natural landscape to establish 
building, water supply, sewage, transport networks  and large scale of construction work create 
multiple unused impacts on land and soil, biodiversity, air, water qualities as well as other 
environmental activities. Similarly, major construction works transform cities into impervious 
surfaces with the formation of heat islands which contribute to climate changes including increased 
occurrences of multiple natural disasters [32–35]. 

Thus, it is very important to access, monitor and model past, present and future LULC 
scenarios using RS/GIS tools and simulation models. This is because obtaining overtime spatial–
temporal characteristics is a fundamental prerequisite for the formulation of effective urban policies, 
as well as economic, demographic and environmental plans to ensure sustainable development and 
maintain environmental equilibrium [1,13,30,36,37]. 

The study area of this work is the Jhapa District of Nepal, located in the southern plain of the 
country. This area has been experiencing accelerated urban growth since 1996. The urbanization 
process is influenced by migration and population growth has recorded a remarkable impact on 
other LULC, mostly prime agricultural land. Settlements are scattered and unmanaged and are 
likely to influence the natural/social environment, thereby resulting in an unbalanced ecosystem. 
Urban planning and management has been affected due to the lack of reliable urban databases, 
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spatiotemporal information of LULC change and environmental concerns. There exist poor 
planning, weak institutional capacity and insufficient investment in the urban sector which hinder 
effective remedies which address urban poverty, disaster risk as well as social and natural 
environment issues [3,5,6,14,22]. The sustainable development and urban future of the study area is 
skeptical.  

The major objective of this study was to explore the spatiotemporal analysis of LULC, monitor 
past/present urban expansion trends and future change simulation by 2026 and 2036, using the CA–
Markov Model. More specific objectives are to (a) analyze the spatiotemporal dynamics of LULC 
from 1989 to 2016, (b) evaluate the urban expansion ratio and spatiotemporal extent, and (c) predict 
future LULC change by 2026 and 2036. 

2. Materials and Methodology  

2.1. Study Area 

The study area, Jhapa district is located between 26.36°, 26.80°, 87.63° and 88.20° in the southern 
part of Nepal (Figure 1). The district shares its eastern and southern boundaries with India and its 
northern and western boundaries with Ilam and Morang districts, respectively. Administratively, it 
is divided into eight municipalities and seven rural municipalites. There was an increase in the 
district population from 593,737 in 1991 to 688,109 in 2001 and 812,650 in 2011 [20]. 

 
Figure 1. Location and elevation model of study area. 

Jhapa district has a subtropical monsoon climate with summer temperatures ranging from 32 to 
35 °C, winter temperatures ranging from 8 to 15 °C and an average annual rainfall of 270 mm. It is 
low lying, at 58 to 792 m in elevation and has highly fertile soil where rice, wheat, maize, oilseed, 
pulses, and cash crops such as tea, jute and nuts are grown. The area is rich in biodiversity, 
containing subtropical evergreen hardwood forests to decideous forests depending on the altitude 
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[38]. Geologically, the area has sediment of the Indo-Gangetic plain, rocks from the Siwalik range as 
well as small parts of the Lesser Himalaya. The Himalayan frontal thrust, Intra Chure thrust and 
main boundary thrust are located in the southern to northern parts. The Mechi, Deuniya, Biring, 
Kankai, Ratuwa and Mawa Khola are major rivers experiencing bankfull discharges during the 
monsoon season, resulting in river bank erosion and loss of farmland. The district is well supplied 
with water and has a good climate that makes it a major agricultural center. Several proximate and 
underlying causes are contributing to the migration of people to the area and have increased the 
population density in the district and urbanization, often at the expense of prime agricultural land.  

2.2. Satellite Data and Pre-Processing 

For spatial–temporal analysis of LULC change and monitoring of urban expansion of the study 
area, six time-series of atmospherically-corrected surface reflectance Landsat images from 1989 to 
2016 were obtained from the United States Geological Survey (USGS) website [39]. All scenes were 
verified for geometric accuracy and all data were projected on WGS 1984, UTM zone 45N. Surface 
reflectance data are ready for application and these data sets have been post-production processed 
and included atmospheric correction, geometric correction as well as other adjustments (for more 
details visit: http://landsat.usgs.gov/CDR_LSR.php). The maximum cloud-free images were 
included in the study. All scenes were verified for geometric accuracy and all data was projected on 
to UTM WGS 1984, zone 45N. Overall, the OLI bands are spectrally narrower than the ETM+ band, 
particularly in the near infrared (NIR) region [40,41]. The ultra-blue band (0.43–0.451 μm) of Landsat 
8 was removed for consistency and renamed for other images (e.g., 1, 2, 3, 4, 5 and 7). Band 1 of 
Landsat 8 was used for the coastal areas and shallow water and aerosol, dust and smoke detection 
studies [40]. For land-cover classification, six images dated 4 December 1989 (Landsat 5), 23 
December 1996 (Landsat 5), 29 December 2001 (Landsat 7), 19 December 2006 (Landsat 5), 31 January 
2011 (Landsat 5) and 13 January 2016 (Landsat 8) with path/row 139/42 were sampled.  

