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Abstract: An adaptive spatial clustering (ASC) algorithm is proposed in this present study, which
employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to
detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather
than through the modification of the initial model (for example, a minimal spanning tree, Delaunay
triangulation, or Voronoi diagram). It can quickly identify arbitrarily-shaped clusters while adapting
efficiently to non-homogeneous density characteristics of spatial data, without the need for prior
knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology
with dynamic characteristics flowing in the form of spatial clustering in large data sets.
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1. Introduction

Rapid advancements in geographic spatial information technology, generation, and collection
have created exponential growth in spatial data, which has resulted in increasingly complex data
structures. It is increasingly necessary to address the challenges involved in extracting useful
information and knowledge from large-scale and highly complex spatial data sets. Data mining
from the spatial data set is a valuable way to obtain valuable information, with spatial clustering
having played an indispensable role in spatial data mining research. Clustering is the process of
grouping spatial data objects into a series of meaningful clusters so that objects within a particular
cluster share similarities, while being dissimilar to other clusters [1,2]. Spatial point clustering has been
applied to a wide variety of fields, including urban planning, remote sensing, geographic information,
bio-engineering, geology and minerals, as well as computer science [3–5]. The current methods for
spatial clustering have been roughly classified into the following categories:

• Partitioning methods, such as K-Means [6] and K-Medoids [7].
• Hierarchical methods, such as CURE [8], BIRCH [9], and CHAMELEON [10].
• Density-based methods, such as DBSCAN [11], OPTICS [12], and DENCLUE [13].
• Graph-based methods, such as ZEMST [14], AUTOCLUST [15], and SMTIN [16].
• Grid-based methods, such as STING [17] and WaveCluster [18].
• Model-based methods, such as EM [19], COBWEB [20], and SOM [21].
• Hybrid methods and large data set methods, such as CLIQUE [22], NN-Density [23], and

ACODF [24].
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These traditional approaches have been successful in managing a number of specific applications
across different domains, but significant limitations exist. Most traditional clustering methods rely
on user-specified arguments or a priori knowledge. Furthermore, these methods cannot manage
clusters of irregular shapes or of different sizes and are not effective in sets with non-uniform inner
density, outliers, or noise. In fact, no particular clustering method has been shown to be superior
to its competitors with regards to all of the necessary aspects [25,26]. To date, the advantages and
disadvantages of various algorithms have been extensively analyzed [26–31]. An analysis of the
classical spatial clustering algorithms is shown in Table 1.

Data often involve the relation to geographical space and are processed in large amounts.
The spatial object is highly complex and requires extensive computation, which means that clustering
algorithms need to be highly efficient. Efficient spatial clustering algorithms are valuable for many
real-world, dynamic applications [32]. Large data sets are challenging for computational systems
when processed with conventional algorithms, particularly as the amount of spatial data increases
exponentially in the real world. Popular traditional clustering algorithms require repeated access to the
data set as well as multiple clustering operations, which means that their efficiency decreases with an
increase in data set size [5,27,33]. This paper proposes an adaptive spatial clustering algorithm (ASC)
that employs both sweep-circle techniques and a dynamic threshold setting based on Gestalt theory to
detect spatial clusters. Empirical results and a comparison with traditional methods demonstrated that
the proposed ASC can automatically discover clusters in one pass, rather than modifying the initial
model. A minimal spanning tree, Delaunay triangulation (DT), or Voronoi diagram can be quickly
identified even with arbitrarily-shaped clusters. The proposed ASC can identify the non-homogeneous
density characteristics of spatial data without the need for prior knowledge or parameters. It is
compatible with streaming dynamic, large-scale data found in spatial clustering.

The remainder of this paper is organized as follows: In Section 2, the relation of ASC to previous
methods is described. In Section 3, the proposed algorithm is explained in detail. Section 4 describes
the ASC-based streaming process as applied to large data sets. Section 5 reports our analysis of the
algorithm, including its time complexity and comparison with other clustering methods. Section 6
provides an example of the proposed algorithm applied to a real-world data set, while Section 7
concludes with an outlook for further research.
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Table 1. Comparisons of some classical spatial clustering algorithms.

Category Typical
Algorithm

Shape of
Suitable Data Set

Discovery of Clusters
with Even Density Scalability Requirement of

Prior Knowledge
Sensitive to

Noise/Outlier
for Large-Scale

Data
Complexity

(Times)

Partition K-means Convex No Middle Yes Highly Yes Low
CLARANS Convex No Middle Yes Little Yes High

Hierarchy BIRCH Convex No High Yes Little Yes Low
CURE Arbitrary No High Yes Little Yes Low

CHAMELEON Arbitrary Yes High Yes Little No High
Density DBSCAN Arbitrary No Middle Yes Little Yes Middle

OPTICS Arbitrary Yes Middle Yes Little Yes Middle
DENCLUE Arbitrary No Middle Yes Little Yes Middle

