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Abstract: A 3D building model retrieval method using airborne LiDAR point clouds as input queries
is introduced. Based on the concept of data reuse, available building models in the Internet that
have geometric shapes similar to a user-specified point cloud query are retrieved and reused for the
purpose of data extraction and building modeling. To retrieve models efficiently, point cloud queries
and building models are consistently and compactly encoded by the proposed method. The encoding
focuses on the geometries of building roofs, which are the most informative part of a building in
airborne LiDAR acquisitions. Spatial histograms of geometric features that describe shapes of building
roofs are utilized as shape descriptor, which introduces the properties of shape distinguishability,
encoding compactness, rotation invariance, and noise insensitivity. These properties facilitate the
feasibility of the proposed approaches for efficient and accurate model retrieval. Analyses on LiDAR
data and building model databases and the implementation of web-based retrieval system, which is
available at http://pcretrieval.dgl.xyz, demonstrate the feasibility of the proposed method to retrieve
polygon models using point clouds.
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1. Introduction

Recent development on 3D scanning and modeling technologies has led to an increasing number
of 3D models, and most of the models have been made available in web-based platforms with
data-sharing service. In this context, the question of “How to generate 3D building models?” may
evolve to “How to find them in model databases and in the Internet?” [1]. This concept motivates this
study to encode unorganized, noisy, and incomplete building point clouds acquired by airborne LiDAR
and efficiently retrieve 3D models from databases and the Internet. A set of complete or semi-complete
building models is retrieved and reused instead of reconstructing point clouds using complicated
modeling techniques [2–5].

The naive approach called text-based retrieval uses keywords in metadata to search for the desired
3D models. This method is simple and efficient, but using keywords as queries suffers from difficulties
caused by inappropriate annotations and language varieties. By contrast, content-based retrieval
is a promising approach that encodes geometries of queries and models using a shape descriptor
and matches the encoded coefficients for data retrieval. Most previous studies on content-based
3D model retrieval take polygon models as input queries [6,7]. These methods can efficiently and
accurately extract models from databases. However, obtaining a desired polygon model as input query
is difficult, which limits the usage of retrieval systems. With the aid of airborne LiDAR, which has
the capability of efficient spatial data acquisitions, a model retrieval by using LiDAR point clouds as
input queries is proposed. By consistently encoding point cloud and polygon models, a set of building
models similar to an input point cloud in geometry shape can be retrieved for the purposes of data
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extraction and efficient cyber city modeling. Based on the concepts of data reuse and crowsourcing,
the proposed system can efficiently construct a 3D city model which is one of key components in
virtual geographic environment.

Content-based model retrieval methods can be classified into two categories, model-based retrieval
and view-based retrieval, based on the shape descriptor used in encoding. In model-based retrieval,
shape similarities are measured using various geometric descriptors, including shape distribution [6],
shape spectral [8], and shape topology [9]. In methods based on shape distribution, geometric features
defined over feature spaces are accumulated in bins [6]. A histogram of these bins is utilized as the
signature of a 3D model. In shape spectral methods, geometric shapes are transformed to a spectral
domain and the spectral coefficients are used in shape matching and retrieval [8]. In topology-based
methods, model topologies are represented as skeletons, and retrieval is performed based on the
assumption that similar shapes have similar skeletons [9]. Unlike model-based methods, view-based
methods represent 3D geometric shapes as a set of 2D projections, and 3D models are matched using
their visual similarities instead of geometric similarities [7,10,11]. Each projection is described by image
descriptors, and shape matching is reduced to measurement of similarities among the views of the
query object and models in the database. Model-based and view-based methods perform well on existing
benchmarks for polygon model encoding and retrieval. However, these methods are not designed for
unorganized, noisy, sparse, and incomplete point clouds. Recently, Chen et al. [12] proposed point cloud
encoding using a set of low-frequency spherical harmonic functions (SHs). With the preprocessing of
data resampling and filling, the approach can alleviate the difficulties caused by sparse and incomplete
sampling of point clouds. However, the use of low-frequency SHs decreases the ability to distinguish
objects with similar geometric shapes thereby leading to ambiguity in shape description.

