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Abstract: This study discusses a method for quantitative quality assessment for the simplification 
of linear features. Considering the multi-scale nature of linear features, this paper combines the 
improved Douglas–Peucker method without threshold and the multiway tree model to construct a 
weighted hierarchical linear feature representation model called the Douglas–Peucker Multiway 
Tree (DMC-tree). Subsequently, the uncertainty computation is conducted from the root of the 
DMC-Tree top-down level by level to obtain the quality indexes. Then, the quality index of the 
whole linear feature is obtained by combining the indexes of every layer together with their 
weights. The results of the presented method are compared with those of the length ratio method 
and the Hausdorff distance method. The results show the advantages of the presented method over 
the others, including (1) its sensitivity to feature points of multiple scales, (2) the quantitative 
characteristics of the indexes, and (3) the finer granularity in assessment. 
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1. Introduction 

As the most common and most important category of features in maps and geo-spatial 
databases and transmission, linear features and their generalization, especially simplification, have 
received considerable attention and have been widely studied. The purpose of simplification is to fit 
a certain scale and/or reduce the data storage by deleting vertices that are redundant or of minor 
importance while maintaining the spatial accuracy and morphological character of the line feature to 
the extent possible. 

Because of the fuzziness of a geo-spatial entity, observation error and information loss in the 
computation of geo-spatial data, a certain degree of uncertainty is inevitable throughout the lifecycle 
of a linear feature. Simplification, which involves changes in vertices, can change and magnify the 
uncertainty of the linear feature. To assess the rationality and acceptability of such changes, quality 
assessment of linear feature simplification is needed. 

Currently, the quality assessment of linear feature simplification methods available mainly 
target specific characteristics of the linear feature, such as its geometry or position accuracy, to 
measure the differences between the original linear feature and its simplified one. To our 
knowledge, nearly all these methods are based upon one same hypothesis, i.e., that the original 
linear feature is accurate [1]. An advantage of these methods is their simplicity and rather slight 
computation cost. However, this hypothesis affects the accuracy and reliability of the assessment 
results of these methods, and users and geographers will remain unclear about the extent to which 
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the simplification process has changed the linear feature’s spatial uncertainty, not to mention the 
spatial uncertainty distribution of a certain location or point on the feature, which is useful 
information in both guiding geographers to conduct generalization and enabling users to make 
better use of map products.  

To address this issue, this paper is based on the uncertainty model of linear features, 
transforming the quality assessment of linear feature simplification into the measurement of spatial 
uncertainty variation caused by the simplification. By using the uncertainty variation as an 
assessment index, this method provides objective assessment results. 

In this paper, we propose a new method for assessing the quality of linear feature 
simplification in multiple scales. Our work is different from the state-of-art methods in the 
following respects: (i) the uncertainty of the original linear feature is considered to avoid reliance on 
the hypothesis described above; (ii) the spatial uncertainty of the linear feature after simplification of 
multiple scales is quantified, which means that (1) the spatial uncertainty of the linear feature can 
be calculated to a certain value and (2) for every point on the linear feature, its distribution of 
spatial uncertainty can be calculated. 

The remainder of this paper is organized as follows. Existing achievements of related works are 
discussed in Section 2. Section 3 details the proposed approach. Section 4 describes the experiments 
and discusses the experimental results. The final section provides the conclusions. 

2. Related Work 

Research on the quality assessment of linear feature simplification began in the second half of 
the last century and has continued to the present. Existing achievements can be divided into two 
categories: methods based on geometric features and methods based on spatial accuracy. 

2.1. Linear Feature Simplification Methods 

Simplification methods for linear feature in geography have been widely discussed for more 
than half a century. A classical classification method of linear feature simplification method was 
presented by McMaster in 1987 [2], as shown in Table 1. 

Table 1. McMaster’s classification method. 

Categories of Linear Feature Simplification Method Representative Methods 
Independent Point Algorithms Random Point Algorithm [3] 

Local Processing Routines Vertical Distance Algorithm [3] 
Unconstrained Extended Local Processing Reumann–Witkam Algorithm [4] 

Constrained Extended Local Processing Opheim Method [5] 
Global Routines Douglas–Peucker Algorithm [6] 

From the perspective of quality assessment researchers, all the linear feature simplification 
methods and models can be divided into two categories according to the relationship between the 
vertices of the original linear feature and the simplified feature as follows: 

(1) Constrained simplification methods. In this category, ALL the vertices in the simplified linear 
feature are constrained to be in the original feature as well. Representatives of this category are 
the Douglas–Peucker method, the vertical distance method, etc. 

(2) Unconstrained simplification methods. In this category, NOT ALL the vertices in the simplified 
linear feature are constrained to be in the original feature. Representatives of this category are 
the Li–Openshaw method [7], etc. 

To simplify the description, all the examples and experiments used in this paper belong to the 
constrained simplification methods, but the presented method can also be applied to the 
unconstrained simplification methods by mapping the starting and ending points of original linear 
feature to the simplified feature. 
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Unfortunately, with so many methods and models available, none has been shown to be 
perfect under all circumstances, leading to an inconsistent simplification quality. Research on 
assessments of the quality of linear feature simplification has been ongoing since the second half of 
the last century. Existing achievements can be divided into two categories: methods based on spatial 
accuracy and methods based on geometric features. 

