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Abstract: In manufacturing companies, productivity and efficiency are the main priorities, besides 
an emphasis on quality issues. The outcome of this research contributes to increasing production 
quality and efficiency in manufacturing. The article deals with indoor manufacturing 
environments and the transportation processes of production assets—referred to as smart 
transportation. The authors modelled the objects present in the indoor manufacturing environment 
with ontologies including their affordances and spatial suitability. To support flexible production 
and dynamic transportation processes have to be tailored towards the ‘needs’ of the production 
asset. Hence, the authors propose an approach utilizing an ad-hoc suitability network to support 
the “optimal” path computation for transportation processes. The objective is to generate a graph 
for routing purposes for each individual production asset, with respect to the affordances of the 
indoor space for each production asset, and measurements of a sensor network. The generation of 
the graph follows an ad-hoc strategy, in two ways. First, the indoor navigation graph is created 
exactly when a path needs to be found—when a production asset shall be transported to the next 
manufacturing step. Secondly, the transportation necessities of each production asset, as well as 
any disturbances present in the environment, are taken into account at the time of the path 
calculation. The novelty of this approach is that the development of the navigation 
graph—including the weights—is done with affordances, which are based on an ontology. To 
realize the approach, the authors developed a linked data approach based on manufacturing data 
and on an application ontology, linking the indoor manufacturing environment and a graph-based 
network. The linked data approach is finally implemented as a spatial graph database containing 
walkable corridors, production equipment, assets and a sensor network. The results show the 
optimal path for transportation processes with respect to affordances of the indoor manufacturing 
environments. An evaluation of the computational complexity shows that the affordance-based 
ad-hoc graphs are thinner and thus reduce the computational complexity of shortest path 
calculations. Hence, we conclude that an affordance-based approach can help to decrease 
computational efforts for calculating “optimal” paths for transportation purposes.  

Keywords: indoor manufacturing; smart transportation; affordance-based navigation; linked 
manufacturing data; spatial graph database 

 

1. Introduction and Motivation  

The interest in indoor geography-related research is increasing, especially as humans spend 
almost 90% of their daily time inside buildings [1,2]. In fact, most manufacturing processes take 
place in indoor spaces. In this paper we focus on semiconductor manufacturing, that requires an 
indoor cleanroom environment for the manufacturing process chain. Currently, there are a number 
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of initiatives subsumed under the umbrella of smart manufacturing or Industry 4.0 that strive to 
increase the efficiency of manufacturing processes. In this context, Geoinformation may contribute 
in terms of modeling indoor space [3] or decision support for manufacturing purposes [4–6].  

The universe of discourse (UoD) under review in this paper is a complex and highly flexible 
manufacturing environment of a semiconductor company, described in detail by [3,4]. To illustrate 
the complexity in the manufacturing line, there are several hundred production steps necessary to 
manufacture a single microchip. Hence, the time to finish a product varies from several days to 
several weeks [3,4]. Furthermore, several hundred different products are manufactured at the same 
time in the cleanroom. The equipment is spatially distributed across the manufacturing site, as the 
production is not aligned on a conveyor belt. One single production operation may be executed on 
several equipment. In addition, several thousand production assets are present in the factory in 
different degrees of completion. The layout of the cleanroom changes frequently, due to 
maintenance tasks, dismounting and/or installation of manufacturing equipment.  

Currently, humans mainly do the transportation of production assets. Operators load 
production assets on trolleys and deliver each item to the next manufacturing step—which is 
dependent on the product type. In order, to increase the efficiency of the manufacturing 
environment in terms of Industry 4.0, the overarching goal is the transportation of production asset 
by either an autonomous transportation or by an autonomous assistance of humans. Because each 
product class, present in the production line, has specific requirements on the chosen transportation 
route in conjunction with constant changes in the indoor layout, there is a need for a dynamic, 
context-sensitive transportation planning (see Figure 1).  

 
Figure 1. Prototypical application of an affordance-based path calculation for a given production 
asset (from [3]). The calculated path of a production asset, from entering the production line at node 
(1) and undergoing several manufacturing steps (nodes 2–6). 

In order to support context-sensitive transportation planning in an indoor environment an 
ontology is employed [3], that provides contextual information, linkages, and defined relations of 
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the objects under review [7]. Based on the ontology, large volumes of spatial-temporal data originating 
from multiple data sources are combined, and analyzed to describe the production assets ’needs’. 

Transportation planning and optimization in the context of this paper does not necessarily 
mean to minimize the physical transportation distance. Destinations—i.e., manufacturing 
equipment—and the path itself have to satisfy certain needs depending on the production asset at 
hand [8,9]. Based on the needs, we can calculate the suitability of possible transportation paths in the 
indoor environment. In this paper, we utilize the concept of affordances to calculate the spatial 
suitability—similar to that demonstrated by the authors of [3]. The term affordance is defined by 
[10,11] as action possibilities perceived in a direct and immediate way. Additionally, the authors of 
[12] extended the theory of affordances to model spatial suitability. Furthermore, we follow an 
ad-hoc approach for the generation of the navigation graph. The ad-hoc aspect refers to the fact that 
a navigation graph is calculated for each production asset individually, when a path to the next 
manufacturing step is required. The calculation of the navigation graph and subsequently the 
“optimal” path adheres to the spatial suitability and relevant disturbances in the indoor 
environment at the time of the calculation—detected by sensor measurements. The combination of 
an affordance-based suitability network with an ad-hoc approach in an indoor environment has not 
been published before and extends previous papers [3,12–14]. 