To improve shape distinguishability, an roof geometry encoding that integrates shape distribution
with visual similarity is proposed. The main idea is to represent point clouds and polygon models
using top-view depth images that can describe the shapes of building roofs and avoid disturbances
from insufficient sampling of building side-views. The depth images are further encoded by
geometry features with spatial histograms, which introduce the properties of compact description,
rotation invariance, noise insensitivity, and consistent encoding of point clouds and polygon models.
These properties lead to a compact storage size and real-time retrieval response time. Furthermore,
the visual similarity in depth images and shape distribution in spatial histograms increase the
distinguishability of geometric shapes. The remainder of this paper is organized as follows. Section 2
describes the methodology of point cloud encoding and building model retrieval. Section 3 introduces
the properties of the proposed encoding method. Section 4 discusses experimental results, and Section 5
presents conclusions and future work.

2. Methodology

2.1. System Overview

Figure 1 schematically illustrates the proposed system which consists of three main steps,
depth image generation, data encoding, and data retrieval. In the first step, the building models
and point cloud, that is, the input query, are represented by top-view depth images for the geometric
description of building roofs. An interpolation process is then applied to the depth image of the point
cloud for hole filling to facilitate consistent encoding. In data encoding, a set of geometric features
are extracted from the interpolated depth images. The extracted geometric features are encoded by
utilizing a spatial histogram with a determined origin, which can provide a rotation-invariance shape
description. During data retrieval, the encoded coefficients of input query are matched with those of
the models in a database using a shape similarity metric. A set of best-matched models are extracted.
In this section, the process of depth image generation is described in Section 2.2, followed by the data
encoding and retrieval, which are described in Sections 2.3–2.5.
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Figure 1. System overview. The system consists of three main steps, depth image generation,
data encoding, and data retrieval.

2.2. Generation of Depth Image

Top-view projection is selected in depth image generation because of the characteristics of airborne
LiDAR scanning. The roof is generally the most informative and identifiable part of a building in
airborne LiDAR acquisitions. In the top-view projection, the pixel value of the projection is generally
defined as the height difference between the ground and the pixel in the building roof. However,
pixel intensity in this definition is dominated by building height, and the roof geometry is insignificant,
especially for tall buildings. In this study, the pixel value of depth image, which is denoted as D(x, y),
is defined as the distance between the maximal height of building and the height on that position,
that is,

D(x, y) = MaxB − HB(x, y), (1)

where MaxB represents the maximal height of a building B, and HB(x, y) denotes the building height at
the position (x, y). In this definition, the pixel value of depth image corresponds to the relative height
difference, which can enhance roof geometry in the depth image.

The depth image generation is a process of rasterization. The spatial resolution of a geometric
description depends on the setting of grid size in rasterization. A large grid size indicates low possibility
of missing depth information and efficient rasterization, but will result in low spatial resolution of
depth images and rough geometric representation of point clouds. By contrast, small grid size is linked
to a high-resolution depth image with fine geometric description, but will result in time-consuming
computation and large number of empty pixels. In this study, small grid size is preferred because data
interpolation can be performed to alleviate the problem of missing information. In addition, the grid
size is set according to point cloud density with the expectation that, on average, each grid in the
depth image has one inside point. Therefore, grid size is defined as GS =

√
1/AvgPD, where AvgPD

represents average point density of a building point cloud. Figure 2 shows an example of point cloud
rasterization. The average point density of the building is 16.67 pts/m2 and grid size GS is set to
0.245 m in rasterization. In this setting, the geometric detail of building roof is preserved and only
small holes are present in the depth image. The search for optimal setting of grid size is difficulty
because the determination of grid size is data-sensitive. Any advanced approach on that such as the
method proposed by Awrangjeb et al. [13] can be adopted and integrated into the system.
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Figure 2. Depth image. (Left, Middle): perspective and top views of point cloud, respectively; (Right):
top view of depth image.

Holes are generally present in depth images because of rasterization of irregularly distributed
LiDAR point clouds. To address this issue, a hole filling and completion process is performed using
grayscale morphological operators. A grayscale morphological closing, which consists of dilation and
erosion operators with a flat structuring element, is adopted to fill gaps in depth images. The proposed
encoding method requires the preservation of point cloud topology and geometry, but it does not
require a perfect depth image, that is, an image without holes. Therefore, a simple and efficient
morphology-based approach is adopted. With this hole filling, only holes that are smaller than the
structuring element are filled; thus, the geometric topology, such as hollow shape, can be maintained.
In the implementation, a 7 × 7 structuring element is used.