High spatial resolution images from Google Earth [42] and digital topographical maps (scale 
1:25,000) published by the Survey Department of the Government of Nepal in 1995 (sheet numbers: 
2687 (04D, 07B, 07D, 08A-08D, 11B, 12A, 12B, 12D) and 2688 (01C, 01D, 05A, 05D, 09A, 09C)) [43] 
were used to validate the results. Region of interest (ROI) boundaries representing district, 
municipal and village level study areas were delineated for analysis. The Jhapa district profile [38] 
was also collected for refinement of the study. 

2.3. Extraction of LULC Maps and Analysis 

Images were stacked, subset and analyzed in the ENVI [44] environment and classified using 
the maximum likelihood algorithm and change analysis for 1989, 1996, 2001, 2006, 2011 and 2016. 
Supervised approaches using a maximum likelihood classifier algorithm [23,30,45–48] were applied 
for the extraction of LULC. A modified land-cover classification system was used for remote sensing 
data as recommended by Anderson et al. [49]. For the extraction of LULC, seven classes were 
identified: urban (built-up), cultivated land, forest, shrub, sand, water bodies and tea farming area 
(Table 1). The study primarily concentrated on mapping of urban growth and sprawl. Because Jhapa 
is one of the few important districts for tea farming, this land use has been classified separately. The 
land change modeler (LCM) of TerrSet software [50] was used to assess changes and transitions in 
LULC in different years. Assessment of classification accuracy is necessary when LULC maps are 
derived from remote sensing techniques [24]. Although the accuracy is limited by satellite image 
resolution [6], accuracy assessment of LULC maps was achieved using a random sampling method. 
After land-cover classification, 210 sample points were randomly selected for the evaluation of 
classification accuracy for seven land-cover classes. Accuracy assessment was based on the 
calculation of the overall accuracy, user’s accuracy, and producer’s accuracy. Due to the 
unavailability of updated land-cover data, topographical maps (scale 1:25,000) of 1995, field 
experience and Google Earth images were used as supporting details for accuracy assessment.  
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Table 1. Land-cover classification scheme. 

Land-Cover Types Description

Urban (Built-up) 
Urban and rural settlements, commercial areas, industrial areas, 

construction areas, traffic, airports, public service areas (e.g., school, 
college, hospital) 

Cultivated land wet and dry crop lands, orchards 

Forest 
Evergreen broad leaf forest, deciduous forest, scattered forest, low 

density sparse forest, degraded forest 
Shrub Mix of trees (<5 m tall) and other natural covers 
Sand Sand area, other open field area, river bank 
Water River, lake/pond, canal, reservoir 

Tea Tea plantations 

2.4. Quantification of LULC Based Transition Analysis  

Land-cover change was calculated for six time periods (1989 to 1996, 1996 to 2001, 2001 to 2006, 
2006 to 2011 and 2011 to 2016). For each time period, the transition matrix consists of rows and 
columns of landscape categories at times T1 and T2.  

2.5. Measuring Urban Expansion Rate and Analysis of Urban Extent  

The urban expansion growth rate [51] of the study area was measured by calculating the total 
new urban area. The urban expansion rate indicates the average annual urban area growth in 
succeeding years.  

MUER = ( 2 - U1)/ (T2 - T1)× 100 (1) 

where MUER refers to the urban expansion rate (km2/year) and U1, U2 represent the urban area (km2) 
between times T1 and T2 in years.  

We quantified the centrality of the land-use spatial pattern using the ring-based analysis 
approach. Ring-based buffer analysis [10,52–55] was used to explore the urban expansion 
characteristics based on landscape orientation. The boundary of the buffer zone outward from the 
city center (Birtamod) was drawn in Arc GIS 10.1 at equal intervals of 2 km. The buffered area from 
1989 to 2016 was mapped. 

2.6. Simulation of LULC Change 

Modeling systems are intended to simplify the complexity of urban systems and make them 
easier to understand [56]. Markov chain models have been widely applied for ecological modeling 
[57] as they show the descriptive power and simple trend projection [30]. The CA model addresses 
spatial allocation and location of change [1] and as it has many advantages for modeling urban 
phenomena [36] including (a) cell (b) neighborhood, (c) rules, (d) time, and (e) state [29,58,59]. 
Mainly the modeling system consisted of the following procedures: (a) land-cover maps of 1996, 
2006 and 2016 were assessed, (b) the transition area matrix was calculated using the Markov process, 
(c) transition suitability images were prepared using multi-criteria evaluation (MCE), analytic 
hierarchy process (AHP) models and fuzzy membership functions in TerrSet and applied in CA–
Markov (d) the actual and predicted maps of the year 2016 were evaluated, and finally (e) the LULC 
maps for the year 2026 and 2036 were simulated using the CA–Markov Model. 