The research question of this paper deals with the conceptual modeling of a context-sensitive, 
ad-hoc suitability network to support indoor manufacturing transportation processes. In detail, the 
paper strives to analyze if an affordance-based, ad-hoc approach to generate suitability networks for 
the calculation of “optimal” transportation paths in an indoor manufacturing environment reduces 
the computational complexity to calculate optimal paths—in comparison to the initial network. In 
addition, we analyze if the generated ad-hoc network allows re-routing if relevant incidents in the 
manufacturing environment occur. Generally, the ad-hoc aspect refers to the time of the network 
generation—i.e., after a manufacturing step has been finished—and the fact that each production 
assets’ transportation requirements as well as quality relevant incidents have to be considered.  

The structure of the paper is as follows: Section 2 starts with relevant work leading to the indoor 
manufacturing space and processes under review as well as a linked manufacturing data approach 
as spatial cyberinfrastructure comprising manufacturing data in Section 3. Section 4 defines the 
methodology for the affordance-based spatial suitability calculation focusing on ontologies, 
affordances and the suitability determination process and the ad-hoc aspect. Section 5 elaborates on 
the analysis of the proposed algorithm for the affordance-based ad-hoc suitability network to a 
classical shortest path algorithm. Section 6 highlights use-cases of the optimal path calculation in a 
manufacturing environment. Finally, a conclusion and a discussion is given in Section 7. 

2. Relevant Work and Research Approach 

This section highlights the literature related to this research and the general research approach 
followed in this paper. In the relevant work we elaborate on the contributions from GISc—in 
particular modeling indoor space, ontologies, and routing. In addition, Cyber-Physical Systems for 
manufacturing environments are of relevance for this paper. The description of the approach 
elaborates on the overall methodology followed in this paper.  

2.1. Relevant Work 

In order to support decision making in indoor manufacturing environments, there is a 
requirement to understand the manufacturing processes under review. A basic description of 
semiconductor manufacturing is given in [8]. Due to the emerging automation in 
manufacturing—known as smart manufacturing or Industry 4.0—there is a strong need to support 
decision making in order to enhance the competitiveness [15]. In the literature, there are several 
approaches to increase the efficiency of manufacturing lines [6,15,16]. To utilize optimization results 
[17] describe wearable devices for managers and employees of manufacturing companies. The 
authors of [4] propose that manufacturing decision making can be supported by adding the 
dimensions space and time to production related data. 
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Modeling indoor space and Geographic Information Systems for indoor purposes are active 
research fields, as there are a number of recent publications in this field. Modeling indoor space is of 
interest for GISc as a person resides approximately 90% of their daily time inside a building [1,2]. 
Modeling indoor space was first demonstrated by [18,19] focusing on wayfinding inside airports. In 
literature there are several approaches to model indoor spaces [20]. Ranging from topological 
models (e.g., [21]), hybrid models—where: both topology and geometry of the indoor space are part 
of the model [22–24], hierarchical models (e.g., [25]) and semantic models (e.g., [21,26]. In addition, 
Building Information models are used to model indoor space [27].  

Ontologies, are an approach to formally describe a universe of discourse. A discussion of 
ontologies in scientific literature is given in [28,29]. An ontology according to [30] denotes the formal 
explicit specification of a shared conceptualization. There are different types of ontologies such as 
i.e., a domain ontology, representing a specific domain in an abstract way including the physical 
world and their behavior [19]. Authors in [31] adds entities, relations and rules as main elements to 
ontologies. Among others, Refs. [32,33] elaborate on the spatial dimension of ontologies.  

In order to support routing and navigation in an indoor environment several approaches exist 
in literature. A more general approach to model graphs for indoor routing and navigation is 
presented in [21]. The idea of graphs is based on the concept of duality [20,24]. In addition the OGC 
standard IndoorGML uses duality concepts for generating indoor routing graphs. The authors of 
[34] elaborate on an approach to compute indoor paths avoiding obstacles and groups of obstacles. 
In study [35], the authors propose a methodology to generate accessibility information for impaired 
people. The authors of [36–38] elaborate on the application of affordances for path calculation and 
decision making of pedestrian agents. In order to model spatial suitability, the authors of [39] 
provide a hierarchical representation of indoor spaces considering user groups and their tasks. 
Furthermore, the authors of [12,13] provide an affordance-based approach to model spatial 
suitability for routing and navigation. In detail, they implement and evaluate the model on a routing 
scenario for mobility-impaired persons.  

According to study [40], there is the need to integrate positioning data with domain-specific 
information to ensure data interoperability via linking data. The huge benefit of such linked 
geo-data is the improved data discovery and reusability of the data. Therefore, the authors of [40] 
developed a geo-ontology design pattern for semantic trajectories to show the applicability of linked 
geo-data on interdisciplinary, multi-thematic and multi-perspective data on the use-cases of 
personal travel and wildlife monitoring. 

2.2. Research Approach 

The overall approach followed in this paper can be described as follows. Based on an indoor 
ontology—describing the indoor manufacturing space—and spatial data on the indoor space, we 
evaluate an affordance-based routing approach for transportation tasks of production artefacts. The 
determination of a path in the indoor space is based on a network (i.e., a graph). The 
affordance-based approach, described in this paper, calculates individual suitability values (i.e., 
edge weights) depending on each production asset, and thus may reduce the complexity of the 
graph—which in turn reduces the computational complexity of a path calculation—e.g., shortest 
path. The novelty of this approach is, that this step is done with the help of an ontology.  