2.3. Data Encoding

The first step of data encoding is determining a translation and rotation invariant origin of a depth
image. Chen et al. [12] suggested the selection of the center of minimal bounding box of an object as
origin. However, the origin obtained in this approach is slightly sensitive to rotation, especially for
non-symmetric buildings. For instance, in Figure 3, the cyan boxes are the minimal bounding boxes
of rotated depth images. These bounding boxes differ in height and width, and thus, the obtained
origins represented by cyan dots are inconsistent. In this study, a depth image is regarded as a 2.5D
model. The barycenter of the 2.5D model is selected as origin because that this center is unchanged
after similarity transformation. Examples of obtained origins are shown in Figure 3. The origins
displayed in red remain constant as the object is rotated, which implies this origin is invariant to
rotation and translation.

Center of Minimal Bounding Box Barycenter of 2.5D model

Figure 3. Comparisons between the origins obtained by using the minimal bounding box (the cyan dots)
and the building volume (the red dots).
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In formula, given a depth image D(x, y), the shape origin (x0,y0) is defined as the weighted
position in the depth image, that is,

(x0, y0) =
1
n

n

∑
i=1

(xi , yi)× Di , (2)

where n represents the number of roof pixels, and Di denotes the value of D(xi , yi), which is used as
the weight of vector (xi , yi).

Before data encoding, the point cloud and the models are aligned to their origins to facilitate
rotation and translation invariant encoding. Three geometric features, namely, height feature,
edge feature, and planarity feature, as illustrated in Figure 4, are used to describe the shape of a
building roof in depth image domain. These three features are described as follows.

Figure 4. Illustration of roof geometric features. (Left): height feature; (Middle): edge feature;
(Right): planarity feature. The features are marked in red.

Height Feature. A building roof is represented as a depth image, and its pixel intensity denotes the
relative height of the roof in that position. Therefore, using pixel intensities in a depth image to
represent roof geometry is intuitive and efficient. Following the study [14], height feature, which is
denoted as Fh(x, y), is defined as the pixel intensities of depth images, that is, Fh(x, y) = D(x, y).

Edge Feature. Sharp edges in an image are linked to high-frequency components that represent details
in an image. Therefore, sharp edges are used as geometric features to represent roof geometries.
Inspired by the study [15], Laplacian of Gaussian (LoG) filter is adopted to extract sharp edges while
alleviating disturbances from noise. The LoG is composed of Gaussian and Laplacian filters, where the
low-pass kernel function in the Gaussian filter is used to suppress noise and the second derivative
kernel function in Laplacian filter is utilized to extract sharp edges. The LoG is applied to depth images
with inherent noises, and the resulting data are used as edge feature, which is denoted by Fe(x, y).

Planarity Feature. Different from sharp edges, which are high-frequency components, planes in
an image relate to low-frequency components that represent rough information in an image. Therefore,
the planarity feature is selected as geometric feature. The planarity feature from the principal component
analysis of a point set is a useful descriptor that can describe the local geometry of a point set
and indicate whether local geometry is planar. Given a 2.5D point set P = {(xi , yi , Di)}n

i=1 from
the pixels in a depth image where the points are located within a circle of diameter r centered at
a position pc : (xc, yc, Dc), a simple method for computing the principal components of the point
set P is to diagonalize the covariance matrix of P. In matrix form, the covariance matrix of P is
written as C(P) = ∑pi∈P(pi − pc)T(pi − pc). The eigenvectors and eigenvalues of the covariance
matrix are computed using matrix diagonalization, that is, V−1CV = D, where D is the diagonal
matrix containing the eigenvalues {λ1, λ2, λ3} of the covariance matrix C, and matrix V contains the
corresponding eigenvectors. In geometry, the eigenvalues relate to an ellipsoid that represents the
local geometric structure of a point set. The combinations of these eigenvalues provide discriminant
geometric features. For instance, λ1

∼= λ2 � λ3 indicates a flat ellipsoid that can represent planar
structures, and λ1

∼= λ2 ∼= λ3 corresponds to a volumetric structure, such as the corners of buildings.
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Following the definitions in [16,17], planarity feature is defined as (λ2 − λ3)/λ1 , which has the ability
of enhancing and describing planar structures. The planarity feature Fλ(x, y) obtained from principal
component analysis is used as geometric feature.