2.6.1. CA–Markov Modeling 

The Markov model itself does not provide the spatial location of future LULC, so the hybrid 
CA–Markov was used to achieve the objectives. First, the transition matrix file was created and 
applied to the model for the specified time of 20 years. Next, CA filters were determined as a standard 
5 × 5 contiguity filter in the modeling process. The filter used analysis is based on:  
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0 0 1 0 0 
0 1 1 1 0 
1 1 1 1 1 
0 1 1 1 0 
0 0 1 0 0 

The LULC map of 2016 was used as the base map to simulate LULC maps for the years 2026 and 
2036 by calculating the transition area matrix of 2006–2016 and 1996–2016, respectively.  

2.6.2. Generating Transition Potential Maps 

In this study, GIS algorithms, MCE and fuzzy membership function were applied to extract the 
transition potential maps of land-cover types. This step determined the status of change. Transition 
potential maps represent the ability of a pixel to change to a new category or remain unchanged in 
each transition based on driving factors [60]. In this study, slope, distance to main roads, distance to 
water bodies and distance to built-up areas were set as driving factors. They were chosen based on 
their use in similar previous studies [1,29,60]. Fuzzy membership functions (e.g., J-shaped 
monotonic decrease functions) were used to rescale driver maps into the 0–255 range. AHP was then 
run to determine the weight of the driving factors using pairwise evaluation. The weighting 
parameters and control points for each driving factor were chosen based on expert knowledge, 
interviews and recent similar studies e.g., [1,29,61]. The individual weights and control points 
determined are listed in Table 2.  

Table 2. Extracted weights based on analytic hierarchy process (AHP) and fuzzy standardization for 
urban areas. 

Factors Functions Control Points Weights

Distance from main roads J-shaped 
0–500 m highest suitability  

500–5000 m decreasing suitability  
>5000 m no suitability 

0.28 

Distance from water bodies Linear 
0–100 m no suitability  

100–7500 m increasing suitability  
>7500 m highest suitability 

0.15 

Distance from built-up areas Linear 
0–100 m highest suitability  

100–5000 km decreasing suitability  
>5000 km no suitability 

0.38 

Slope Sigmoid 
0% highest suitability  

0–15% decreasing suitability  
>15% no suitability 

0.19 

2.6.3. Evaluation of Land-Cover Modeling 

Evaluation of the model was done by comparing the predicted map for 2016 with the real map 
of 2016 based on the kappa variation. An accuracy higher than 80% infers some confidence in the 
simulation [29,61]. A study framework was presented to achieve the research objectives presented in 
Figure 2. 
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Figure 2. Detailed framework of the study. 

3. Results and Discussion  

3.1. LULC Dynamics 

The overall classification accuracy for the extracted LULC maps were: 1989 (80.66%), 1996 
(85.2%), 2001 (82.33%), 2006 (85.88%), 2011 (84.8%) and 2016 (86.2%). These results indicate the 
suitability of the classified remote sensing images for effective and reliable LULC change analysis 
and modeling. Also, analysis of user’s and producer’s accuracies shows that the classes with the 
highest producer’s accuracy were those of tea (100%, 2001), water (96.43%, 2011), and built-up areas 
(96.31%, 2001) followed by forest (95.59%, 2006). The lowest producer’s accuracy was obtained for 
sand (76.67%, 2001). User’s accuracy was higher for forest (93.44%, 2016), cultivated lands (93.33%, 
1996), and built-up areas (92.53%, 2016), followed by water bodies (91.00%, 1996). The lowest user’s 
accuracy was found for the sand (73.33%, 1989) (Table 3). 

Table 3. Summary of mapping accuracy obtained by maximum likelihood classifier to the Landsat 
1989, 1996, 2001, 2006, 2011 and 2016 images. OA = overall accuracy; UA = user’s accuracy; PA = 
producer’s accuracy. 

Year 1989 1996 2001 2006 2011 2016
OA 80.95% 85.20% 82.38% 85.71% 84.80% 86.20%

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)
Built-up 88.00 85.33 88.89 84.00 96.31 89.00 88.79 86.67 83.33 81.26 89.29 92.53 

Cultivated 87.10 90.00 90.32 93.33 83.87 86.67 87.10 90.00 80.65 83.33 83.87 86.67 
Forest 86.21 83.33 89.29 83.33 88.89 80.00 95.59 83.33 84.38 90.00 87.50 93.44 
Shrub 77.42 80.00 83.33 83.33 80.65 83.33 81.25 86.67 80.00 80.00 86.21 83.33 
Sand 81.48 73.33 88.89 80.00 76.67 76.67 81.82 90.00 83.87 86.67 81.82 90.00 
Water 85.15 83.33 90.00 91.00 89.66 86.67 88.46 76.67 96.43 90.00 92.31 80.00 