In detail we develop a methodology to calculate individual spatial suitability values for the 
indoor space for each production asset at the time a route needs to be calculated. Additionally, this 
methodology supports the determination of the target of the route, based on the suitability values 
(i.e., if a certain manufacturing step can be performed on a piece of equipment). The result of this 
methodology is a network—called ad-hoc navigation network in this context—with calculated 
weights. The results are theoretically evaluated with respect to the computational complexity of a 
shortest path calculation. Finally, the approach is applied to a case study in a semiconductor 
manufacturing site.  
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3. Indoor Manufacturing Space and Manufacturing Processes 

This section describes the indoor space and the objects in this environment, which is required to 
understand the necessity for an ad-hoc network generation in this context. The manufacturing 
context in this paper is a semiconductor production facility, which is special, due to the cleanroom 
conditions. This section relies on the work evident in studies [8,9,17].  

3.1. Indoor Space of the Manufacturing Environment Under Rreview 

The indoor space under review is a semiconductor production facility. The manufacturing 
processes are done in a cleanroom environment. Any cleanroom ensures that the air inside has a low 
contamination with particles—in size and quantity. Cleanrooms are expensive to construct and 
maintain. Hence, they are constructed as compact as possible, which induces that the space for 
manufacturing equipment and movement of people and production assets is limited. In order to 
enter or leave a cleanroom there are defined entry points that are “secured” with airlocks. To change 
from one cleanroom into another requires the use of an airlock—in order to avoid the transfer of 
particles, especially when the cleanrooms are of different air quality classes. The cleanroom floor 
shows a special design that ensures a vertical laminar flow of clean air. The floor consists of single 
quadratic elements that reside on a frame structure—which might get bumpy due to the heavy wear 
or construction work. 

In general, the movement of operators and production assets is restricted to the walkable areas 
of the cleanroom. Assets are transported on a trolley, which is pushed by a human operator or by an 
autonomous transportation via a transport system. Additionally, operators are allowed to carry 
production assets. The movement of operators and production assets might be restricted due to 
quality issues. Some asset types are prone to contamination from chemical processes. Hence, certain 
production asset types are not allowed to enter specific cleanroom areas—to avoid contamination. 
As the production facility is located on several floors, the production assets change between floors 
using elevators or staircases (requires the asset to be carried). 

A spatially enabled sensor network is established in the manufacturing environment to ensure 
the quality of the cleanroom environment. The sensor network comprises of fix installed sensors 
with known locations measuring environmental parameters (i.e., air quality and contaminations) 
whereas moving sensors, which are located i.e., on trolleys, to detect bumpy floor areas. Generally, 
the sensor network supports a complete monitoring of each asset between and during 
manufacturing processes. 

Manufacturing processes are a process chain that consist of a several hundred single 
steps—defined in a specific production plan. The production steps are not aligned on a conveyor 
belt, because the factory produces a high number of product types having different process chains. 
Additionally, each production step can be carried out on different equipment, which are 
geographically dispersed over the production facility. Thus, the transportation processes show a 
multifaceted structure due to the multitude of product types, according process chains/plans and 
manufacturing equipment. The degrees of freedom—due to the number of suitable manufacturing 
equipment for each manufacturing step and their geographical dispersion—present in the 
production line, indicate that transportation processes are a complex decision problem.  

The production line differs from ordinary indoor spaces and production environments. Offices 
and/or residential buildings show a division into rooms and corridors. In a semiconductor 
manufacturing environment, rooms are hardly present, whereas corridors of considerable length are 
the main organizing structure. The layout of the indoor space under review is unstable, due to 
changing market demands. This requires equipment to be relocated, removed or the installation of 
new manufacturing equipment. The mentioned actions may change the layout of the production 
environment temporary or permanently, which has consequences for the transportation processes of 
production assets.  
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3.2. Spatial Cyberinfrastructure for Manufacturing Data 

The implemented spatial cyberinfrastructure based on a graph-database and RDF supports 
manufacturing data with near real-time capabilities—smart manufacturing. Due to the facts 
described in Section 3.1, the spatial cyberinfrastructure supports a semantic 
annotation—ontologies—including manufacturing data, tracked positions, historic processing 
information and future processing information. Therefore, a spatial graph database is implemented 
as basis for the spatial cyberinfrastructure—including the spatial and temporal dimension. This 
paves the way towards a just in time analysis and ad-hoc spatial suitability assessment to support 
navigation based on affordances in a proper manner.  

Therefore, Figure 2 shows a visualization of the corresponding data described in Section 3.1 
similarly to the Linked (Open) Data Cloud [41]. Figure 1 subsumes ontology classes for semantic 
annotations, historic and future manufacturing data and spatial information. The example shows an 
abstract basic top-level of the Linked Manufacturing Data, in which the physical location unions 
semantic annotations in blue, spatial information in green and manufacturing information in yellow. 
Therefore, [42] give examples how linked manufacturing data supports historic and future 
processing data. 

 
Figure 2. Linked Manufacturing Data for Transportation Tasks according to studies [3,41] at an 
abstract top level. Thick styled links represent the hierarchical structure of linked data, whereas thin 
styled links represent data links between different data sources. 

4. Methodology for Affordance-Based Spatial Suitability Calculation  

In the semiconductor manufacturing environment the production assets are transported from 
one manufacturing equipment to the next processing step. Each production asset (type) has 
peculiarities that have to be considered when planning a certain transportation route. The 
contemporary workflow in the manufacturing environment requires humans to decide on a path. 
Due to the presence of several hundred different production equipments, an operator can hardly 
know all relevant asset characteristics.  
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4.1. Ontologies and Affordances 

The approach proposed in this paper is based on the concept of affordances [10,11], and is 
similar to that presented in [12]. The term affordance, coined by Gibson [10,11], based on the verb “to 
afford” is defined as follows:  

“The affordances of the environment are what it offers the animal, what it provides or 
furnishes, whether for good or ill” ([11], p. 127). 