The height, edge, and planarity features provide the descriptions of height, high-frequency,
and low-frequency components of a building roof, respectively. These three features compose
a complete set of geometric description for a depth image and a building roof. An example of geometric
features is shown in Figure 5. To visualize these features, the feature values are normalized to the
range of [0, 255] and displayed as a gray image.

Figure 5. Results of geometric features. (Left): original point cloud; (Right): results of height, edge,
and planarity features of the point cloud, respectively.

2.4. Spatial Histogram

The purposes of using spatial histogram in encoding are to reduce the data sizes of geometric
features and to achieve rotation-invariance encoding. In spatial histogram generation, the feature
image is partitioned into several disjoint circular subspaces or called bins, which are all centered on
the determined origin. Similar to image histogram, the intensities of pixels in the feature image are
accumulated in bins according to their positions. The accumulated value in each bin is then normalized
by the sum of pixel intensities. The range of bin value is [0.0, 1.0] and the sum of all values in bins is
1.0. The distribution of pixel intensities and spatial positions of the pixels are encoded in the histogram,
which leads to an encoding with the ability of geometric distinguishability. In the implementation,
the feature image is circularly partitioned into k bins with equal width, and the maximum radius of the
depth image is set to the distance between the farthest pixel and the determined origin. The number of
bins k is set to 30 to balance the encoding compactness and shape distinguishability. A small k may lead
to a rough and insufficient description of a geometric shape, whereas a large k may cause inefficient
retrieval and increase the sensitivity to noise.

With spatial histogram, the height, edge, and planarity geometric features are described and
encoded as (h1, · · · , hk), (e1, · · · , ek), and (p1, · · · , pk), respectively. The total number of components
in an encoded coefficient is 90. Examples of spatial histograms with 10 bins are shown in Figure 6.
The height, edge, and planarity features used to describe different geometrics have different spatial
histogram results.

To further distinguish the building of objects with similar roof geometries but different sizes,
the area of the roof, the height of building, and the maximum radius are integrated in the encoding,
which can lead to a scale-variant shape representation. The maximal height of a building, denoted as
Mh, is defined as

Mh = max(HB(x, y))− Hmin), (3)

where the function max() returns the maximum of an input, and Hmin represents the minimum of the
roof height HB(x, y). The maximum radius, denoted as Mr, is defined as

Mr = max_radius(H̃B(x, y)|HB(x, y) /∈ Hmin), (4)
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where the function max_radius() returns the maximal distance in the xy-space between the roof pixel
and its origin. The building outliers, that is, HB(x, y) = Hmin, are excluded from the distance calculation
because outliers are generally the protruded exterior facades lying near the roof boundaries. The roof
area, denoted by A f , is defined as

A f = count(H̃B(x, y)|HB(x, y) /∈ Hmin), (5)

where the function count() returns the total number of pixels in the input, except pixels with the
minimal value Hmin.

Figure 6. Results of the spatial histograms of height (left); edge (middle); and planarity features (right);
Feature images (top) and corresponding spatial histograms of 10 bins (bottom).

2.5. Data Retrieval

By combining the spatial histograms of three geometric features, a point cloud or polygon model
is encoded as

F1 = {(h1, · · · , hk), (e1, · · · , ek), (p1, · · · , pk)}. (6)

In addition, the maximal height, maximal radius, and roof area for scale-variance encoding are
combined as

F2 = {Mh, Mr , A f }. (7)

Given the encoding in (6) and (7), the measurement of shape similarity is formulated as
a combination of F1 and F2. Given a point cloud P and a building model M, shape similarity is
defined as

dist(P, M) =|F1(P)− F2(M)|×(
1 + 2× |F2(P)− F2(M)|

|F2(P) + F2(M)|

)
,

(8)

where the first part of the equation, |F1(P)− F2(M)|, is the measure of geometric similarity between
the objects P and M, and the second part, 1 + 2× |F2(P)−F2(M)|

|F2(P)+F2(M)| , which ranges from 1.0 (no penalty) to
2.0 (maximal penalty), denotes the penalty for different object scales. No penalty is given for buildings
with the same scale, and a maximal penalty is set for buildings with extremely large difference on
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scale. In (8), a small dist represents a high similarity between the point cloud P and the polygon model
M, and vice versa.