Graph theory MST Arbitrary Yes High Yes Highly Yes Middle
AMEOBA Arbitrary Yes High No Little No Middle

AUTOCLUST Arbitrary Yes High No Little No Middle
Grid STING Arbitrary No High Yes Little Yes Low

CLIQUE Arbitrary No High Yes Moderately No Low
WaveCluster Arbitrary No High Yes Little Yes Low

Model EM Convex No Middle Yes Highly No Low
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2. Related work

2.1. Plane-Sweep Techniques

The plane-sweep is a popular acceleration technique used to solve 2D Euclidean space geometric
problems [34]. This technique initially sorts the geometric elements, before imagining that a sweep-line
glides over the plane and stops at geometric elements (typically called “event points”) [35], where
the corresponding data structure is then updated. The plane-sweep method cannot move backwards
across the event points.

The sweep-plane technique was initially applied to computational geometry problems [36].
Shamos and Hoey later applied a unidirectional sweep-plane algorithm that used time O (nlogn) to
determine whether or not a finite number of line segments have any intersections in a plane [37].

Bentley and Ottmann extended this algorithm to determine the existence of intersecting line
segments. Furthermore, they were able report all k intersections of n line segments within time O
((n + k)logn), where k is the number of intersections [38]. The sweep-line algorithm was also used to
construct a Voronoi diagram, i.e., dual Delaunay triangulation [39]. The Delaunay algorithm examined
in this study is based on the plane-scattered point sets used by Žalik [35] and Zhou [40]. Žalik was the
first to suggest the use of sweep-line techniques for spatial clustering [41].

2.2. Sweep-Circle Algorithm

The sweep-circle is another important sweep-line technique, where points are initially sorted
according to their distances from a fixed pole O in the convex hull of S. It is assumed there is a circle
C centered at O, with radius increasing from 0 to +∞, which stops at event points and updates the
data structure. A part of the problem being swept (inside the circle) is already solved, while the
remaining part (out of the circle) is unsolved. Dehne and Klein [42] were the first to use a circle that
emanates from a fixed point, which resulted in a Voronoi diagram. Adam [43], in addition to Biniaz
and Dastghaibyfard (2012), suggested that the incremental sweep-circle algorithm was more suitable
for constructing Delaunay triangulations [42] (Figure 1).
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2.3. Data Stream Technique

The “data stream” is an unbounded orderly sequence of information, which can consecutively
arrive in large quantities. However, this technique can only process data sequentially with appropriate
access. Data mining algorithms based on data streaming techniques are commonly used in obtaining
data from satellite remote sensors, geographic information, network monitoring, and financial services.
Traditional typical spatial clustering algorithms that repeatedly access entire data sets cannot be readily
applied for data streaming, as their high complexity and computational cost makes it impossible for



ISPRS Int. J. Geo-Inf. 2017, 6, 272 5 of 21

them to manage such a large amount of data. In fact, data stream clustering algorithms have become
important in data mining research and subsequently, many algorithms based on data stream technology
have been proposed, including the commonly-used one-pass algorithm [9,44–48]. This algorithm
divides the non-streaming data sets into data blocks so as to fit requirements of the memory space
and one-pass sweeping data objects. The traditional clustering algorithm can be applied to the
data-streaming environment once the data blocks have arrived from the data stream [49]. For example,
K-Means and K-Medians algorithms [44] can be used to process large data sets, before the Squeezer
algorithm can allocate the data into similar globes for clustering using one-pass sweeping [46].
The BIRCH algorithm uses a clustering feature tree to minimize I/O requests prior to the one-pass
sweeping for clustering [9]. Guha et al. also conducted valuable research on the one-pass algorithm
using similar data sets [44,47].

2.4. Sweep-Line Clustering Algorithm

Žalik (2009) proposed an innovative, agglomerative hierarchical clustering algorithm for spatial
data using a sweep-line in O (nlogn) time in the worst case. This algorithm does not rely on domain
knowledge or modification of the initial model. Furthermore, this algorithm can determine clusters of
arbitrary shapes when completing spatial clustering of large data sets. In this algorithm, there are the
horizontal sweep-lines named S1 and S2, where the distance from S1 to the front of S2 is d. It is assumed
that S1 sweeps the pi-1 set points in accordance with the proximity parameter d to form part of the
clusters, while the points of the front line (AF) are sorted in accordance with the x coordinates. When
S1 encounters point pi, pi is projected to the frontier toward AF and a cluster is found by comparing
the distance from pi to pl and pi to pr using the proximity parameter d (Figure 2). When S1 moves to
the next point, S2 follows it at distance d. The points that have been swept by S2 are removed from
the AF. If the projection misses the AF (that can also be empty), the corresponding end-point of the
AF is tested to determine whether it is close enough to point pi to discover a new cluster [41]. It is
difficult to determine the global parameter d that accounts for uneven distribution of data sets. If the
parameters are set without a priori knowledge (or measured experimental results), it is difficult to find
true clusters accurately.
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3. ASC Algorithm