Thus, a chair offers the possibility of seating for a human being. The offering “to sit” is a result 
of its properties, and the capabilities and properties of the acting agent as well [11]. Hence, a chair 
designed for humans, does not afford sitting for an elephant, due to the size and weight of the 
animal in relation to the properties of a chair. Hence, with respect to Koffka [43], the term affordance 
can be expressed by the following sentence: “Each thing says what it is” ([43], p. 7).  

In the field of GIScience, Jordan et al. [44] utilized affordances for modeling places in a GIS. 
They propose to model three aspects in order to describe a place: agent, environment and the task. In 
[44] the affordances of a restaurant are mentioned as example, where the authors evaluate the 
suitability of restaurants for customers. Therefore, the capabilities and preferences of the agent (i.e., 
customer) and the task (e.g., socializing, eating) need to be defined.  

In the specific context, the determination of affordances of each indoor entity was done in a 
semi-automated way. First, the objects were analyzed regarding their connectivity (e.g., different 
floor levels, connecting different halls) and their navigation “offerings” (e.g., turn right, left). In 
addition, the offerings in terms of manufacturing capabilities and restrictions were determined by 
analyzing manufacturing related data. 

4.2. Determination of Spatial Suitability  

In the context of this paper—production assets residing in an indoor manufacturing 
environment—several production asset types are present. Each production asset type shows specific 
properties that have to be respected. In order to decide on a transportation path for a production 
asset, a destination point and a path connecting destination and current position with its suitability, 
need to be determined. In this process, finding a destination point equals to finding a manufacturing 
equipment offering a certain production process.  

The methodology relies on characteristics of each production asset that are as follows:  

• Product type: The product type provides implicit information on the manipulation of the 
production assets. Specific types need to be handled with care, as they might break easily. Thus, 
transportation over stairs or “bumpy” cleanroom sections are restricted. Other types are able to 
move through contaminated or low quality cleanroom areas due to a specific enclosure. The 
mentioned enclosure has to be carried with both hands, which means that the operator is not 
able to open doors. In addition, the product type defines other impediments to transport, such 
as air quality or contamination risks.  

• List of manufacturing operations: This information stores the sequence of manufacturing processes 
that have to be carried out. As several processes can be performed on several pieces of equipment, 
the resulting quality of the manufacturing processes may differ. Hence, each production asset 
should choose a production equipment that fits ’best’ in terms of manufacturing quality. 

To calculate spatial suitability, we break the processes down into tasks and sub-tasks—which 
follows the approaches of the authors of [12] as well as [45,46]. The methodology—depicted in 
Figure 3—decomposes each transportation task for each production asset, starting from the 
overarching next objective, e.g., “move to the next production step ‘ion implantation’ starting from 
cleaning station #5”. The algorithm identifies the sub-actions of this intended transportation process, 
based on the following procedure: The algorithm analyzes available equipment offering “ion 
implantation” with respect to the production asset at hand. If there is more than one equipment 
offering the manufacturing step, the algorithm looks at additional properties with respect to the 
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production asset—e.g., defect and/or failure rates—in order to apply a weighting of the equipment. 
Each target equipment, that affords the manufacturing process, is analyzed in comparison to the 
source equipment—here the source is the cleaning station #5 and the target is an ‘ion implantation’ 
equipment. This results in geographical differences—e.g., different floors, different location in the 
production hall. In order to determine the sub-actions, the algorithm then “moves” backwards from 
the target to the source—i.e., tries to reach the source. In this way, the sub-actions can be 
determined—like ‘switch floor, ‘change production hall’.  

 
Figure 3. Approach to calculate the suitability of possible routes in an indoor environment, based on 
affordances (from [3]). 

Based on identified sub-actions, the algorithm determines locations and indoor entities that 
afford the necessary sub-actions. An example for an indoor entity that offers a sub-action called, 
‘transfer from floor 3 to floor 2’, is an elevator. Similar to the approach in [14], we state that the 
affordances are not strict binary properties. We propose that affordances should be modeled close to 
the concept of suitability. Hence, in this paper we express an affordance as a rationale number with 
respect to the environment, the task and the agent. For instance, a staircase and an elevator afford to 
change the floor level in a semiconductor manufacturing environment. Nevertheless, most operators 
would prefer the elevator, due to the reduced risk of falling and damaging the assets. The suitability 
is expressed in the following formulation.  

A production asset—denoted as 	has several actions to perform—denoted as . 
Actions are specific for each agent, which justifies the indexation , 	. Each agent has a set of 
properties, where each property is indexed with . Hence, the properties for each agent are stored in 
the variable . A traversable network consisting of vertices and edges, where nodes have 
associated properties and affordances, represent the indoor environment. Each network  has 
multiple affordances stored in variable 	 , and several properties denoted as 

. Multiple affordances and properties are necessary to describe different actions/tasks 
possible at each node. 

The algorithm determines sub-actions for each asset, which is a gradual refinement of . 
Each action is broken down into sub-actions until each sub-action is decomposed to the basic level. 
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The basic level is reached when each sub-action can be matched with an affordance of a node—i.e., 
when a node can fulfill the action needed. An example is the movement of a production asset from 
equipment X to another equipment to perform operation Y. First, the algorithm determines which 
nodes—i.e., equipment—are offering operation Y. Assuming that the equipment offering operation 
Y is on another floor, the algorithm identifies sub-actions like ‘change floor’. Subsequently, the 
algorithm determines navigation nodes that fulfill the need ‘change floor’—i.e., searches for nodes 
affording changing the floor.  