Tea 95.15 83.33 95.30 86.67 100.00 83.33 95.30 86.67 95.15 83.33 92.86 86.67 

Between 1989 and 2016, a wide range of change in land-use was observed, including a linear 
increase in urban area, the continuous decline of cultivated land, minimal change in forest cover and 
shrubs and non-linear transformations of water bodies and sand. The smallest fluctuations were 
observed for the area of tea farming. Although the water bodies decreased in some time periods, 
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there was no overall decline of permanent water resources. Instead, the area covered by water was 
seasonal and determined by the changes in rainfall. The Biring, Kankai, Mechi, Deuniya and Ratuwa 
rivers as well as some streams which cross the district all originate in the mid-hills. The silty Churiya 
hill is located in the northern belt and during the monsoon season, the swollen rivers spill over 
causing bank erosion, erosion of agricultural land and accumulation of sand and silt. All these 
natural activities result in a strongly unpredictable arrangement of sand, water bodies and 
cultivated land in areas affected by floods. 

The study period showed an overall seven-fold increase in urban area for Jhapa district with an 
area of 12.35 km2 in 1989 increasing to 13.70 km2 in 1996, 27.12 km2 in 2001, 37.09 km2 in 2006, 58.65 
km2 in 2011 and 70.90 km2 in 2016. The Central Bureau of Statistics (CBS) 2014 report [25] states that 
Jhapa is a Tarai district that experienced over 25% inter-district lifetime migration, a high rate of 
immigration (24.5%) and a low rate of emigration (9.2%). The population density of the district was 
299 people per km2 in 1981, which reached 506 per km2 in 2011, for which the national level 
population density was 180 in 2011. All these factors influenced the population growth of the 
district. The enormous mass migration, mainly from the adjacent mid-hill districts of Taplejung, 
Ilam and Panchthar along with the Terhathum and Dhankuta districts was due to political upheaval 
between 1996 and 2006. After 2006, as the political insurgency settled down, the pace of 
infrastructure development such as construction of road networks, hospitals, bus parks and 
academic institutions accelerated. This condition resembles to the urban scenario of Sri Lanka, 
particularly the Colombo metropolitan area where the development activities were accelerated after 
the settlement of three decades of civil war in 2009 [62].  

The area of cultivated land increased from 1259.34 km2 in 1989 to 1290.34 km2 in 1996 at the cost 
of shrubs, forest, water, sand and tea (Tables 4 and 5; Figures 3 and 4). Significant decreases in forest 
and shrub cover were the other main changes from 1989 to 1996. The shrub area increased from 32.31 
to 42.88 km2 and forest cover from 138.57 to 141.23 km2 from 1996 to 2001. Cultivated land 
experienced a decrease from 1219.26 km2 in 2001 to 1215.43 km2 in 2006 to 1183.34 km2 in 2011 to 
1181.26 km2 in 2016. Overall, cultivated land decreased by 78.07 km2 while urban area increased by 
58.56 km2 from 1989 to 2016. The region consists of the plain arable land which is strongly affected 
by floods, especially during monsoon season. Most of the sandy area along the riverbanks in the 
district has been transformed to cultivated land, which has led the statistical increase in cultivated 
land; however, fertile agricultural land was converted into urban land. 

Table 4. Distribution of land-use/land-cover (LULC) statistics from 1989 to 2016 (km²). 

LULC 1989 1996 2001 2006 2011 2016 
Urban 12.35 13.71 27.12 37.09 58.65 70.91 

Cultivated 1259.34 1290.34 1219.27 1215.43 1183.25 1181.27 
Forest 144.95 138.57 141.23 139.31 140.6 143.01 
Shrub 44.85 32.31 42.89 43.87 37.95 41.51 
Sand 48.01 73.77 121.26 107.88 103.82 104.5 
Water 71.72 34.4 28.61 33.33 50.26 39.77 

Tea 22.26 20.38 23.1 26.58 28.96 22.52 
Total 1603.49 1603.49 1603.49 1603.49 1603.49 1603.49 

Table 5. Magnitude of land-use/land-cover change (km²). 

LULC 1989–1996 1996–2001 2001–2006 2006–2011 2011–2016 
Urban 1.35 13.42 9.97 21.56 12.26 

Cultivated 31 −71.07 −3.84 −32.18 −1.98 
Forest −6.38 2.66 −1.92 1.29 2.41 
Shrub −12.54 10.58 0.98 −5.92 3.56 
Sand 25.76 47.49 −13.39 −4.05 0.68 
Water −37.32 −5.79 4.72 16.93 −10.49 
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Tea −1.88 2.72 3.48 2.38 −6.44 

The tea farming area of 22.25 km2 area in 1989 had decreased to 20.38 km2 by 1996; however, it 
expanded to 23.10 km2 in 2001, 26.58 km2 in 2006 and 28.95 km2 in 2011 before experiencing a sharp 
decline to 22.52 km2 in 2016, likely due in part because of a lack of interest in tea farming and in part 
to escalation of the real estate business.  

 
Figure 3. LULC maps of Jhapa district for 1989–2016. 