Let E be the Euclidean plane and the Euclidean distance between two points x and y of E; and
S be a planar set of n points of E, which are called sites. In the polar coordinate system where the
ASC algorithm is applied, pi is swept from the initial frontier in the outwards direction according to
the increasing distance from pole O (i.e., the sweep-circle center). Following this, pi is projected onto
the segment of frontier edge (plpr) along the circle in the O-direction (Figure 3). According to Tobler,
the first law of geography is that “everything is related to everything else, but near things are more
related than distant things” [50]. The points are considered to be similar if the points are within a
specific distance of each other, such as points pi and pl or pi and pr (Figure 3). These values fall under
a threshold value used to determine the formation of clusters.
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The algorithm proposed in this paper utilizes the Gestalt theory and the associated definition of
the dynamic adaptive threshold. It can efficiently locate the adaptive clusters of arbitrary shapes and
can acclimate to the uneven density characteristics of spatial data to avoid the requirements of preset
global parameters, such as those necessary for DBSCAN, DENCLUE, and other algorithms [41]. ASC
works in a four-phase process: basic conceptualization, initialization, clustering, and cluster merging.

3.1. Basic Concepts and Initialization

Cluster definitions. Given n collection of discrete points S = {p1,p2,p3,···,pn} in 2D set (R2),
we use the degree of similarity between data points. Thus, the data set divides S into k clusters

C = {C1,C2, . . . ,Ck} C ⊆ S for defining the cluster, where
k
∪Ci = S, Ci ∩ Cj = O (i 6=j). This will result in

the clustering of objects with high similarity, and the division of objects with high dissimilarity into
different clusters.

Determining the center of the sweep-circle. S corresponds to the coordinate set {p1 (x1,y1), p2

(x2,y2), p3 (x3,y3),···, pn (xn,yn)}, where the origin of the polar coordinate O (px,py) is the center of the
sweep-circle. Select O (px,py) as the average of the largest (xmax,ymax) and smallest (xmix,ymix) values
of input S.

Calculating the polar coordinates of input points and sorting. The polar coordinates of input
points are calculated and sorted by increasing distance from O as follows:

ri =
√
(xi − px)

2 + (yi + py)
2 (1)

θ =

{
arccos( xi−px

ri
) i f (yi − py) > 0

π + arccos( xi−px
ri

) i f (yi − py) < 0
(2)

Each point pi (xi,yi) in the Cartesian coordinates can be transformed to pi (ri,θi), where the points
are sorted according to their r-coordinate found in the polar coordinates. If two points have the
same r-coordinate, they are sorted by the secondary criterion θ. In a special case where the first point
coincides with the origin O (i.e., its r-coordinate is zero), the point is removed from the list.

Constructing the initial frontier and clusters. The three points located nearest to the center O
are used to form a triangle, where it is assumed that the three points are non-linear. The three edges
of the triangle form a polyline, which is referred to as the frontier. Any spatial clustering algorithm
should work based on various distances, such as the Euclidean distance, the Manhattan distance,
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or the Minkowski distance. This algorithm uses the Euclidian distance between data points to measure
the distance needed for spatial clustering. Figure 4 shows an example of the three points nearest to the
center O, which forms the initial cluster.ISPRS Int. J. Geo-Inf. 2017, 6, 272  7 of 21 
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Figure 4. Initial frontier.

Clustering the threshold. The threshold setting ε is set as the distance measurement of d (pi,pj),
which determines if two points are grouped into the same cluster. If the distance between the two
points is less than or equal to this value, they belong to the same cluster; otherwise, they do not. This is
calculated as follows:

Cp = ∪ {pi,pj} |d (pi,pj) ≤ ε, (j 6= i, pi, pj∈S) (3)

The clustering process for the global threshold setting ε is sensitive to density changes, particularly
the internal density changes within the clusters. To manage the gradual changes of the local density,
we used the fact that the spatial data mining process obeys not only the objective law of the geographical
entity itself, but also relates to the concept of recognition in cognitive psychology. Specifically,
the Gestalt theory was taken into account.

The Gestalt theory summarizes the cognitive law of human vision with the pattern organization
discipline generated by the Gestalt principle, having been applied in pattern recognition and spatial
clustering [14]. The main principle of the Gestalt perception model is that “the whole is greater than
the sum of its parts,” which suggests that people tend to perceptually recognize structural integrity
and can initially observe the visual object as a whole before breaking the object down into different
parts [14]. Gestalt is interpreted through principles of visual recognition, such as proximity, similarity,
closure, continuity, orientation, and common fate [51].We combined a subset of Gestalt principles
operating simultaneously to build the dynamic adaptive threshold model ε (t). We can define the mean
of the triangle’s perimeter Lt as the adaptive dynamic threshold ε (t). In this model, each new event
point pi is processed to correspond to the threshold according to the following three Gestalt principles
(Figure 5).