In addition, the  of production asseti needs to be considered in determining the 
suitability of a specific node or edge. This represents the suitability of a navigation node or edge to 
be traversed by asseti. The suitability of a navigation node or edge for sub-actionijk is a function of the 
affordances and properties of indoor space nodem or indoor space edgem and the sub-actions and 
properties of asseti. An example is the suitability of a staircase or a bumpy ground to be traversed by 
a thin product asset. In both cases, the properties of the indoor nodes in conjunction with the 
properties of the thin asset, result in a low suitability. This is due to the fact, that this thin production 
asset can only withstand low vibrations and shocks. As a result we get the list of indoor space nodes 
and indoor space edges with their according suitability values for asseti.  

The suitability values are defined as the quotient between properties and capabilities of asseti 
and the corresponding offering of the indoor node or edge for ratio scaled properties, like 
acceleration values, particle concentration per m3 air, or manufacturing defect rate of the asset type 
at a specific equipment. For binary values, like accessibility (true/false) we use a binary suitability 
value. The suitability values present at a specific edge and node are added up in order to get one 
suitability value per graph element. If one suitability value equals to zero, we regard the edge or 
node as not traversable.  

The resulting lists of candidate indoor space nodesuijk and candidate indoor space edgesuijk serve as 
basis for the generation of the candidate routesrij (for each actionij). A candidate route is defined as a 
traversable connection between two indoor navigation nodes—that represent the beginning and end 
of a task or an action. An example is the movement from equipment X to an equipment offering the 
next manufacturing process Y. As several equipment may exist that are capable of performing 
operation Y, and several possible paths connecting equipment X and the equipment offering 
operation Y, the algorithm may end up in suggesting several different candidate routes. By using a 
shortest path algorithm—Dijkstra—with (a) length (distance) and (b) suitability values as costs we 
are able to compute the most suitable route with respect to the action of the specific production asset.  

4.3.The Ad-Hoc Aspect 

The calculation of an optimal path for each production shall avoid potentially harmful spots in 
the manufacturing space and shall react dynamically on equipment breakdown or existing 
bottlenecks. Hence, the calculation of an “optimal” path containing all manufacturing steps—from 
raw to final product—seems not advisable, as the conditions in the manufacturing environment may 
change quite rapidly. This is based on e.g., equipment breakdown, relocation, or removal. 
Additionally, the constant change of market demand and altered production necessities may require 
a shift in the production capacity. Additionally, incidents—like contamination issues, or 
malfunctioning airlocks—may happen on a random basis, which need to be considered when 
generating an optimal path.  

In order to overcome the aforementioned issues, we propose generate the spatial suitability 
graph and the path calculation in an ad-hoc manner. This ad-hoc aspect is realized by a calculation 
of the individual suitability network immediately after a production asset finishes a manufacturing 
step. At this stage, a production asset requires to be transported to the equipment capable of 
performing the next manufacturing step. Exactly at this stage the algorithm is able to consider the 
“state” of the manufacturing environment in relation to the specific asset—e.g., contamination, 
bumpy floor. If the indoor space might be harmful for the quality of the specific asset, then the 
corresponding edge and/or node is not included in the suitability network.  
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An example for such an incident is a sensor that monitors particle contamination in the indoor 
cleanroom. Let us consider that the air cleaning system in a particular area is malfunctioning, 
resulting in a high concentration of particles in the cleanroom. In the manufacturing site under 
review the wafers are stored in different types of boxes. Box Type 1 can be opened any time by 
humans, whereas box type 2 keeps wafers in a secured and controlled environment, sealed off from 
the environment, and cannot be opened by humans—only by specific manufacturing equipment. 
Hence, boxes of type 2 are not endangered when being transported through an area with a 
malfunctioning air cleaning—whereas boxes of type 1 can be contaminated with particles and damaged. 

According to the Merriam-Webster dictionary the term ad-hoc is defined as being for a 
“particular end or case at hand without consideration of wider application”. As the suitability 
network generated for each production asset, at each time it completes a manufacturing step meets 
the aforementioned definition—of being calculated for one specific case without wider 
application—we regard the suitability network having an ad-hoc character. This can be further 
justified, as the suitability network might look different for each individual asset, and looks different 
for similar assets depending on their specific position in the manufacturing environment and or 
degree of completion.  

In order to address such ad-hoc aspects we utilize a spatially enabled sensor network 
distributed over the indoor space. The sensors detect possible contamination risks, as they measure 
air quality (particles density) and gas concentration throughout the manufacturing facility including 
their own position. In addition, accelerometers mounted on the production equipment and 
transportation carts detect uneven surfaces. The sensor measurements are stored in the data storage 
in near-real time and thus can be utilized when calculating the suitability values.  

Hence, the approach is able to rely on the current state of the cleanroom environment—which is 
reflected in the suitability values. This ensures that the algorithm reacts to immediate disturbances, 
problems in the manufacturing facility, by an ad-hoc generation of the navigation network each time 
the calculation is done. At each calculation the approach establishes the traversable 
graph—consisting of nodes and edges), and determines the suitability values of each node/edge.  