The building models downloaded from the Internet are encoded in preprocessing using (6) and
(7). The encoded coefficients are stored in a database. When a point cloud is selected as input query
in the online retrieval system (http://pcretrieval.dgl.xyz), the point cloud is also encoded by using
(6) and (7). The obtained coefficients are then matched with the coefficients in the database using (8).
Shape similarities are sorted and several top-ranking models are extracted as the query response.

3. Encoding Properties

The proposed encoding method possesses several properties that make a retrieval system feasible
to extract polygon building models using point clouds as input queries. The point clouds and polygon
models are consistently encoded with the aids of morphological hole-filling and consistent origin
determination. To demonstrate this property, a building model and its corresponding point cloud
were tested. The encoding results in Figure 7 show that the encoded height, edge, and planarity
coefficients of the point cloud and polygon model are similar. This result indicates consistent encoding
and the feasibility of retrieving polygon models by using point clouds. Second, the proposed approach
provides a shape similarity metric, wherein similar shapes have small distances and dissimilar ones
have large distances. This property implies that encoding can distinguish objects with different
geometric shapes, which is the foundation of data retrieval.

Figure 7. Consistent encoding of point cloud (top) and building model (bottom). 1st row: original data;
2nd–4th rows: results of height, edge and planarity features and their corresponding spatial histograms.

Third, the encoded coefficients are rotation invariant because of the spatial histogram and the
rotation-invariance origin. Figure 8 shows that the coefficients remain unchanged when a 45-degree
rotation is applied to the object. Fourth, the proposed encoding scheme is insensitive to noise because
the noise problem is alleviated by statistics-based histogram encoding. For example, in Figure 9,
a point cloud with Gaussian noise is tested. The standard deviation in the Gaussian noise is set to 0.1.
The results show that the encoded coefficients exhibit slight differences when the Gaussian noise is
added to the data. Fifth, the building models in the database are compactly encoded. The encoded
coefficient for a building model is a set of 90 real numbers, which is smaller than the size of original
model data. With the aforementioned properties, the proposed retrieval method can efficiently and
accurately retrieve building models using point clouds.

http://pcretrieval.dgl.xyz
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Figure 8. Demonstration of rotation invariance. (Top): results of geometric features and corresponding
spatial histograms; (Bottom): results of rotated data (45-degree rotation).

Figure 9. Demonstration of noise insensitivity. (Top): point cloud encoding results; (Bottom): encoding
results of a point cloud with Gaussian noise addition.

4. Experimental Results and Discussion

4.1. Datasets

A database containing about one million 3D building models was tested. The models are downloaded
from the Internet using web crawlers that systematically browse the Internet to search for 3D building
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models. The study area is the campus of National Cheng-Kung University, Taiwan and Taipei 101
building. The airborne LiDAR point cloud in the study area was acquired by Optech ALTM 30/70
in 2011. This point cloud was extracted from a combination of three overlapped scanning strips.
The number of points in the test LiDAR point cloud is 2,772,880 and the average density is 10.72
pts/m2 or a point spacing of 0.31 m. The LiDAR point cloud of the study area and its corresponding
aerial image are shown in Figure 10. The trees nearby buildings were removed and building point
clouds were segmented and extracted from the test data manually for simplicity. Any advanced point
cloud segmentation or building extraction algorithms [18–20] can be adopted to extract building point
clouds automatically or semi-automatically.

Figure 10. Study area. The aerial image (left) and corresponding point cloud (right).

4.2. Computational Performance

The encoding time for a point cloud of 22,440 points and about 2000 m2 areas is 150 ms, and the
retrieval response time is 600 ms for a database containing one million models. The information of
the tested building point clouds, grid sizes, and computation time are shown in Table 1. The grid
sizes are automatically calculated according to the average point density of the building. Encoding
time mainly depends on the number of points and the xy-area of a building, and the retrieval time is
linearly dependent on the size of the model database.

Table 1. Time performance. 1st column: point clouds of the tested building; 2nd column: number
of points; 3rd column: ground area of a building; 4th column: average point density; 5th column:
grid size; 6th column: encoding time (En.); 7th column: retrieval time (Re.).