ISPRS Int. J. Geo-Inf. 2017, 6, 272  7 of 21 

 

 
Figure 4. Initial frontier. 

Clustering the threshold. The threshold setting ε  is set as the distance measurement of d 
(pi,pj), which determines if two points are grouped into the same cluster. If the distance between the 
two points is less than or equal to this value, they belong to the same cluster; otherwise, they do not. 
This is calculated as follows: 

Cp = ∪ {pi,pj} |d (pi,pj) ≤ε , (j ≠ i, pi, pj∈S) (3) 

The clustering process for the global threshold setting ε  is sensitive to density changes, 
particularly the internal density changes within the clusters. To manage the gradual changes of the 
local density, we used the fact that the spatial data mining process obeys not only the objective law 
of the geographical entity itself, but also relates to the concept of recognition in cognitive 
psychology. Specifically, the Gestalt theory was taken into account. 

The Gestalt theory summarizes the cognitive law of human vision with the pattern organization 
discipline generated by the Gestalt principle, having been applied in pattern recognition and spatial 
clustering [14]. The main principle of the Gestalt perception model is that “the whole is greater than 
the sum of its parts,” which suggests that people tend to perceptually recognize structural integrity 
and can initially observe the visual object as a whole before breaking the object down into different 
parts [14]. Gestalt is interpreted through principles of visual recognition, such as proximity, 
similarity, closure, continuity, orientation, and common fate [51].We combined a subset of Gestalt 
principles operating simultaneously to build the dynamic adaptive threshold model ε (t). We can 
define the mean of the triangle’s perimeter Lt as the adaptive dynamic threshold ε (t). In this model, 
each new event point pi is processed to correspond to the threshold according to the following three 
Gestalt principles (Figure 5). 

 
Figure 5. Grouping principles with regards to: (a) proximity; (b) continuity; and (c) closure. 

• Proximity, where objects placed close together tend to be perceived as a group. 

In agreement with Tobler’s First Law of Geography, proximity is the most important for spatial 
clustering (in addition to also being the basis of continuity and closure). The easier it is to form 
continuity and closure among spatial data, the greater the similarity. 

To build the dynamic threshold, relationships in terms of proximity help to define concepts, 
such as "distance" and "place". The concept of ‘distance’ explains the tendency to form a cluster 
when pi is close to two points of △ε (t), while the concept of ‘place’ means that two triangles 
are adjacent to each other, such as △ε (1) and △ε (2), or △ε (2) and △ε (3). These can be used to 
form the dynamic threshold ε (1), ε (2), ε (3), ··, ε (t) as a group (Figure 6). 

(a) (b) (c) 

Figure 5. Grouping principles with regards to: (a) proximity; (b) continuity; and (c) closure.

• Proximity, where objects placed close together tend to be perceived as a group.

In agreement with Tobler’s First Law of Geography, proximity is the most important for spatial
clustering (in addition to also being the basis of continuity and closure). The easier it is to form
continuity and closure among spatial data, the greater the similarity.
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To build the dynamic threshold, relationships in terms of proximity help to define concepts,
such as “distance” and “place”. The concept of ‘distance’ explains the tendency to form a cluster when
pi is close to two points of4 ε (t), while the concept of ‘place’ means that two triangles are adjacent to
each other, such as4 ε (1) and4 ε (2), or4 ε (2) and4 ε (3). These can be used to form the dynamic
threshold ε (1), ε (2), ε (3), · · ·, ε (t) as a group (Figure 6).

• Continuity, where spatial objects arranged in a logical order are easily perceived as a group or a
continuous graph.

The dynamic thresholds require a particular order and continuity relationships create formats,
such as a “series”, which are perceived in a more permanent way as the principle of continuity is
connected with the concept of integrity in perception.

• Closure, where the observer tends to prioritize closeness and “perfection” of objects. Thus, gaps
between objects may be perceived as being filled to create a unified whole.

Closure tendency is valid for visual stimuli. Figure 6 shows that pi has a tendency to connect ∆ ε

(t), which serves as a reminder of the whole.
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Accordingly, when the event point pi is projected onto the frontier toward O, the triangle including
the frontier is identified and we can define adaptive dynamic threshold ε (t) as follows:

ε(t) = 1/3 α Lt t < (n− 3) (4)

where α is a constant factor. We can enlarge or reduce ε (t) by manipulating the value of α, although
this may affect the quality of clusters and reflect the hierarchical relation. The value of α is usually set
to 1 for ASC.