2.2. Methods Based on Spatial Accuracy 

2.2.1. Spatial Uncertainty Models for Linear Features 

Positional aspect is the most characteristic and distinctive aspect of spatial data [2,8]. As an 
important component of spatial data, especially in the positional aspect, in many standards, spatial 
uncertainty describes how closely the coordinate descriptions of features compare with their actual 
locations. 

To the best of our knowledge, recently, most of the existing spatial uncertainty models are 
formed of two semi-ellipses around the vertices and a strip along the linear feature. A few of these 
models have received considerable attention, as shown in Table 2. 

Table 2. Some spatial uncertainty models for linear features. 

Models Time/Author Description 

Epsilon-Band 1956 Perkal [9] 

Considers the uncertainty of each point in a linear feature to be independent 
and identically distributed with the vertices. The shape of the epsilon band is 
a rectangle in the middle of two semi-circles surrounding two vertices. The 
width of the rectangle is determined by users based on their intention. 

Error-Band 1993 Caspary [10] Error band is defined as the band around the true value of the linear feature. 
-Model 1998 Liu [11] The  model is an improvement based on the error band. 

G-Band 2000 Shi [12] 
Here, G stands for general. G-band is a more generalized error model based 
on stochastic process theory. 

H-Band 2000 Fan [13] 
The width of the H-band is determined by the entropy of error, which follows 
a one-dimensional normal distribution in the direction perpendicular to the 
linear feature. 

Error Entropy-Band 2001 Li [14] 
In contrast to other methods, the width of the error entropy band merely 
depends on the joint entropy of the linear feature. 

SSE-Band 2013 Goodchild [15] 

Considering the whole linear feature as one stochastic process theory, rather 
than a set of infinite points, the SSE-band takes into consideration the 
relationship among all points forming the linear feature. In practice, the SSE 
band is approximately considered the minimum circumscribed polygon of a 
huge number of points generated by simulation. 

All models described above are based on the error theory and can thus be considered special 
cases of one more general model [16].  

Let one linear feature model  in a 2-D space and its corresponding error  describe one 
spatial entity , namely, [17], = + . (1)

For a straight line segment PQ with two vertices ( , ), ( , ), any point ( , ) in PQ 
can be written as follows [17]: = (1 − ) + += (1 − ) + + , (2)

where = | |/| |  and | |	and	| |  are the length of straight line segments 	and	 Q , 
respectively. 

If the error distributions of  and  are independent from each other, then the variance–
covariance matrix will be 
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=
2 0 02 0 02 0 02 0 00 0 0 0 20 0 0 0 2

 (3)

When set , , , , , ,  all equal 0 and = = = = , 
then the spatial uncertainty model is equal to the error band model. 

When set = = 0, the spatial uncertainty model is equal to the G-band. 
Based on a similar approach, each of the models shown in the table can be considered a special 

case of the general model. 
The development history of linear feature uncertainty modeling can be considered a process 

from simple to complex with a reduction in hypothesis. To date, the theories involved have included 
geometry [18], error theory [19], stochastic process theory [20], information theory [21], analog 
theory [22], and others, making the computation of spatial uncertainty extremely resource 
consuming and, in some cases, even unacceptable in the big data era [23]. 

However, all these models are designed for observed data (original data) before cartographic 
generalization. The loss of a certain number of vertices in a linear feature would totally change the 
spatial uncertainty distribution along the linear feature. Research results on this issue are rare, 
among which the most influential studies were conducted by Shi et al. in 2004 and 2006. However, 
the ‘Positional Uncertainty in Line Simplification in GIS’ presented in 2004 used maximum distance 
as the only index to estimate the spatial uncertainty of the simplified linear feature regardless of the 
original error distribution in its original version [24], while the ‘average shape dissimilarity measure’ 
obtained by using the angle of inclination as its index was made up of three categories—high 
dissimilarity, possible dissimilarity and low dissimilarity [18]—and the outcomes are not 
comprehensive. 

2.2.2. Quality Assessment Methods Based on Spatial Uncertainty 

Spatial accuracy reflects the correctness of geo-spatial location of geographical features for 
representing their corresponding geo-spatial entities and is thus a natural index for quality 
assessment of linear feature simplification. Existing findings in this category usually use the original 
linear feature as the baseline to assess the simplified feature. Methods and algorithms have become 
increasingly diverse, some of which are widely used [19], including the following: 

1. Hausdorff Distance Method 

In 1995, Hangouët [25] revealed that the point-to-point relation is too limited for cartographic 
applications and that Euclidean distance is a typical measure of this relation. Problems occur when 
the Euclidean distance method (EDM) involves the relative positional accuracy computation of line 
elements (e.g. the Euclidean distance between two lines will be zero if their inner area is 0 even when 
they are not strictly identical, e.g. different in length). To solve this issue, the Hausdorff distance 
method (HDM) was introduced. 