Point Clouds #Points Area (m^2) Avg.PD GS (m) Time Performance
T_en(ms) T_re(ms)

50843 3050.1 16.67 0.245 155 606

183719 9848.6 18.65 0.232 413 597

26077 2141.750 12.18 0.287 155 579

55061 3829.500 14.38 0.264 205 637

29698 1342.438 22.12 0.212 155 606
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4.3. Evaluation of Model Encoding

To evaluate the proposed method, two sets of building models that have different level-of-details
(LODs) on roofs were tested. The purpose of this experiment is to evaluate the distinguishability
of encoding approaches on building models with different geometric roof details. The first dataset
that contains four models is a building with hollow geometry. The original model with hollow
geometry, which is denoted by LoDa

1, is gradually reduced to a non-hollow model with simplified roof
geometry, which is denoted as LoDa

4. The simplified and detached parts of the buildings are marked
by red. The second dataset contains five models, where the original model with detailed geometry
on roof, denoted by LoDb

1, is gradually simplified to be a simple box, denoted by LoDb
5. The aerial

photos, LiDAR point clouds, and well-constructed building models, which are, LoDa
1 and LoDb

1,
are shown in Figure 11. The point clouds and the models are encoded using the proposed method.
The shape similarities between the models and their corresponding point clouds are measured using (8).
The models and their similarity values are shown in Figure 12. For the first dataset, the results indicate
that the proposed encoding method can separate the model with hollow geometry from the model
without hollow geometry. The results in the second dataset show that the shape similarities decrease
near-linearly when the geometry of the original model is simplified gradually. These experiments
demonstrates the ability to describe hollow geometric shapes and distinguish models with different
details on roof geometry, which are superior over the related method [12] that encodes models using
a set of low-frequency spherical harmonic functions. Because of the use of low-frequency and spherical
basis functions, the method [12] is not able to distinguish models with similar geometry details and
models with and without hollow geometries.

Figure 11. Tested building models. (Left): orthogonal image; (Middle): airborne LiDAR point clouds;
(Right): 3D models downloaded from the Internet.

Figure 12. Tested models with different LODs. The numbers shown below the models represent the
shape similarities between the models and their corresponding point clouds.
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4.4. Evaluation of Model Retrieval

The proposed method was compared with the method [12] by using a database that contains
around one million 3D building models downloaded from the Internet. Three building point clouds
were tested as the input queries. To evaluate the retrieval accuracy, the commonly used measurement,
namely, root mean square deviation (RMSD), is adopted to calculate the shape similarities between
the input query and the retrieved models. Before RMSD calculation, the retrieved models are aligned
with the input query semi-automatically using the standard registration algorithm called iterative
closet point [21]. The shape similarities obtained by RMSD are used as reference values in retrieval
evaluation. Figure 13 shows the retrieval results, including the retrieved models, ranks, and reference
RMSD values. The visual comparisons show that the models extracted by these two methods are
similar to the queries in shape, and the ranking generated by the proposed method is better than that
in [12], especially for the third data. This experiment shows that the proposed method combining
shape distribution with visual similarity can improve the ability to distinguish geometric shapes,
compared with [12]. However, the ranks obtained by these two approaches are not well-matched with
that of RMSD references. For instance, in the first test data, the RMSD of the ranked 5th model is
larger than that of rank 7th model, which means that the ranking is inconsistent with the reference.
The imperfect ranking is caused by the use of compact shape description. To achieve efficient retrieval,
data are compactly encoded by shape description, and only 90 coefficients are used in the proposed
method to encode a point cloud or a polygon model. To solve this problem, the ranks of the extracted
models can be further refined using RMSD measurement if perfect ranking is required.

Rank
1 10

2.15 2.07 2.38 2.23 1.40 1.91 2.47 1.60 2.30

2.081.87 2.21 2.21 3.48 3.82 2.44 1.91 2.500.38
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Method A

Method B
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9.34

6.33

6.04

4.08

5.14

5.30

Data #2

Data #3

Data #1

Figure 13. Comparisons among the retrieval results obtained by our method (Method A) and the
related method [12] (Method B).

To further analyze retrieval performance, the ranking of all extracted models by using RMSD is
used as reference. Then, the measurement for ranking is defined as the difference between the obtained
ranking and reference, that is, Di f fr = |Rmethod − Rre f |, where Rre f and Rmethod represent the reference
ranking and the ranking from a method, respectively. In this measure, the average of Di f fr, which
is denoted as Avg.Di f fr, is used to estimate ranking quality. The statistical analysis for Avg.Di f fr is
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shown in Table 2. A small Avg.Di f fr means high-quality ranking. In addition, the commonly used
measurements precision ηs and recall ηn were adopted to evaluate the retrieval accuracy using the
Data #3 in Figure 13. These measurements are defined as ηs = TP

TP+FP and ηn = TP
TP+FN , where TP, FP,

and FN represent true positive, false positive, and false negative, respectively. The results are shown
in Table 3. From the statistical analysis, the retrival results by the proposed method are superior to that
by [12].