The three Gestalt principles operate simultaneously within ASC to build the dynamic adaptive
threshold model ε (t), which is shown in Figure 7. The input point p4 is an event point projected on
the edge (p2,p3) of triangle ∆p1p2p3 toward O, where p4 is closest to p2 and p3. This results in the
formation of a cluster due to the rule of proximity. Under the closure rule, p2 and p3 combine with p4

to form a simple triangle ∆p4p2p3 adjacent to ∆p1p2p3 with a common edge (p2p3). Both the proximity
and continuity Gestalt clusters occur at triangle ∆p4p2p3 and ∆p1p2p3, which maintain closely related
spatial properties. Therefore, the distance of p4 from p2 and p3 is used to form a cluster, where the
mean of the perimeter (L1) of triangle ∆p1p2p3 forms the adaptive dynamic threshold ε (1). When
a new event point p5 is obtained, the mean of the perimeter (L2) of triangle ∆p2p4p5 serves as the
adaptive dynamic threshold ε (2).

Thresholds similar to these are often set in similar real-world applications for use in
situation-specific guidelines for users. For example, during urban planning, the threshold value
is set according to the minimum radius of the public service area being covered. The threshold can
vary, which still allows for the analysis of the distribution of buildings in residential, commercial or
industrial areas. Furthermore, this threshold reflects the hierarchical structure of the relationships
between different structures.
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3.2. Clustering

In a system where the sweep-circle SC has already passed the first three points and has assigned
them to one cluster, an algorithm surrounds the points by single-closure bordering polylines (i.e., the
frontier) as shown in Figure 8a. When SC increases and sweeps to the new point pi, the projection of pi

hits the edge (pl,pr) of the frontier toward O. This manner of projection will typically hit the frontier,
since the O lies inside the frontier and the new points lie outside of it. By connecting pi and pl as well
as pi and pr, the distances dist (pi,pl) and dist (pi,pr) are calculated, where the threshold ε (t) can be set
accordingly. According to Equation (3), there are four possibilities when moving forward:

• dist (pi,pl) > ε (t) and dist (pi,pr) > ε (t), where pi is the first element of a new cluster.
• dist (pi,pl) > ε (t) and dist (pi,pr) ≤ ε (t), where the right side of pi is assigned to a cluster (Cr)

(Figure 8b).
• dist (pi,pl) ≤ ε (t) and dist (pi,pr) > ε (t), where the left side of pi is assigned to a cluster (C1)

(Figure 8b).
• dist (pi,pl) ≤ ε (t) and dist (pi,pr) ≤ ε (t), where if pl and pr are members of the same cluster,

before pi is placed into the same cluster. Otherwise, pi is a merging point between left and right
clusters [41].
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Figure 8. Adaptive spatial clustering (ASC) algorithm cluster basics with the following steps:
(a) sweeping of the points; and (b) obtaining two clusters.

The frontier plays an important role in the process of the discovery of clusters. In order to
effectively implement the frontier, heap or balanced binary search trees (e.g., AVL tree, B-tree and
Read-Black tree) can be often selected. In our case, a simple hash-table on a circular double-linked list
is used to implement the algorithms efficiently and to ensure that large data sets were manipulated
correctly (Figure 9). Each record of the frontier stores the key vertex index Pi and the index of the
triangle Ti sharing its edge with the frontier (generating an adaptive threshold), in addition to the
generated initial clustered index Ci. Fortunately, ASC will not have a projection-missed frontier,
as previously mentioned in the literature [41].
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Algorithm 1. ASC clustering algorithm. 
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Figure 9. Hash-table on a circular double-linked list for sweep-circle clustering.

3.3. Merging Clusters

The indices of clusters must be merged, i.e., the initial clusters must be adjusted during the final
phase in accordance with the merged points. We used a previously applied method [41] to merge the
indices of the clusters (Figure 8b provides an example). In this example, the clusters Cl and Cr are
merged via pi and the smallest index value is preserved. In each list, any point that does not belong to
any cluster is treated as an outlier/noise.

3.4. Point Collinearity

In the ASC algorithm, the “point collinearity” occurs when more than one spatial point is located
on the same θ of the polar coordinates. This is a special case that must be treated accordingly in terms
of setting the adaptive threshold ε (t) to ensure the stability of the algorithm. The mean of the triangle
perimeter (including previously even points) is defined as the adaptive dynamic threshold that occurs
when the sweep-circle located a new even point. When the projection of the next point p5 hits the
vertex p4 of the triangle ∆p2p4p3, the mean of the perimeter can be calculated as the threshold, which
determines whether the points p4 and p5 are grouped into the same cluster (Figure 10).The threshold
of p6 is obtained according to the triangle ∆p2p5p3.
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We have described the procedure through a pseudo-code form in Algorithm 1.
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Algorithm 1. ASC clustering algorithm.