For sets 	and	  made up of numerable points	 ∈ , ∈ , the Hausdorff distance between 
them can be defined [20] as follows: ( , ) = max{ ∈ ( , ); ∈ ( , )}, (4)

where sup represents the supremum.  
When sets 	and	  are lines, the computation of Hausdorff distance ( , ) of all points 

(vertices and points on the line) on ,  is extremely complex; the discrete Hausdorff distance [25] 
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between lines was proposed by restricting the computation within vertices, which can be defined as 
follows: ( , ) = max[ , ] (5)= ∈ [ ∈ ( ( , ))]= ∈ [ ∈ ( ( , ))], (6)

where 	and	  are vertices of 	and	 , respectively. 

2. Location Error Model 

The Location Error Model (LEM), also known as the Mean Distance Model (MDM) [26], uses the 
ratio between the area formed by the original linear feature and its simplified version, and the length 
of the original linear feature (some papers may use the simplified linear feature to obtain more 
optimistic results) as a location error index for simplification, which can be defined as follows: ( , ) = / ℎ( ), (7)

where ,  and S represent the original linear feature, its simplified version, and the area formed by 
them, respectively. 

3. Single Buffer Overlay Method 

There are two versions of the single buffer overlay method (SBOM) [21]: 

① Increasing the width of buffer to achieve certain overlay percentages [22] 
For a given pair of linear features	 , , a buffer of increasing width  is created around one 
linear feature in order to assess the length percentage  of the other linear feature falling in 	(or ). Recording the width parameters when  reaches certain values (such as 30%, 50%, 
70%, 90%) as the quality index of simplification from  to . 

② Computing the overlap percentages under a certain width of buffer 
Different from the method of increasing the width of buffer, this version of SBOM sets the 
width of the buffer to a constant (such as limiting the error of the vertices) to calculate the length 
percentage that falls within the buffer. 

4. Double Buffer Overlay 

The double buffer overlay method (DBOM) was presented by Havard Tveite [17] to give a 
weight of the error formed by simplification, which is more complicated than the SBOM because it 
involves buffering both linear features. 

For a given pair of linear features	 ,  with buffers ,  around each of them, there are four 
areas for the region  nearby: 

• The common region: = ∩  
• The irrelevant region: = ∩  
• The lost region: = −  
• The noisy region: = −  

By using these four regions, the author analyzes properties including displacement, 
completeness, bias, etc.  

In 2000, Veregin [27] examined the effects of line simplification on the positional accuracy of 
linear features. His goal was to quantify the relationship between the degree of simplification and 
the degree of positional error to help users and geographers choose an appropriate parameter for 
simplification with an acceptable positional accuracy. In his experiments, the computation of 
potential error ( 	 = ∑ 	 		 	 	 	 ) lacks the ability to distinguish diverse 

differences (e.g., monolithic translation, fluctuate). 



ISPRS Int. J. Geo-Inf. 2017, 6, 184  6 of 25 

 

Clearly, this type of method remains a primary quantitative method for the following reasons: 
(i) the real spatial uncertainty (location discrepancy between linear feature and its corresponding 
entity) of the simplified linear feature cannot be obtained through these methods; (ii) most methods 
are designed for assessing the whole linear feature’s simplification quality rather than every part of 
it. While for users and geographers, the actual spatial uncertainty of the whole linear feature and its 
parts are usually of great importance. 

Thus, in this paper, a quality assessment method for linear feature simplification based on 
multi-scale spatial uncertainty is discussed to achieve quantification results. The chosen uncertainty 
model for spatial point is based on the actual environment [28,29], where the spatial uncertainty is 
represented by the circle centered on it with its radius equal to the point’s limit error to enhance 
practicability and reduce the computational burden. 

2.3. Methods Based on Geometric Features 

Geometric aspects of linear features mainly consist of length, sinuosity, etc. [30,31] Methods in 
this category are relatively sparse, and existing research findings include the following: 

2.3.1. Length Ratio 

Simplification of a linear feature usually leads to a reduction in length. Naturally, the degree of 
reduction in length means a loss of information on the linear feature, which is considered as a 
quality assessment index for linear feature simplification [32,33]. Let ,  be the length of the 
original linear feature and that of the simplified feature, respectively, the length ratio of 
simplification  will be (100%) = 100 ∗ / . (8)

Thus,  can indicate the degree of detail loss caused by simplification.  

2.3.2. Sinuosity 

Line sinuosity is a statistic index similar to a route factor, similar to fractal dimension. The 
computation of sinuosity for the line feature can be conducted with the following steps: 

1. Accumulating [34] the angle between every two adjacent line segments in the line feature. Then, 
the sinuosity of the linear feature	  is determined as follows: = ∑∠ , (9)

where  is a vertex in the linear feature. Let  be the number of vertices in the linear feature; 
then,  meets ∈ [2, − 1]. = S/  (10)

2. Constructing a ratio of distance ±  vertices along the linear feature to the length of an anchor 
line centered at the given vertex [35,36]: = ∑ ,, , (11)

where  is a step length parameter [37] that meets > 0.  varies from 1 for a set of vertices 
along the same straight line to ∞ in the pathological case, where vertex +  shares the same 
location as vertex − . Statistically, the value of  usually falls within the interval [0,2]. 