There is an intricate relationship between anthropogenic factors, LULC change and sustainable 
future environment. Uncontrolled urbanization is mainly associated with prime farmland loss and is 
closely related with sustainable food security. Furthermore, unplanned road networks are also 
associated with the secure future and decreased environmental equilibrium. The region is seriously 
affected by seasonal floods and inundation. Each year, several catastrophes such as flood, 
inundation and riverbank erosion due to seasonal rainfall, result in the loss of lives and property. 
The recent flood and inundation killed 12 people, affected 2404 families, and destroyed huge 
physical properties [63]. 

Although almost part of the district is plain with fertile cultivated land, some parts of the 
northern territory belong to Churiya (Siwalik) region which is composited of gravel and infertile 
land. This region is a center for the extraction of sand and gravel required for construction activities 
in the urban areas which could become a threat in the future. 
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Figure 4. Trend of LULC change in study area. 

3.2. Spatial Transitions 

Various natural and anthropogenic factors have resulted in LULC change and the transition 
ratios differ for each time period. Figures 5a–e shows the gains and losses of LULC during the period 
under investigation. LULC change for the district can be grouped into four stages. The first stage 
represents the period from 1989 to 1996 and saw a rise in cultivated area from 1259.34 to 1290.34 km2 
mainly from conversion of 13.22 km2 of shrub, 12.45 km2 of forest, 9.51 km2 of water, 6.6 km2 of sand 
and 4.13 km2 of tea farming area. Two other major transformations were an increase in sand area 
from 48 to 73.76 km2 and a remarkable decline in water bodies from 71.72 to 34.40 km2 mainly due to 
the conversion of 29.34 km2 of water bodies to sand (Figure 5a). In the second stage from 1996 to 
2001, the urban area doubled from 13.70 km2 in 1996 to 27.12 km2 in 2001 at the cost of 13.55 km2 of 
cultivated land. Further decreases in cultivated land to 1219.26 km2 were due to loss of forest (9.44 
km2), shrubs (12.81 km2), sand (35.77 km2), water (5.34 km2) and tea (3.21 km2). Of this, 4.66 km2 of 
forest changed to cultivated land and 3.42 km2 to shrubs (Figure 5b). 
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Figure 5. LULC transition graphs showing transition of land-cover change in km2 with losses and 
gains for each time period: (a) 1989 to 1996; (b) 1996 to 2001; (c) 2001 to 2006; (d) 2006 to 2011; (e) 2011 
to 2016; (f) spatial trend of change (cultivated land to urban/built-up) from 1989 to 2016. 

In the third stage (2001 to 2006), 10.34 km2 of cultivated land was urbanized, 8.32 km2 of sandy 
area changed to cultivated land and 11.49 km2 to water, but 6.42 km2 of water changed to sand, 
which resulted in an overall decrease in sand from 121.26 to 107.87 km2 and increase in water from 
28.61 to 33.32 km2 between 2001 and 2006 (Figure 5c). In the fourth period (from 2006 to 2011), 
urbanization was intense with the conversion of 20.73 km2 of cultivated land. Although the 
transformation of 4.48 km2 of shrubs to cultivated land occurred, the change of 6.77, 6.34 and 3.83 
km2 of cultivated land to sand, water and tea, respectively, along with urban change caused an 
overall decrease in cultivated land. Increased population was accommodated in scattered 
settlements and/or the centers developed at the cost of agricultural land (Figure 5d). The final period 
of the study (from 2011 to 2016) was characterized by an increase in urban areas from 58.65 to 70.90 
km2 with a loss of 11.45 km2 of cultivated land to urban land. The conversion of 6.26 km2 of tea farms 
to cultivated land demonstrated a pronounced decrease in tea farming area from 28.95 to 22.52 km2 
(Figure 5e). Figure 5f shows the generalized pattern of change between 1989 and 2016 with 
urbanization moving outwards from the core. The darker red areas represent the more intensively 
changed areas which gradually decrease towards the outskirts of the city. This cubic analysis was 
presented using the LULC map of 1989 and 2016. The darker red areas represent the more 
intensively changed areas which gradually decrease towards the outskirts of the city. The eastern 
and western parts have more urban areas than the southern and central areas. 
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3.3. Urban Expansion  

As mentioned in Section 2.4, the total extent of urban area of the region in 1989 was 12.35 km2 
with an average annual growth rate of 1.56% per year in the succeeding seven years. In 1996, the 
urban coverage reached 13.38 km2, but sharply increased to 27.12 km2 in 2001 with the noticeable 
annual urban growth rate of 19.57%. It exponentially increased to 37.09 km2, but relatively decreased 
to 7.35% by 2006. The dramatic expansion of 58.65 km2 with an average annual growth rate of 11.63% 
created a historical transformation in the urban history of the district and the continuous urban 
expansion to 70.90 km2 with an average growth rate of 4.18% can be observed between 2011 and 
2016. 