Input: The 2D set S = {p1,p2,p3,···,pn} of n points
Output: C
Initialization:
1: select the pole O
2: calculate pi (ri,θi) for points in S
3: sort the S according to r
4: create the first triangle
5: compute ε (t) ,t←1,t < (n− 3)
6:CL←Ø, CR←Ø,CN←Ø, CS←Ø
Clustering:
7: for i←4 to n do
8: ε (t) = 1/3 α Lt

9: project pi on the frontier; hits the edge (pl, pr)
10: if d (pi,pl) > ε (t) and d (pi,pr) > ε (t) then
11: CN←CN∪pi
12: end if
13: if d (pi,pl) > ε (t) and d (pi,pr) ≤ ε (t) then
14: CR←CR∪pi
15: end if
16: if d (pi,pl) ≤ ε (t) and d (pi,pr) > ε (t) then
17: CL←CL∪pi
18: end if
19: if d (pi,pl) ≤ ε (t) and d (pi,pr) ≤ ε (t) then
20: CS←CS∪pi
21: end if
22: create triangle ∆i,l,r
23: t←t + 1
24: end for
Merging:
25: C←CL∪CR∪CN∪CS

4. ASC-Based Stream Clustering

Bezdek and Hathaway categorize any data set containing 108 objects as a “large data set” [52].
ASC extends the streaming clustering technique to include large spatial data sets repeating a small
number of sequential passes over objects (ideally, single passes) and clustering the objects using the
average memory space, where the size is a fraction of the stream length. The ASC-based stream clusters
use a two-stage online and offline approach, as found in most streaming algorithms. In the online
stage, the data set is split into blocks that are divided until they fit into the computer’s main memory
bank as the data points are swept within an increasingly large circle. ASC is applied until all spatial
data objects in the blocks are processed. In the current experiment, we implemented cluster indexing,
which stores the data in units of clusters grouped by ASC within storage systems. In the offline stage,
the user sets the threshold ε and the corresponding clustering number K is identified. Atom clusters
in the online stage are repeatedly computed via ASC until the process is complete and the results
are provided.

Online stage

• The large data set S is divided into a sequence of data blocks S = {X1,X2, . . . ,Xi} according to the
memory size. A load monitor [53] ensures that the loading of spatial data fits the main memory.

• ASC is applied to each data block Xi to form atom clusters Ci = {C1,C2, . . . ,Cl}.

Offline stage
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• It is assumed that the user provides a suitable threshold value ε and the clustering number K is set
in advance for the obtained atom clusters. ASC is repeatedly implemented until forming a final
(macro) space cluster by processing retrieval queries from the cluster indexes into the adjacent
data blocks.

The above algorithm can manage static data and can be extended for the processing of
dynamic data.

5. Results and Discussion

5.1. Time Complexity Analysis

All space points n are transformed to polar coordinates in O (n) and sorted according to their
r-coordinates by Quicksort in O (nlogn).The total time complexity of the initialization phase is:

Tinti = O (n) + O (nlogn) = O (nlogn) (5)

The sweep-circle status is represented by the frontier, where points must be located to identify
those that hit the projected edge. This point location is found in the hash table. A previously reported
formula was used [35] to determine the number of entries into the hash-table in ASC:

h = 1 + bn/kc (6)

where h is the size of the hash-table, n is the number of table entries and k is the constant factor.
According to a previous analysis [35], the relationship between CPU time spent and the number

of entries into the hash-table h changes according to the value of k. If k is too small or too large,
the computational time will be significantly altered. The k was set to 100 for these experiments in
accordance to previous literature [35]. During the sweeping phase, each point was projected onto the
frontier, where it reached the frontier in a time period calculated as follows:

Tlocate = 1 + bn/kc = O(n/100) = O(n) (7)

The frontier that corresponds to threshold ε (t) is computed in constant time O (n). The frontier
projections and their corresponding distances under the adaptive threshold are used to determine if
the clusters require O (nlogn). In the final phase, the merged clusters that are adjusted indices require
O (nlogn). The total time complexity of clustering is as follows:

Tclus = O (n) + O (nlogn) + O (n) = O (nlogn) (8)

where the total expected time complexity of the proposed ASC algorithm is:

Ttotal = Tinti + Tlocate + Tclus = O (nlogn) (9)

5.2. Comparison and Analysis of Experimental Results

In order to determine if the ASC clustering method is able to handle data with complex
distributions, we utilized three 2D simulated spatial testing data sets (D1–D3) and a real-world
spatial database. D1 and D2 are benchmark CHAMELEON data sets, which satisfy the similarity test
requirements in terms of spatial proximity, thematic attributes, spatial distribution and hierarchy.

Data set D3 is very challenging for most clustering algorithms, as there are clusters with arbitrary
shapes, different densities, noise and distinctly uneven internal densities. Traditional clustering
algorithms were also tested and compared, including K-Means (the most commonly used method),
DBSCAN (which can determine arbitrary shape clusters), CURE (which can identify clusters of more
complex shapes and wide variances in size, while preferentially filtering the isolated points) and
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AMOEDA (which can adapt to the clusters that are arbitrarily-shaped or with different density without
any a priori parameters using the Delaunay triangulation). The proposed ASC sweep-circle algorithm
was also compared with Žalik’s sweep-line algorithm [41]. A real-world GIS data set was used in order
to imitate the proposed algorithm’s ability in dealing with actual spatial data.