2.3.3. Fractal geometry 

The first usage of fractal geometry in line simplification was in 1972 by Uemura [38] as an index 
for line drawings. When measuring the coastline of Britain, the usage of fractal geometry used by 
Mandelbrot [39] finally received wide attention from geographers. Compared with traditional 
Euclidean geometry, fractal geometry has a better performance for geographical features that are 
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rather irregular and complicated (also considered self-similar) [40]. To address the fact that 
simplification would inevitably cause the distortion of a linear feature, resulting in variation in a 
certain degree of loss of geometric characters, Goodchild [41] studied the relationship between 
fractal and geographical measures and noted that the fractal dimension can be used to predict the 
effect of map generalization. Subsequently, Jiang [42], Dutton [43], Mark [44], Ren [40], et al. have 
presented algorithms and methods for different geographical features.  

Despite their unique characteristics, for geographical linear features, these fractal 
geometry-based methods’ lack of consideration of geo-spatial characteristics gives rise to a 
one-sided assessment. 

3. Quality Assessment for Linear Feature Simplification Based on Multi-Scale Spatial 
Uncertainty 

3.1. Specific Characteristics of Linear Feature Simplification 

Consisting of multiple spatial points in sequence, a linear feature is used to describe a 
geographical spatial entity. Thus, the vertices of a linear feature have important value, and their 
characteristics should be considered during the simplification of a linear feature: 

1. Preservation of feature vertices 
Feature vertices of linear feature mainly include start and end vertices, local and global extreme 
points (points with the maximum coordinates in local or global) and turning points [20]. On one 
hand, contradictions between the continuous geographic space and discrete data space cause 
the splitting of some entities into several linear features, which in turn results in the strict 
reservation of start and end vertices. On the other hand, GIS products are made up of many 
features, and feature vertices of multiple linear features may form unique geomorphic features 
such as ridgelines, contour lines, valley lines and so on. As a result, deleting such vertices may 
cause a loss of geomorphic features, which will significantly affect the information conveyed in 
GIS products. 

2. Multi-scale data consistency  
Simplification for multiple scales will delete different subsets of vertices in the linear feature. In 
GIS, linear features exist not only in map products but also in map databases and 
geo-information databases; therefore, the consistency among multiple scales should be taken 
into consideration during the simplification of a linear feature to ensure its consistency with the 
original entity. This process also requires the same principle during the simplification process. 

Considering the multi-scale characteristics of linear features, the hierarchical representation of 
linear features is completed before the quality assessment.  

3.2. Hierarchical Representation of Linear Features Based on the DMC-Tree 

As described above, the need for multi-scale representation has not been fully considered in 
linear feature simplification. In this section, the DMC-Tree model is presented based on the 
Douglas–Peucker method and the Multiway-Tree model to form a multi-level model of linear 
features from the most abstract level (root) to the finest level (leaves).  

Let = { , , … , }  be the linear feature, where , 0 ≤ <  represents the 
vertices and  represents the straight segment formed by connecting  and . The method 
of DMC-Tree construction is shown below:  

1. Connecting ,  and recording straight segment  as  to form the root of DMC-Tree. 
2. Computing the distance  between each vertex  in  except	 ,  and the straight line 

 over	 , . Record the maximum  as  and the corresponding vertex as . Note 
that more than one vertex may have the maximum distance; if so, let = { , , … , } be 
the set of all these vertices. 
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3. Recording the next level of DMC-Tree of  as = { , }. If  is a set, level 	has 
more than 2  elements, then	 = { , , … , }.  

4. Splitting  to a set of sub-linear features	{ , , … , }; return to step 1. If a 
sub-linear feature contains only two vertices, terminate the construction of the sub-tree. 

After the above steps, the DMC-Tree forms a hierarchical representation of linear feature , as = { , , , … , }, (12)

where the element , ∈  stands for a certain level representation of . 
Figure 1 shows a sample of the process, where	 = { , , , , , }, with the corresponding 

DMC-Tree as = { = { }, = { , }, = { , , , }, = { , , , , }}.  

  

Figure 1. DMC-Tree of simulated data. 

3.3. Spatial Uncertainty Model for Linear Feature Simplification 

Spatial uncertainty is a non-negligible attribute of spatial data throughout their whole lifecycle. 
In a simple example shown in Figure 2, the original linear feature contains three vertices: B, A, and 
C. After generalization, vertex A is simplified, namely, the linear feature BAC becomes BC. Assume 
BAC to be the observed data with spatial uncertainty  obeying a two-dimensional normal 
distribution where the probability distributions in x and y directions are independent and identical. 
Then, the uncertainty region of BC can be drawn using the error-band model.  

 

Figure 2. Simple example of the effect of simplification on spatial uncertainty. 

Obviously, this model considers the spatial uncertainty of vertices larger than that of 
intermediate points. The uncertainty region of A is shown by ⊙A centered on A with a radius of R, 
where R is a function related to the uncertainty model used (standard deviation, limit deviation, etc.) 
and the corresponding uncertainty value. After generalization, vertex A is mapped to an 
intermediate point D in BC, whose uncertainty is shown by ⊙D centered on D with a radius of R’, 
where R  is equal to the width of the error-band at D. In fact, as there is a certain degree of deviation 
from vertex A to point D, the uncertainty of point D should be larger than that of vertex A. However, 
the area of ⊙D and ⊙A meets ⊙ < ⊙ = ⊙ = ⊙ , which means that the 
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error-band model is not applicable for simplified linear features. As the same conclusion regarding 
other uncertainty models for linear features can be obtained in a similar way, the derivation process 
is not shown in this paper. 