5. Analysis of the Affordance-Based Spatial Suitability Network for Shortest Path Calculation 

The developed approach of the ad-hoc suitability network described in Section 4 is compared 
with the Dijkstra shortest path algorithm. Therefore, we compare the size of the graph—edges and 
nodes/vertices—and the computational complexity of the algorithm. Then, we evaluate the 
computational complexity based on an example, comparing the complete graph or the graph 
induced by the affordance based methodology. Next, a single ‘personalized’ transportation process 
for one production asset in a small area of a production hall is highlighted. This small area is then 
used for the assumption of the computational complexity of one complete production hall. Due to 
confidentiality reasons, we are not allowed to use accurate values for distances. Additionally, we 
have to disguise the manufacturing layout due to confidentiality. 

In Table 1 we compare the size of the graph. First, we analyze the complete graph, which is a 
basis for the Dijkstra shortest path algorithm—denoted as G(V, E). For the ad-hoc network we use 
GAH (VAH, EAH). The ad-hoc network graph is a subset of the complete graph GAH ⊂ G, because edges 
and nodes that do not afford the ‘needs’ are excluded. Hence, the computational complexity of the 
Dijkstra algorithm O = (|V| * log(|V|) + |E|), is higher than the computational complexity of the 
ad-hoc network OAH = (|VAH| * log(|VAH|) + |EAH|), if the same graph is the overall basis of the 
computation. 

A practical example focuses on the transportation process of a single production asset in a small 
area of a production hall. The approach using only a shortest path algorithm considers the complete 
existing graph, which is marked with a green line. The ad-hoc suitability network defines the 
candidate indoor space nodes/edgesuijk—already excluding edges and nodes that do not afford the 
‘needs’ of the specific production asset—before calculating the shortest path. This reduced graph is 
used for determining possible routesrij subsequently. These routesrij are then used for the spatial 
suitability assessment. Here, the number of possible routes is less than for the complete graph.  
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Table 1. Comparison of a classical Dijkstra shortest path algorithm and the Ad-Hoc Suitability 
Network Algorithm to identify optimal indoor transportation. 

 Classical Dijkstra Ad-Hoc Network Using Dijkstra Comparison
Basis:  

G—Graph  
V—Vertices  
E—Edges 

G (V, E) GAH (VAH, EAH) GAH < G 

Complexity: 
(optimal) 

O = (|V| × log(|V|) + |E|) OAH = (|VAH| × log(|VAH|) + |EAH|) OAH < O 

Abstract Example: 

 

OAH < O  
17.915 < 29.455 

Single 
Transportation 
Process in ~1/4 of 
one production 
hall:  
(Affordances of 
Vertices and Nodes 
considered for the 
“candidate indoor 
space 
nodes/edgesuijk”) 

For each transportation 
process of a production 
asset, the complete 
graph-based network is 
considered for the shortest 
path calculation. 

Spatial Suitability is 
calculated for the complete 
graph.  

 
V = 123 E = 123  

O = 380.058 

At the beginning, the candidate 
indoor space nodes/edgesuijk is 
calculated based on the 
‘personalized’ ad-hoc network. 
Therefore, first the edges have to 
afford the ‘needs’. Second, for each 
calculation equipments have to 
affor the ‘needs’ for the operation.  

Spatial suitability is calculated for 
the candidate indoor space 
nodes/edgesuijk.  

  
VAH = 68 EAH = 68  

OAH = 137.832 

“One 
transportation 

path calculation, 
each asset has a 
few hundred of 

them.”  

OAH < O  
137.832 < 380.058 

Calculation 
considering one 
production hall: 
(Assumption based 
on the previous 
example) 

V = (123 × 4) = 492  
E = (123 × 4) = 492  

O = 1816.446 

VAH = (68 × 4) = 272  
EAH = (68 × 4) = 272  

OAH = 934.202 
 

Note: Exact values are prohibited and white spaces are involved to disguise the layout of the 
production environment. 

6. Case Study: Optimal Path Calculation in a Manufacturing Environment 

This section describes a case study of the implemented affordance based calculation of optimal 
paths in the manufacturing environment based on an ad-hoc suitability network. Thus, a proof of 
concept of the implementation is provided in Section 6.1 of the determination of the ad-hoc 
suitability network. Section 6.2 addresses the decision of the optimal route based on defined 
affordances and shows how the optimal can equal the shortest path and how it can differ. 
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6.1. Implementation of the Ad-Hoc Suitability Network for a Smart Transportation Process in a Flexible 
Manufacturing Environment 

The implementation of the workflow presented in Section 4.2 results in a developed Java 
Application. This application utilizes a previously developed spatial graph database, presented as 
linked manufacturing data approach [42]. The linked manufacturing data approach serves as basis 
for the research as it provides the digital representation of the indoor manufacturing environment at 
hand, the corresponding manufacturing data and semantic annotations of manufacturing data and 
the environment. Therefore, the spatial graph database is queried from the implemented Java 
Application via implemented procedures in Cypher and comparison of semantics and 
manufacturing data is done in the computed application.  

Intermediate results of the implemented approach can be seen in Figure 4. In Figure 4, the first 
intermediate result is depicted as the basis network for the overall route calculation, layout and 
equipment as well as the starting point for the transportation process. The next two intermediate 
results in the middle of Figure 4, focus on the affordances of the nodes or edges derived by the 
linked manufacturing data approach and the semantics. A comparison is made separately if the 
edges/nodes afford the needs of ‘to transport’. On top, edges are matched with their affordances and 
if they are suitable for the production assets’ needs or not. Green edges afford the needs and the red 
edges do not afford the needs. Blue edges afford the needs, but are not connected anymore. The 
compared nodes for simple action such as turn left or right afford the needs, except nodes 
representing an equipment. These are matched with the next operation and if the equipment support 
the needs for this operation. Such suitable equipment is visualized in green. The combination of both 
intermediate results presents the candidate indoor space node/edgeuijk as intermediate result and as basis 
for the further suitability assessment for each possible route. Figure 4 shows as a result the 
‘personalized’ ad-hoc network for a production assets’ transportation task, as combination of 
affording nodes and edges. The result shows that only suitable equipment is connected to the 
network if there is a possible connection via edges. A topology check removes edges with only one 
node (blue lines). 