D1 includes 8000 points with eight arbitrary shape clusters of different densities and random
noise as seen in Figure 11a. The DBSCAN, CURE and Žalik’s sweep-line algorithm (from here on
referred to simply as “Žalik”) were all compared with the ASC. For the DBSCAN, MinPts was set to 4;
Eps was fixed to 5.4; the shrink factor of CURE was set to 0.3; and the number of representative points
was set to 12. Parameter d was set to 12 for the Žalik algorithm. The ASC algorithm automatically
discovered arbitrary shapes, clusters of different densities and nested clusters (Figure 11b). It not
only effectively detected all eight clusters but also correctly identified the noise in D1. The CURE
algorithm was unable to identify spatial clusters with complex shape and incorrectly defined less
dense spatial data as noise. The DBSCAN algorithm could not readily adapt to the density variations
among clusters, while the Žalik algorithm used global parameters that prevented it from identifying
clusters with varying densities.
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Figure 11. Testing data set D1 of ASC: (a) Graph built by triangulation of D1; (b) clustering result by
ASC; (c) clustering result by DBSCAN; (d) clustering result by CURE; and (e) clustering result by Žalik.

There were 10,000 points in data set D2 (Figure 12). We varied the scaling factor α, which causes
changes in the threshold in order to form clusters at different hierarchies. The results demonstrated
that a larger number of clusters were created if the threshold was small when α was small. Conversely,
the threshold was large if α was large, resulting in a smaller number of clusters forming (i.e., relatively
shallow hierarchy). When the value of α is close to 1, clusters are easily and accurately distinguished
from noise. In fact, the two effects create a favorable balance. These implicit hierarchical relationships
with different thresholds related to α are often used as the basis for analysis in practice [16].

Data set D3 containing 264 test points was used to test the recognition effectiveness of the ASC
algorithm in clusters with uneven internal densities and non-uniform data distribution. The clustering
results of D3 by K-Means, DBSCAN (Minpts = 4 and Eps = 0.78), AMOEBA, Žalik (d = 0.0074) and
the ASC algorithm are seen in Figure 13, which showed that the ASC algorithm was most suitable in
discovering clusters of uneven internal density. The clusters were simply divided into several parts by
K-Means, while DBSCAN detected noise accurately but failed to separate nearby clusters. Both the
AMOEBA and the Žalik failed to identify clusters of uneven internal density.

To illustrate the practical adaptability of ASC, we applied it to a real-world GIS data set collected
obtained from the DCW (Digital Chart of the World), which focused on 15,067 position data points
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taken from Chinese cities, towns and villages pertaining to the population in 2002. The results from the
ASC showed that the algorithm adapted well and is effective for this manner of practical application
(See Figure 14).
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Figure 14. Clusters discovered by ASC in large spatial datasets: (a) graph built by triangulation of GIS
datasets; and (b) clustering results of GIS large spatial datasets generated by ASC.

5.3. CPU Time

The actual computational time for data processing is a greater concern in real-world applications,
so we tested the proposed algorithm and compared it to several other methods accordingly.
All algorithms were executed with the same development language, development environment,
operating system and hardware (Intel R-core i3-3220 CPU@3.30GHz 3.29 GHz and 2 GB memory,
Seagate SV35 7200 rpm and access time 14.7 ms).

5.3.1. CPU Time Spent for Clustering

The CPU time spent for clustering data sets from Figures 11–14 is compared in Table 2. The actual
efficiency of CPU time is correlated to the number of clusters and test points generated. More CPU
time was spent on larger numbers of clusters when the number of test points were the same. When the
same number of clusters was obtained, the computational time decreased when there were fewer test
points. Additional time was spent when clustering or merging many small clusters rather than one
larger cluster.

Most current adaptive algorithms (AMOEB and AUTOCLUST) were developed based on the
Delaunay triangulation (i.e., high spatial proximity). Table 3 shows a comparison of the traditional
adaptive method AUTOCLUST against the proposed algorithm. AUTOCLUST is a relatively new
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algorithm developed to manage complex data sets (such as those with clusters of varying density
and arbitrary shapes). This algorithm is similar to the proposed algorithm in that it can adaptively
discover spatial clusters without the need to set parameters in advance. The implementation class of
AUTOCLUST can be obtained from the Web [29].

Table 2. CPU time (s) spent for clustering.

Data Set Points CPU Time (s)

Figure 13 264 0.014
Figure 11 8000 0.074

Figure 12b 10,000 0.116
Figure 12c 10,000 0.124
Figure 12d 10,000 0.243
Figure 14 15,067 0.457

Table 3. CPU time (s) spent by ASC and AUTOCLUST for clustering.