Driving factors, which are defined as the underlying elements [14,35] trigger urban expansion 
are responsible for the urban expansion which occurs at specific temporal and spatial levels. 
Contextual reference is required for a better understanding of the drivers of urbanization, since 
distinct factors play different roles in specific time and space. Physical, socioeconomic and 
neighborhood factors are the main factors which directed the urbanization of Beijing; of which 
socioeconomic factors contributed the highest, except in the first 12 years of the study period-1972 to 
2010. Also, the magnitude of physical and neighborhood factors declined as the socioeconomic 
factors increased [64]. Factors such as physical setting, population growth and economic 
development influenced urbanization in Greater Dhaka [14].  

Proximate and underlying factors of public service accessibility, economic opportunity, 
population growth, globalization, political conditions, government plans and policies as well as 
social, cultural and rural urban linkages largely contributed to the migration of the population in the 
Nepalese context [6, ,65–69]. According to the CBS report 2014 [20], migration for agriculture (21%) 
was predominant over all other economic migration in rural areas, whereas service oriented 
migration was predominant in urban areas (17%).  

The accelerated urbanization of Jhapa district is mainly driven by economic opportunity, 
political condition and development activities in specific periods which are further accompanied by 
access to public services, population growth, topography, government plans/policies and 
globalization factors. Such conditions are also seen in other Nepalese cities. The process of 
urbanization in Pokhara is mainly governed by greater economic opportunities, public service 
accessibility and globalization [66,68,69]. Economic opportunities in core, population growth in the 
fringe and political situation in the rural areas highly contributed to the urbanization process of 
Kathmandu valley [19]. Similarly, urban sprawl is additionally driven by physical conditions, public 
service accessibility and globalization as well as plans and policies [19,21,66]. The major drivers of 
urbanization in the rapidly urbanizing city Biratnagar are explored in Rimal, 2011 study [68] which 
properly reflects and represents the urbanization scenario of the Tarai region, particularly the 
adjoined Jhapa District. 

3.4. Urban Extent from City Center Outwards  

In our analysis, the “center” generally refers to the urban center [52,55] and the assumed urban 
area gradually decreased outwards. Exploring the spatiotemporal change dynamics, orientation, 
cause and consequences of urban sprawl is highly essential. Nevertheless, very limited studies have 
outlined the contexts in terms of developing world. 

The city center is usually regarded as the socioeconomic center [64]. The direction of urban 
expansion in the study area has been highly influenced by its socioeconomic process than its 
physical setting. Kakarbhitta, Birtamod, Damak and Bhadrapur are the four cities and Birtamod was 
assumed as the central point in our study, since it represented the largest part of urban area from the 
very beginning. 

Ring-based analysis identified the greatest variation in the urban expansion characteristics from 
1989 to 2016 (Figures 6 and 7). The areas near the East-West highway and Mechi highway showed 
higher rates of urbanization compared to the south and south-west peripheries.  
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Figure 6. Buffer partitioning of study area. 

There was a gradual increase in urban area within 2–4 km of the center of Birtamod and dense 
settlements at Charpane and Buttabari along with the central point itself are located within these 
rings. The four emerging cities of Chandragadhi, Surunga, Dhulabari and Budhabare are located 
within ring six and Kakarbhitta in ring nine. Thus, the area from 12 to 18 km from Birtamod has 
experienced considerable urbanization. Consequently, the area from 28 to 32 km hold important 
urban coverage because the densely-settled Damak and Gauradaha are located within the specified 
area. 

 
Figure 7. Urban land measured from urban centers outwards. 

3.5. Markov Model  

3.5.1. Analysis of Transition Matrix 

The transition potential matrix was computed based on LULC conditions during the periods of 
1996–2006, 2006–2016 and 1996–2016 to show how each land type was projected to change. Data 
elements lying on the diameter of the matrix indicate that a phenomenon will probably remain 
constant over time, while off-diagonal data indicate that various phenomena are likely to be 
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converted to one of the other phenomena [16]. For example, the transition probability matrix shows 
that the probability of future loss of cultivated land to built-up area from 1996 to 2006 was 4.3%. This 
probability of change increased reasonably to 9% in 2016. Table 6 shows that, for both periods, 
cultivated land possessed the highest likelihood of transforming into built-up areas. Moreover, 
urban, cultivated, forest and water bodies were more likely to remain stable in the second period 
(2006–2016) compared to the first one (1996–2006), while other phenomena exhibited higher 
probabilities of changing. Tea land experienced the biggest decrease in both periods and water 
bodies showed the greatest increase between the first and the second projections. The likelihood of 
stability of land under tea cultivation decreased from 84% to 70% and the probability for most of 
these classes to be used for other agricultural purposes was 26% (Table 6). 

Table 6. Transition probability matrix calculated using LULC maps of 1996–2006, 2006–2016, and 
1996–2016. 