Almost all uncertainty models use error at a certain confidence level  with a distribution that 
is approximately normal to record spatial uncertainty. Let = ( , , , , ) be a vertex in a 
linear feature in 2-D GIS and = ( , ) be the corresponding vertex in the simplified feature, 
where  stands for error in the x direction,  stands for error in the y direction, and  stands for 
the correlation coefficient between , .  

Thus, the probability density function(pdf) of :	  meets = (2 1 − ) exp[− ( ) (( ) − ( )( ) + ( ) )]. (13)

To ensure the same structure of uncertainty model between  and , let the pdf of  be = (2 1 − ) exp[− ( ) ( − + )]. (14)

Correspondingly, the marginal probability density functions (mpdf) of  and  are  

( ) = √ ( )
( ) = √ ( ) , (15)

respectively. 
Accordingly, we have ( ; ) = ∑ ( ) log ( )∈ = ∑ log∈ , ∈ . (16)

In fact, available GIS uses just one parameter to describe the uncertainty of the point, that is, the 
long axis of the error ellipse, namely, = ∗ max	( , ), where  is a corresponding parameter at 
confidence level . 

Obviously, this model of spatial uncertainty is relatively conservative and involves the 
following assumptions: 

1. The uncertainties in the x and y directions are independent of each other, namely, = 0. 
2. The standard deviations in the x and y directions are equal to each other, namely, = = . 

Thus, we have = (2 ) exp[−12 (( − ) + ( − ) )] (17)

= (2 ) exp[− ( − + )]. (18)

Generally, any point  in a certain linear feature  can be represented as = (1 − ) += (1 − ) + , (19)

where = / ,  is the distance between  and ,  is the length of straight line , and	( , ),	( , ),	( , ) are the coordinates of point , , , respectively. 
According to the error propagation law, the uncertainty of point  meets = (1 − ) + + 2 (1 − )= (1 − ) + + 2 (1 − ) . (20)
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In consideration of the assumptions widely adopted in spatial uncertainty models, every vertex 
in the same linear feature follows the same pdf, which meets the attributes of isotropy, namely, = = = , = = 0. (21)

Thus, if  is the standard error of vertices in linear feature , the uncertainty of any point in 
 can be simplified as = √1 − 2 + 2= √1 − 2 + 2 . (22)

Therefore, any point  in linear feature  meets = ∗ √1 − 2 + 2 ∗ max , = √1 − 2 + 2 ∗ . (23)

The spatial uncertainty model can be divided into the following categories according to the 
different values of k as shown in Table 3. 

In the real GIS environment, the value of k usually is set to 3 [28,29]; therefore, this paper uses 
limit error to measure the spatial uncertainty. 

According to the basic premise of a 1-D random variable, the radius of the uncertainty area of a 
2-D normal random variable (point in 2-D environment) under confidence level = 99.99% meets: 

= (1 − )(3 ) = 3 ∗ (1 − ) (24)

 above can be simplified as = 3  according to the limit error model widely adopted in 
spatial uncertainty models. 

Table 3. Different values of . 
Name of Error Model Value of Probability in the Model (%) 

Standard error 1.0 80.77 
Probable error 0.5515 50 

Epsilon accuracy 1.24 90 
Circular error  1.96 95 
Error entropy 2.332 99.87 

Limit error 3.0 99.99 

As shown in Figure 3, the linear feature before simplification is = { , , }  and the 
corresponding simplified feature is = { , }. Let  be any point in ,  be the pedal on  of 
, and	 ⊙ ,⊙  be the circle with the radius = 3  centered on point , . 

In consideration of linear feature representing its corresponding geo-spatial entity’s location in 
the 2-D (or 3-D in 3-D GIS) space, the area inside ⊙  is the highly probably region ( (⊙ i) =99.99%), where the true value of  lies. Thus, ⊙  can be considered an accurate representation of 
uncertainty within vertex . 

Obviously, the uncertainty model for every point  in the simplified linear feature consists of 
two parts: the relative position relation vector 	between  and its corresponding point  and 
the uncertainty 	of point  under a certain confidence level . Thus, the uncertainty of 
corresponding point	  can be obtained by = + , (25)

where = ( ∆ , ∆ )	and	 = ( , ) . As the uncertainty metadata of current spatial data 
contain only one element, the uncertainty of  can also be the integration of , , namely, = | | + . (26)
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Figure 3. Uncertainty model for linear feature simplification. 

Thus, the average uncertainty of the simplified straight line segment  can be obtained by = ∑ | |∈ , ∈ , (27)

where −  stands for the total number of points participating the calculation. 
In fact, as the circle ⊙  with the radius  centered on point  has the attribution of the 

inclusion of the circle with the radius  centered on point , the confidence level corresponding to ⊙  meets ≤ ≤ 100% , demonstrating that this uncertainty calculation is a relatively 
conservative index. 