 
Figure 4. Intermediate results of the implemented approach from the complete graph as starting 
point to the candidate indoor space node/edgeuijk including affordances. 

The candidate indoor space node/edgeuijk is then refined by the developed application, as edges and 
nodes which are not part of a possible route to suitable equipment are removed. Therefore, built-in 
shortest path queries are used from neo4j spatial queried by the application. For this calculation, a 
default length of zero is assumed to return all possible paths from the starting point to each suitable 
equipment. Figure 5 shows further results of this calculation of candidate routes, with the basis of 
the candidate indoor spaceuijk with affording edges and nodes (in green) on the left side. In the 
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middle, Figure 5 depicts the next limitation of the ad-hoc network comprising only the candidate 
routesrij. On the right side each route is displayed separately.  

 
Figure 5. Intermediate results showing the limitation of the candidate indoor space node/edgeuijk to all 
possible candidate routesrij. 

This candidate routesrij are the basis for the suitability assessment, and thus the final result of the 
ad-hoc suitability network. Therefore, the sensor network is mapped to the prospective candidate 
routes via either a spatial join of the sensors and nearby edges or via a fixed definition of the sensor 
and possible affected areas/edges. This suitability assessment of the sensor measurements can be 
triggered via events, whereas only the candidate routes have to be adjusted and re-calculated for the 
final route decision or a detour. The sensor measurements are weighted according to the production 
assets’ affordances and mapped onto the corresponding edge, which is then used to identify the 
route with the least cost as the optimal path. 

In comparison to existing approaches, the presented methodology outlines the optimal path 
computation based on an ontology. The proof of concept utilizes affordances of the indoor 
production environment and the production asset. The optimal path computation considers what 
the indoor environment offers to the production asset and identifies the individual transport 
suitability alongside with disturbances occurring in the indoor space. Hence, our approach has the 
advantage of reducing the computational complexity of path calculations, due to a reduced 
navigation network. In comparison, authors of [47] focused on a semantic navigation approach 
focusing on human navigation. They developed an approach to calculate the best traversable path 
between a start and an end point, with respect to the user’s capabilities. Nevertheless, the paper does 
not utilize the concept of affordances explicitly. In addition, the paper does not include an ad-hoc 
component, as users are redirected to the original planned path, in case they get lost—neglecting the 
possibility of generating a new path. In the studies [48,49] the authors present empirical studies 
identifying the least risk path for human indoor navigation. In the papers a path between two points 
are calculated that has the least risk of getting lost. Thus, the papers highlight an approach for 
calculating a least-risk path without including different user’s preferences. The research in this 
paper focuses on generating optimal paths for production assets, which might have a certain risk of 
getting lost. However, the production asset is the focal point for the path computation and not the 
human, as will be equipped with an indoor navigation assistance system. 

6.2. Use-Case: Optimal Route Decision Based on Affordances and the Ad-Hoc Suitability Network 

The identification process of the optimal route is based on the suitability assessment of the 
candidate routesrij, therefore the overall the workflow determines the overall route costrij. For this 
suitability assessment, the sensor measurement values are compared with affordance. The 
developed application classifies the measurement value, the worse the measurement value, the 
higher is the impact factor of the sensor on nearby affected edges which is multiplied with the length 
of the edges. Finally, the application returns the routerij with the lowest cost representing the optimal 
path in terms of length and quality. This is applied on two case studies based on the before created 
ad-hoc suitability network and the corresponding candidate routesrij.  
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The first case study is depicted in Figure 6 with the suitability assessment of the two routes 
named Route_X1 and Route_Y1. One sensor (highlighted with a bigger size) triggers an event as a 
threshold is exceeded, which is considered for the identification process of the optimal path. As it 
can be seen in Figure 6, this alerting sensor is affecting Route_X1 and Route_Y1. Therefore, for each 
route the determination of the overall route cost is done by summing up the respective edge lengths. 
Thus, in Figure 6 the length for each edge is stated and the thickness of the edge shows, if the edge is 
affected or not. The impact factor of the measured value representing the suitability is defined as two 
for sensor1. The calculation of the shortest path is with 30.2 m for Route_X1 and 39.2 m for Route_Y1. 
By calculating the optimal path and thus by incorporating the suitability assessment based on 
affordances, Route_X1 results in a value of 39.4 and Route_Y1 in a value of 49.1 as the affected edge is 
multiplied with the impact factor. This case study shows, that both routes are affected similarly by 
the sensor measurement and the optimal path equals the shortest path. 

 
Figure 6. Use-Case: Route determination based on the ad-hoc suitability network where the optimal 
path equals the shortest path. 