Dataset
ASC AUTOCLUST

Clustering Time DT Time Clustering Time Total (s)

10,000 0.249 0.026 0.314 0.340
20,000 0.422 0.082 2.450 2.532
50,000 0.941 0.287 5.125 5.412

100,000 2.653 0.607 14.234 14.841
200,000 5.324 2.290 61.124 63.414

There are several methods available for constructing Delaunay triangulations. We used the
fastest Sweep Line (SL) algorithm according to the literature [35]. The experimental results suggested
that ASC is more efficient than AUTOCLUST (Table 3). AUTOCLUST required more CPU time for
Delaunay triangulation phase of the algorithm in addition to when dealing with repeated global
and local uninteresting edges during the clustering process when the number of edges exceeded the
number of points.

The CPU time spent between Žalik and ASC was compared (Table 4) using the same dataset,
although different corresponding phases of the ASC algorithm were used. Initialization involved
sorting input points by Quicksort in Žalik, which accounted for 22% of the total time spent.
Initialization involved calculating the polar coordinate with Quicksort in ASC, which accounted
for 30% of the total time. ASC employed the hash-table to speed up the efficiency during the clustering
and merging phases when searching the event queue and locations on the borders. It was not necessary
to consider projections that surpassed the border. However, this portion of the computational time
in Žalik was spent both on missed projections and deleting the useless AF. In ASC, 8–9% of the total
time was spent calculating polar coordinates of the input points and adaptive thresholds of the event
points. Overall, there was less computational time and it is possible that the ASC algorithm could be
truncated even further if the polar coordinates of the input points are obtained in advance.

Table 4. CPU time (s) spent by ASC and Žalik for different algorithm phases.

Data Set Algorithm 100,000 200,000

ASC Žalik ASC Žalik

Initialization 0.646 0.717 1.597 2.700
Clustering 1.026 1.944 2.715 7.242
Merging 0.481 0.624 1.012 2.332

Total 2.153 3.285 5.324 12.274
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5.3.2. CPU Time Spent for ASC-Based Stream Clustering

The ASC algorithm was also tested based on stream clustering techniques. Input spatial data sets
were generated with high-resolution images obtained from Bing Maps (http://www.bing.com/maps/)
containing 1.3 GB of data points. As shown in Figure 15, varying thresholds for ε (e.g., 100–600 m) and
clusters K (e.g., 100–500) were provided to test the CPU time spent running the algorithm. The obtained
clusters decreased with an increase in ε, while the running time of the algorithm was lower in the
offline phase. Furthermore, having an ε value in the range of 100–300 resulted in relatively accurate
clusters as shown in Figure 15. It required a longer period of time to generate a larger number of
adaptive sub-clusters during the online phase.
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6. Practical Applications of ASC

In order to explore the feasibility of the ASC algorithm in real-world scenarios, it was used to
forecast geological disasters and quake magnitude based on geography. The real-world spatial data set
containing 1264 geological disaster spots in Congzuo was collected from the geologic hazard database
at the land department of Guangxi Zhuang Autonomous Region, China. The clustering results are
shown in Figure 16.

ASC successfully detected nine clusters with varying densities within the disaster spots, which
were divided into a preliminary distribution range of disaster-prone geographical areas (Figure 16c).
It is possible to set a specific threshold (e.g., ε = 1000 m) in order to find areas that are most prone to
major disasters, which could be beneficial for early warning purposes (Figure 16d).
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points; (b) description of spatial neighborhood relations via Delaunay triangulation; (c) clustering
result of ASC; and (d) clustering result of user-defined threshold setting (ε = 1000 m).

7. Conclusions

The most notable conclusions of this study can be summarized as follows:

• The Gestalt theory was successfully applied to enhance the adaptability of the spatial clustering
algorithm. Both the sweep-circle technique and the dynamic threshold setting was employed to
detect spatial clusters.

• The ASC algorithm can automatically locate clusters in a single pass, rather than through
modifying the initial model (i.e., via minimal spanning tree, Delaunay triangulation or Voronoi
diagram). The algorithm could quickly adapt to identify arbitrarily-shaped clusters and could
locate the non-homogeneous density characteristics of spatial data without necessitating a priori
knowledge or parameters. The time complexity of the ASC algorithm was approximately O
(nlogn), where n is the size of the spatial database.

• Scalability in ASC was not limited to the size of the data set, which demonstrated that the
algorithm is suitable for data streaming technology to cluster large, dynamic spatial data sets.

• The proposed algorithm was efficient, feasible, easily understood and easily implemented.
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The vast amount of information contained in spatial data sets and their relative complexity
represent challenges that are yet to be solved. In the future, we believe we may benefit from further
exploiting the characteristics of human vision. Humans can easily form clusters connected by chains
and/or necks in addition to creating Gaussian clusters [14]. However, ASC is unable to discover
these special clusters. Additionally, in ASC, points that do not belong to any cluster are treated
as outliers/noise, where multiple outliers or noise points could be processed as new, independent
clusters. Finally, the algorithm can potentially be extended to clustering spatial data with a higher
dimensionality than those discussed in the present study.
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