 LULC Built-up Cultivated Forest Shrub Sand Water Tea
1996–2006 Built-up 0.8832 0.1144 0.0000 0.0008 0.0008 0.0000 0.0008 

 Cultivated 0.0434 0.8407 0.0159 0.0253 0.0473 0.0143 0.0130 
 Forest 0.0052 0.0957 0.8335 0.0516 0.0093 0.0007 0.0040 
 Shrub 0.0032 0.0485 0.0947 0.7405 0.0825 0.0292 0.0014 
 Sand 0.0014 0.0325 0.0065 0.0122 0.8065 0.1355 0.0054 
 Water 0.0000 0.0190 0.0000 0.0032 0.4626 0.5138 0.0013 
 Tea 0.0047 0.1290 0.0194 0.0004 0.0030 0.0000 0.8434 

2006–2016 Built-up 0.8864 0.0598 0.0115 0.0152 0.0196 0.0002 0.0073 
 Cultivated 0.0901 0.8640 0.0100 0.0122 0.0132 0.0062 0.0043 
 Forest 0.0101 0.0381 0.8790 0.0502 0.0214 0.0000 0.0011 
 Shrub 0.0270 0.1440 0.0821 0.7104 0.0224 0.0137 0.0004 
 Sand 0.0107 0.0377 0.0056 0.0118 0.7506 0.1834 0.0003 
 Water 0.0014 0.0289 0.0005 0.0074 0.3143 0.6473 0.0001 
 Tea 0.0114 0.2614 0.0142 0.0031 0.0017 0.0005 0.7077 

1996–2016 Built-up 0.8915 0.1069 0.0000 0.0015 0.0000 0.0000 0.0000 
 Cultivated 0.0858 0.8167 0.0170 0.0182 0.0406 0.0150 0.0067 
 Forest 0.0142 0.0778 0.8288 0.0643 0.0141 0.0002 0.0007 
 Shrub 0.0063 0.0489 0.1475 0.6834 0.0733 0.0395 0.0011 
 Sand 0.0040 0.0329 0.0065 0.0183 0.7696 0.1657 0.0031 
 Water 0.0016 0.0182 0.0019 0.0054 0.4135 0.5585 0.0009 
 Tea 0.0097 0.1699 0.0292 0.0003 0.0003 0.0000 0.7906 

3.5.2. Land-Cover Modeling and Validation 

Comparison of the ground-truth map from 2016,the map simulated by the CA–Markov model 
using kappa variations and the Kstandard, Kno, and Klocation indicators resulted in measures of 
87.5%, 90% and 94.5%, respectively. Visual comparison also shows great similarity between the two 
maps of 2016 (Figure 8); therefore, based on the kappa values, the CA–Markov model can be used to 
simulate future land-cover conditions. 

The present research showed that “distance from built-up areas” played a key role in urban 
development. Urban development principles, access to facilities (including hospitals, schools, stores, 
etc.), and security priorities cause this factor to take on special importance. “Distance from main 
roads,” as an index of access, and “slope,” as a limiting factor, are the next effective factors in urban 
development, respectively (Table 2). These key drivers are usually considered by managers when 
solving key problems related to land-use development.  
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Figure 8. Land-cover type in 2016: (a) actual map; (b) simulated map. 

3.5.3. Analysis of Simulation Results 

About 4.43% of the total land area in the region was urban in 2016 and is predicted to reach 
8.11% and 10.5% by 2026 and 2036, respectively (Table 7). In contrast, cultivated land will decline 
from 1181.27 km2 (73.7%) to 993.61 km2 (62%), and forestland will increase from 143.01 km2 (8.9%) to 
146.2 km2 (9.1%) by 2036.  

Table 7. Distribution of LULC type changes for 2016–2036 (km2). 

 Urban Cultivated Forest Shrub Sand Water Tea 
2016 70.91 1181.27 143.01 41.51 104.50 39.77 22.52 
2026 130.12 1085.99 143.47 53.78 112.03 54.47 23.63 
2036 167.57 993.61 146.20 61.25 150.24 58.93 25.70 

Despite the urban development and population increase recorded in recent years, the 
expansion of agricultural lands has stopped completely in the region since about 1996 (Table 4) and 
expansion of urban lands has taken place instead. As shown in Figure 9, urban land will expand in 
the city outskirts, because agricultural land is very suitable for urban development with respect to 
access (proximity to built-up area) and topography [29]. Modeling further indicated an increase in 
natural land-cover (Natural land = Total land area − (Farmland area + Built-up area)) [70]. Natural 
areas are expected to cover 25.9% of the study area by 2036, which is an increase of 5.5% in 
comparison with the current distribution. These results are in contrast to those of Keshtkar and 
Voigt [60], who have shown a decrease in natural land-cover and increase in landscape 
fragmentation with the expansion of urban land. The increase of natural lands is mainly due to the 
increase of sand and shrubs. This increase is principally a result of the massive rural-urban 
migration and the abandonment of agricultural land. This migration can be caused by 
socio-economic, ecological and mismanagement drivers [71]. First, the abandoned agricultural sites 
converted to the bare lands and show spectral behavior like sand. Finally, the bare lands were either 
planted with shrubs and trees or gradually replaced by spontaneous growth of grass, shrubs, and 
trees via secondary succession [72,73].  