The second use-case focuses on the difference between the optimal path and the shortest path. 
Therefore, Figure 7 has the same basis as Figure 6 with two routes named Route_X2 and Route_Y2, 
whereas two different sensors Sensor2 and Sensor3 exceed the defined thresholds. Based on the 
spatial distribution of the sensors, Sensor2 affects Route_X2 and Route_Y2 contrary to Sensor3 
affecting only Route_X2. The impact factor of Sensor2 is determined as 2 and the impact factor of 
Sensor3 as 3, as a worse value was measured. The calculation of the classical shortest path equals the 
calculation of the first use-case. The difference is in the calculation of the optimal path combining 
suitability and length. Route_X2 has more edges which are affected by the sensors than Route_Y2, 
also with a stronger impact factor. Therefore, the calculation of the optimal path shows that 
Route_X2 has a value of 45.1 and Route_Y2 a value of 44.3. This means, that Route_Y2 is the optimal 
path and that the optimal path does not equal the classical shortest path depicted in Figure 6. 

The case studies show that a longer path is accepted if it is necessary to maintain the quality of 
the production asset, or if the subsequent manufacturing step is not reachable on the shortest 
path—e.g., due to the inherent risk for the production asset. Hence, it seems advisable to make a 
detour to avoid e.g., areas with a bumpy floor with a thin wafer, as they might break easily. A 
damaged or contaminated production asset—i.e., a silicon wafer—has to be discarded. Depending 
on the degree of completion of the asset the company loses the invested manufacturing capacity and 
time (several hours to several days/weeks). Thus, any manufacturing company is committed to 
avoiding quality risks and to reducing scrap. 
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Figure 7. Case study: Route determination based on the ad-hoc suitability network where the 
optimal path does not equal the shortest path. 

7. Conclusions and Discussion 

To sum up, the research elaborates on the development of an ad-hoc suitability network for 
indoor manufacturing based on a previously developed linked manufacturing data approach [42] 
and an indoor ontology for indoor manufacturing environments [3]. The calculation of an ad-hoc 
suitability network utilizes the context of production entities, affordances of manufacturing 
environments, and a sensor network to calculate the spatial suitability (for each individual asset). 
Based on the spatial suitability the approach calculates the optimal path to transport assets along a 
graph-based network. The path starts at the last processing equipment and the possibility of 
multiple target equipment if they afford the ‘needs’ of the asset. The ad-hoc suitability network is the 
basis for identifying the optimal path. In the best case, the optimal equals the shortest path if no 
sensor measurements exceed a defined threshold. Otherwise, the optimal path can be a detour to 
avoid potential contamination or other detected incidents. A proof of concept is implemented 
showing the variability of the ad-hoc suitability network if sensor measurements change. This smart 
transportation approach uses a spatial graph-database to store the linked manufacturing data, which 
can be considered as cyber-physical system.  

The ad-hoc strategy of the approach is found in two different aspects. First, the suitability 
network is generated in an ad-hoc manner—exactly when a production asset finishes a 
manufacturing step and an optimal transport path to the next production step is required. Hence, we 
calculate a suitability network and an optimal path for each individual production asset. Secondly, 
the generation of the suitability network considers current disturbances and incidents in the indoor 
environment, such as contamination issues, air quality problems. Hence, the approach is intended to 
avoid such areas which are harmful for the quality of the production assets. In this paper, we utilize 
a sensor network that observes the manufacturing space for any disturbances.  

We highlighted the benefit of semantic annotated manufacturing data for the creation of an 
affordance-based ad-hoc network including only those edges and nodes that afford the ‘needs’ of the 
respective production asset. An additional benefit is the use of semantics for the spatial suitability 
assessment, to link the sensor network with transportation processes and the solving of 
interoperability issues in the production environment. The novelty of this approach is given due to 
the fact, that the graph simplification process is purely based on the suitability calculation—which 
itself is based on an ontology. Thus, we see the combination of an ontology, reasoner, and (shortest) 
path calculation as a novel idea. The approach is justified by the fact that the manufacturing space 
under review is highly flexible with several hundred production assets in the facility at the same 
time, having different degrees of completion. It would be quite difficult to model the 
interdependencies between indoor space, production assets (at different completion degrees) in a 
standard database or mathematical model. In our opinion only ontologies/semantics can handle this 
complexity at hand. 

The approach helps to generate a thin navigation network, which reduces the computational 
complexity of shortest path calculations. Thus, shortest path calculations, necessary for each 
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individual production asset when completing a manufacturing step, require less computing power 
compared to using the full navigation network. 

In terms of the research question, a context-sensitive approach is developed that calculated an 
ad-hoc suitability network to support indoor manufacturing transportation processes. The results 
show that our ad-hoc suitability network generates thinner navigation networks, which in turn 
reduces the computational complexity of shortest path algorithms. As the calculation of 
transportation paths is a very frequent task, this approach reduces computational power necessary.  

The ad-hoc aspect is shown in the case study, where a sensor network monitors the 
manufacturing environment. If an incident results in a sensor measurement that exceeds the 
production asset’s individual threshold, then the edge or node is not included in the suitability 
network. Hence, the asset avoids harmful areas.  

Future research includes the application of the approach in autonomous transportation 
solutions in manufacturing environments. Here transport robots are able to load and unload 
production assets and to move them to the next production step in an autonomous manner. Such a 
solution needs to consider the spatial suitability for the production asset and the transport robot 
itself in order to succeed. Before the autonomous transportation solution is implemented, humans 
pushing trolleys to transport production assets to the next manufacturing step could be supported 
with an application following a location-based service approach. Therefore, operators transporting 
assets are supported in their route decision (i.e., they get a recommendation), and are alerted when they 
should load/unload a specific asset. Such a solution requires some kind of optimization in order to find 
the “optimal” route for a number of assets. Hence, coupling the ontology—and affordances—with a 
mathematical optimization approach seems to be a promising approach to solve this issue. 
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