Table 2. Comparisons between retrieved rankings using the proposed method and the method
by Chen et al. (2014). 1st column: RMSD of the retrieved model; 2nd column: reference ranking;
3rd column: Di f fr value. Two numbers in a pair denotes the performances of the compared methods.

The Proposed Method/ Chen et al. (2014)
Data #1 Data #2 Data #3

Rank RMSD Ref. Di f fr RMSD Ref. Di f fr RMSD Ref. Di f fr
1 0.38/0.38 1/1 0/0 2.16/2.16 1/1 0/0 3.60/4.95 7/13 6/12
2 2.15/1.87 9/4 7/2 7.18/5.84 12/5 10/3 2.07/4.95 3/12 110
3 2.07/2.21 7/10 4/7 8.40/5.21 15/3 12/0 2.07/2.26 3/5 0/2
4 2.38/2.21 14/11 10/7 5.83/8.88 4/17 0/13 1.97/4.08 2/10 2/6
5 2.23/3.48 12/18 7/13 7.60/8.52 13/16 8/11 1.90/5.65 1/17 4/12
6 1.40/3.82 2/19 4/13 5.96/7.64 6/14 0/8 3.87/6.60 9/19 3/13
7 1.91/2.44 6/15 1/8 5.96/7.00 7/10 0/3 3.87/5.59 8/16 1/9
8 2.47/1.91 16/5 8/3 5.96/9.34 7/18 1/10 4.08/6.33 10/18 2/10
9 1.59/2.50 3/17 6/8 6.04/5.14 9/2 0/7 4.08/5.30 10/14 1/5

10 2.30/2.08 13/8 3/2 7.17/10.42 11/19 1/9 3.10/5.30 6/14 4/5
Avg.Di f fr 1.89/2.30 6.23/7.01 3.06/5.10

Table 3. Precision-and-recall of our method (Method A) and the related method [12] (Method B).
The tested data is Data #3 in Figure 13 is used as tested data.

# of queries 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MethodA Precision 0.00 0.00 0.33 0.50 0.40 0.33 0.29 0.25 0.22 0.20 0.18 0.25 0.23 0.21
Recall 0.00 0.00 0.07 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.21 0.21 0.21

MethodB Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93
Recall 0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 0.64 0.71 0.79 0.86 0.93 0.93

5. Conclusions and Future Work

This study proposed a new method for 3D building model retrieval using LiDAR point clouds as
input query. To archive consistent encoding of polygonal models and point clouds, rotation-invariance
origin determination is adopted, which utilizes object volume to determine the origin instead of
using the minimal bounding box of an object. In addition, the morphological closing operator is
applied to fill the holes in the depth images of point clouds. Filling holes effectively alleviates
the difficulties caused by sparse and incomplete sampling of point clouds and facilitates consistent
encoding. The proposed encoding that integrates shape distribution with visual similarity can increase
the distinguishability of geometric shapes. The experiments on building models with different
LoDs show that ambiguous shape description is avoided. The experiments also demonstrate that
using the spatial histogram of geometric features as shape descriptor introduces the properties of
noise-insensitivity and rotation-invariance to the retrieval. These properties facilitate the feasibility of
the proposed approaches to achieve efficient and accurate model extraction. Based on the qualitative
and quantitative analyses on LiDAR data and the building models and based on the implemented
web-based retrieval system, we conclude that retrieve building models by using point clouds is feasible.
In the future, we plan to extend the proposed method to point clouds for photogrammetry techniques
and terrestrial LiDAR, which also have a great need of 3D modeling.
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20. Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from LiDAR data based on differential
morphological profiles and locally fitted surfaces. ISPRS J. Photogramm. Remote Sens. 2014, 93, 145–156.

21. Besl, P.J.; McKay, N.D. Method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14,
239–256.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	System Overview
	Generation of Depth Image
	Data Encoding
	Spatial Histogram
	Data Retrieval

	Encoding Properties
	Experimental Results and Discussion
	Datasets
	Computational Performance
	Evaluation of Model Encoding
	Evaluation of Model Retrieval

	Conclusions and Future Work