The increase of natural lands confirms that management decisions were taken with the goal of 
protecting the natural ecosystems in the region. Although population increases and the consequent 
urban growth in the study region will not reduce the natural areas, they will increase landscape 
fragmentation. Landscape fragmentation and land holding are high in Nepal with an average of 
more than three parcels per holding [74]. Previous studies have shown that landscape fragmentation 
plays a fundamental role in reducing the connection between ecosystems [75], decreasing the 
possibility of migration for organisms especially for plant species [60], and increasing competition 
between species and their extinction [76].  
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Based on the authors’ local and field visit knowledge, it is explored that newer settlements 
have expanded onto private farmland with the direct involvement of real estate agents who 
purchase the land from the local owners, divide the land into smaller plots and resell them at higher 
rates. The rapid development of the real estate business has intensified agricultural land loss on the 
urban fringe because investment in the land is considered to be a secure sector. It has resulted in 
land fragmentation and farmland loss and fosters incompatible and disorganized land use. 

The government of Nepal has introduced different land-use acts, policies, laws and regulations 
regarding LULC management. The National Land Use Policy of 2015 [77] emphasizes land 
consolidation and compact settlement to reduce land fragmentation and scattered settlements. The 
Settlement Development, Urban Planning and Building Construction Guidelines in 2015 provide 
guidance for sustainable urban planning. However, the Ministry of Urban Development (MoUD) 
[78] has reported that their implementation has been hindered by the lack of long-term strategies 
and political commitment and poor understanding of the concept of sustainability. The lack of a 
proper land-use plan has resulted in urban growth and loss of productive cultivable land for 
development [21]. Random urbanization and scattered settlements are the common features of the 
study area due the lack of effective urban planning. 

 
Figure 9. Simulated LULC maps for: (a) 2026; and (b) 2036. 

Another harmful effect of urban development is the excessive absorption of solar radiation that 
worsens the urban heat island effect. Satellite studies showed that all cities in the world (especially 
the metropolises), are faced with this problem as a result of the materials used, especially 
dark-colored building materials [79]. Heat islands can directly or indirectly influence the health and 
social well-being of citizens. In the United States, 1000 people die annually due to heat intensity [80]. 
Higher temperatures, especially in summer, increase energy demand for cooling purposes, and this 
increase generally increases the emission of particles that pollute the air, such as greenhouse gases 
from power plants [81]. Moreover, population increase and urban development naturally result in 
an increase in the number of vehicles. The addition of each vehicle to the urban environment means 
that a new source of pollution has been added to the city [82]. The aforementioned problems, along 
with others such as global warming and scarcity of water resources, emphasize the importance of 
predicting the trend of urban development and the possible damage to the natural environments, so 
that managers can make preventive decisions if necessary. 

4. Conclusions  

Understanding the change in the spatial pattern of land-cover and urban growth dynamics of 
any area over time is important for effective land management and sustainable urban planning. 
Here we have described the spatiotemporal pattern of LULC and the urban expansion scenario of 
Jhapa district of Nepal from 1989 to 2016 with the help of multi-date images and predicted future 
change by 2026 and 2036 using an integrated CA–Markov model. First, the analysis explored linear 
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urban expansion, continuous decline of cultivable land, minimum change in forest cover and shrubs, 
non-linear transformations of water bodies and sand and slight fluctuations in tea farming areas. 
Urban areas, which accounted for a total of 12.35 km2 in 1989, increased to 13.7 km2 in 1996, 27.12 
km2 in 2001, 37.69 km2 in 2006, 58.65 km2 in 2011 and 70.91 km2 in 2016. This rapid urban expansion 
and decline of fertile agriculture land occurred mainly after 2001. Second, we explored the urban 
extent and orientation using ring-based analysis to show the spatiotemporal pattern of urban 
expansion from the urban center outwards. The rate of urban expansion has not been uniform 
throughout the district. Higher levels of urbanization have occurred mostly on former agricultural 
land near road networks and in the areas which provide quick access from the mid-hills. 
Urbanization was highly concentrated along the East-West and Mechi highway. Finally, using an 
integrated CA–Markov model, we showed that the urban area will increase to 130.12 km2 in 2026 
and 167.57 km2 in 2036 while cultivated land will decline to 1085.99 and 993.61 km2 in the respective 
years. All other land-use classes will experience some increase.  

Because massive urban expansion is ongoing at the cost of prime cultivated land and is likely to 
continue in future decades, food insecurity and environmental disequilibrium are probable. 
Developing and implementing proper urban plans for the protection of high-productive agricultural 
land is urgently required. Careful urban planning ensuring the preservation of cropland, green 
outskirts and open spaces is essential to create a resilient urban environment and sustainable 
development. Adopting preventive measures to dissuade high-volume immigration through 
various migration controls and redirection schemes should be the foremost priority of the 
government. The CA–Markov model is recommended as an appropriate tool for further research of 
the complex nature of urban and LULC. Overall, our research should serve as an important 
benchmark for urban planners, policy makers and other researchers. 
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