3.4. Uncertainty Assessment of Linear Feature Simplification Based on Hierarchical Representation 

As described in Section 3.2, linear feature  and its simplified version  can be represented 
as = { , , … , }	and	 = { , , … , }, respectively. 

According to the hierarchical representation of , , a comparison between ,  is made 
following the order of → . Let the earliest level of difference be ( , ), with the 
difference element represented by . Obviously,	  forms the most abstract different level of  
and  and shows the greatest impact on simplification of  to . Further, the subtree of  must 
be different, which has a lesser impact than ; thus, the assessment terminates at . 

Let the parent node of ,  be = { , , … }	and	 = { , , … }. Obviously, we 
have = ; =  and ≠ .  

Depending on relationship between , , that is, whether proposition ⊆  is true or not, 
the condition can be divided to 2 cases: 

Case 1. ⊆ . In this case, the simplified linear feature  has a loss of partial feature 
vertices in level , resulting in  being null (its parent node being a leaf node). The formal 
description as follows: ∃ ∈ , meets the following: 

1.  is a leaf node. 
2. Its corresponding node in the original linear feature  is not a leaf node. 

Thus, the computation of spatial uncertainty can be transformed into a typical 1: n relationship 
between  and its child nodes. 

A diagram of Case 1 is given in Figure 3. In the diagram, leaf node  is represented by 
straight line segment BC, while in the same node in the corresponding DMC-Tree of the original 
linear feature,  has child nodes BA and AC. Thus, the computation of uncertainty caused by 
simplification can be transformed to the difference from BA and AC to the single straight line 
segment BC. 

By regarding line segments BAC and BC as innumerable points, we can construct the mapping 
relation between them. For any point  in BAC, its corresponding point  is its pedal in a vertical 
line normal to BC. Obviously, the length of straight line segment  is equal to the distance 
between point  and straight line through BC. With circle ⊙  with the radius  representing its 
spatial uncertainty, centered on point , the spatial uncertainty of point  is then the minimum 
radius of circle ⊙  centered on point  meeting ⊙ ⊆⊙ . 

Thus, the average spatial uncertainty of node BC in DMC-Tree can be computed as 
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1

1 n

BC i
i

U R
n =

=  , (28)

where n is the total number of points in BC. 
Case 2.	 ⊄ . In this case, the simplified linear feature  has some different vertices with 

 in level , while  is not a leaf node. 
A diagram of Case 2 is given in Figure 4, where the original curve is ABDC. 

(a) (b)

Figure 4. (a) Diagram of Case 2; (b) diagram of Case 2’s DMC-Tree. 

In Figure 4, line segment AB, BC represents , and AD, DC represents . The simplification 
of linear feature  losses feature vertex B in level , resulting in D as its corresponding vertice, 
while in the original linear feature, D exists in a deeper level. 

Obviously, as a result of the difference between characteristic points (B, D), the morphological 
difference here is larger than that in Case 1. When the same method in Case 1 is used to construct the 
mapping relation between ABC and ADC, there may be some points in ABC with no corresponding 
points in ADC. 

The computation of spatial uncertainty in Case 2 is given below: 

1. Connecting the common endpoints (A, C) and importing the method in Case 1 to map all the 
points along both ABC and ADC to straight line AC.  

2. Let 	 (∙), (∙) be the map function from ABC and ADC to AC, respectively. Map function ( ): →  is constructed by using transitivity in the map function, namely, ∀ ∈ , ∃| ∈ , meets (1) ( ) = ; (2) ( ) = ( ) = .  

Thus, the average spatial uncertainty of simplified line ADC can be computed as  = ∑ , (29)

where m is the total number of points in AC. 
At this point, the transformation of spatial uncertainty caused by simplification in a certain 

level of DMC-Tree is complete. For the computation of the whole linear feature, answers of all levels 
should be integrated together. 

A typical structure in a DMC-Tree is shown in Figure 5. 

 

Figure 5. Diagram of a typical structure in DMC-Tree. 

Let | | be the length of straight line segment B. Considering the geographical feature of the 
linear feature and the hierarchical structure of its corresponding DMC-Tree, the longer the straight 
line segment is, as well as the higher the level is, the more important it is in GIS databases and 
products. As a result, the weight assignment model is designed as follows: 

AC

AB BC

BD DC

B

A C
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1. The weight of root node is set to be 1. 
2. Weights of child nodes are inherited from their parent node. 
3. Weights between sibling nodes are prorated by their length. 

As for the upper diagram, we have + =  (30)= ∙ | || | | |. (31)

3.5. Complexity Analysis of the Algorithm 

3.5.1. Analysis of the Time Complexity 

The whole algorithm can be divided into 2 parts: 
Part 1. Construction of DMC-Tree 
In this part, the algorithm runs like the classic Douglas-Peucker algorithm, with its time 

complexity as O(nlogn). 
Part 2. Computation of spatial uncertainty in each level.  
Depending on the location and number of difference in DMC-Tree between both linear features, 

the time complexity of this part varies from O(n) all the way up to O(logn). In detail, 
O(n): Simplification causes a loss of some very important vertices (for example, certain vertices 

in the first level under extreme circumstances); 
O(nlogn): Simplification only causes a loss of some least important vertices (for example, certain 

vertices in the deepest level under extreme circumstances); 
In conclusion, the overall time complexity of the algorithm remains O(nlogn). 

3.5.2. Analysis of the Space Complexity 

The storage space needed in the multi-scale spatial uncertainty method includes (1) storage 
used by the DMC-Tree, the size of which is nlogn, where n represents the vertex number in the 
corresponding linear feature, and (2) storage used by the quality of all the vertices, the size of which 
is n. Thus, the storage space needed in this method is nlogn. 

4. Experiments 

To validate the availability, correctness and advantages of the multi-scale spatial uncertainty 
method among widespread methods, namely, the length ratio method and the Hausdorff distance 
method, several experiments were designed on both simulated data and real data. A prototype 
system was developed using C++ and Visual Studio 2010. 

4.1. Experiments on Simulated Data 

First, three quality assessment methods are preliminarily verified by one group of experiments 
on simulated data.  

There are six vertices in the simulated data: one starting point, one endpoint, and four 
intermediate points. Here, four intermediate vertices are deleted to simulate different results of the 
linear feature simplification one at a time, as is shown in Figure 6, and the uncertainties of all vertices 
are set to be 1. 
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Figure 6. Simulated data and their corresponding DMC-Trees. 

Quality assessment results of this group of experiments are shown in Table 4, where the 
maximum uncertainty and average uncertainty means the maximum and average uncertainty of all 
vertices, respectively. 

Table 4. Quality assessment results of experiments on simulated data. 

Methods 

Curve 

Multi-Scale Spatial Uncertainty Length 
Ratio 

Hausdorff 
Distance 

Location 
Error 

Maximum 
Uncertainty 

Highest 
Level/Vertex 

Average 
Uncertainty Ratio Distance Mean 

Distance 
Original 1 NULL 0.811936 100% 0 0 

Without B 6.571951 2/B 1.949738 68.19% 4.1231 0.2652 
Without C 9.428571 1/C 5.306216 74.51% 5 0.7958 
Without D 3.234523 3/D 1.261412 94.07% 2.8284 0.3061 
Without E 3.837152 2/E 1.682238 85.73% 3.1623 0.1632 
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Visually, the deletion of vertex C causes the greatest impact on shape of the curve, followed by 
the deletion of vertex B, while the impact of deleting vertices D or E is relatively slight. The results of 
three quality assessment methods but the LEM (whose order is: E > B > D > C) follow the same 
quality order, namely, D > E > B > C, also in accordance with human visual perception. Thus, the 
Location Error Model is no longer used in the following experiments.  

While focusing on the curve without B and the curve without C, the difference between quality 
index of length ratios (68.19% vs. 74.51%) and Hausdorff distances (4.12 vs. 5) is rather small, while 
the difference in the multi-scale spatial uncertainty (1.95 vs. 5.31) is quite significant. This 
phenomenon indicates the advantage of MS2U in detecting the loss of main feature points. The 
outputs of MS2U also include the maximum uncertainty and its corresponding level and vertex, 
providing quality metadata for the simplified linear feature under multiple scales for cartographic 
generalization with vertex granularity. 

4.2. Experiments on Real Data 

As shown in Figure 7, a segment of a hydroline of 100 vertices and a boundary line of 200 
vertices from the Digital Atlas of the Earth (DAE) are used as the original linear feature in the 
experiments in this section. The spatial uncertainty of these features is considered to be ±50	m (or 0.00045° in the geographic coordinate system). These linear features are chosen as representative of 
linear natural entities and linear artificial entities, respectively. 

 

 
Figure 7. Linear features used in this section. 
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Visually, the overall shape of the hydroline is more complex (many irregular bends exist) than 
that of the boundary (overall stable with few drastic changing intervals). Thus, the complexity of 
these linear features has certain representativeness in both natural and artificial linear features. 

In this section, the Douglas–Peucker algorithm (DPA) and the vertical distance algorithm 
(VDA) are used for the simplification of linear features. The outputs of DPA and VDA with 50% and 
25% vertices retained are used as the simplified linear feature; the corresponding tolerances are 
shown in Table 5. 

Table 5. Relationship between tolerances and ratio of vertices retained (°). 
 

Tolerances
Hydroline Boundary Line 

Ratio Retained 50% 25% 50% 25% 
Douglas–Peucker Algorithm 0.000135 0.000340 0.000136 0.000423 
Vertical Distance Algorithm 0.000125 0.000258 0.000112 0.000260 

In the next few sections, the linear features used (a hydroline, a boundary and their 
corresponding simplified versions) are shown with the original line features in blue and the 
simplified versions in red. 

4.2.1. Simplifications by DPA 

As shown in Figures 8 and 9, the hydroline and boundary are simplified by DPA with vertices 
retained at 50% and 25%, respectively. 

1. Hydroline (Ratio of Vertices Retained 50%, 25%) 

 

 
Figure 8. Hydrolines simplified by DPA to 50% and 25% of vertices retained. 
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As the contributing factor of a river is rather complicated, the shape of the hydroline is irregular 
and complex, making the simplification somewhat difficult. Visually, the left hydroline in red 
reserves more details (looks almost the same in total as the original hydroline with a few small 
distinctions) than the right one (lost some small but identifiable shapes). Obviously, the similarity 
between linear features decreases with a decrease in the ratio of vertices. 

2. Boundary Line (Ratio of Vertices Retained 50% and 25%) 

 

 
Figure 9. Boundaries simplified by DPA to 50% and 25% vertices retained. 

Compared with the hydroline shown in Figure 10, the boundary used here is formed by twice 
the number of vertices of the hydroline, while it can be spliced into two types of sections, namely, 
sharp corner sections and smooth linear sections. Because the boundary used here includes twice the 
number of vertices of the hydroline, both the simplified boundary lines are more similar to the 
original boundary line, with the most obvious difference in the turning points in the right fig, 
visually.  

4.2.2. Simplifications by VDA 

As shown in Figures 10 and 11, the hydroline and boundary are simplified by VDA with 
vertices retained at 50% and 25%, respectively. 

1. Hydroline (Ratio of Vertices Retained at 50% and 25%) 
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Figure 10. Hydrolines simplified by VDA to 50% and 25% of vertices retained. 

Visually, the hydroline simplified by VDA with vertices retained at levels of 50% and 25% also 
shares little difference with the original hydroline. However, when compared with that simplified 
by DPA, VDA clearly leads to a greater loss of detail, even feature points, than the DPA, especially in 
the right figure (several main feature points are lost). 

2. Boundary Line (Ratio of Vertices Retained at 50% and 25%) 
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Figure 11. Boundaries simplified by DPA to 50% and 25% of vertices retained. 

Similar to Figure 11, both the simplified boundary lines are more similar to the original 
boundary line than the hydroline simplified shown in Figure 12, with the most obvious difference in 
the turning points in the right figure, visually. When compared with that simplified by DPA, a 
greater loss of detail can be found in some of the sharp corners.  

 

(a) (b)

(c) (d)

Figure 12. Linear features used to verify the usability of MS2U. (a) boundaries; (b) hydrolines; (c) 
roads; (d) contour lines. 

4.2.3. Simplifications for Different Linear Features 

In this sub–subsection, different types of linear features, namely, hydrolines, boundaries of one 
marshland and roads from DAE and contour lines derived from the National Centers for 
Environmental Information’s DEM, are used as the original linear feature to test the usability of the 
method presented, as shown in Table 6, with a visual representation in Figure 12. 
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Table 6. Linear features used to verify the usability of MS2U. 

Linear Feature Used Number of Lines Spatial Error 
Hydroline 100 0.00045°
Boundary 100 0.00045°

Contour line 100 ±25 m
Road 100 0.00045°

In this sub–subsection, every linear feature in the area is cut into segments consisting of 100 
vertices to run the experiment. All these linear features are simplified by DPA to run the quality 
assessment. Visually, bends in the roads are the least, followed by the contour lines. Bends in the 
boundaries are the most inhomogeneous (as parts of them are natural, while some are artificial), 
while the hydrolines are the most complex because of their huge number of small bends. 

4.3. Quality Assessment Results  

To verify the method, experiments were conducted to provide a comparison with the widely 
used length ratio method and Hausdorff distance method. The main results are discussed below. 

4.3.1. Contrast between DPA and VDA 

The comparison between two simplification algorithms DPA and VDA is shown in Tables 7 and 8. 

Table 7. Quality assessment results of simplification by DPA. 

Linear Features 
Number of 

Vertices 

Quality Assessment Methods 
Length 
Ratio 

Hausdorff Distance 
( °) Average/Max Uncertainty 

( °) 
Hydroline 

Original 100 100% 0 3.65/4.5 
50% retained 50 98.81% 15 3.96/5.83 
25% retained 25 96.02% 40 4.69/7.87 

Boundary 
Original 200 100% 0 3.65/4.5 

50% retained 100 99.94% 54 3.91/5.86 
25% retained 50 99.63% 97 4.69/8.72 

Table 8. Quality assessment results of simplification by VDA. 

Linear Features 
Number of 

Vertices 

Quality Assessment Methods 
Length 
Ratio 

Hausdorff Distance 
( °) Average/Max Uncertainty 

( °) 
Hydroline 

Original 100 100% 0 3.65/4.5 
50% retained 50 96.17% 14 29.82/56.71 
25% retained 25 96.02% 49 29.20/55.34 

Boundary 
Original 200 100% 0 3.65/4.5 

50% retained 100 98.67% 72 27.65/55.02 
25% retained 50 97.83% 116 24.56/39.38 

As we can see, with the decrease in the number of vertices retained, the results of all the quality 
assessment methods decrease to some extent. Thus, the correctness of these methods is preliminarily 
validated. 

Theoretically, the differences between DPA and VDA can be summarized as follows: 

• Preservation of feature points 
The DPA can preserve the feature points in the upper layers of the DMC-Tree, while the VDA 
does not take feature points into account strictly.  

• Preservation of details 
As all the details with distance to the baseline shorter than the threshold set in DPA will be 
simplified; details preserved by DPA are relatively few, while the VDA performs better in this 
task. The same conclusion can be obtained visually. 
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1. Simplification by DPA 

Analyzing the results of all three assessment methods reveals that the change in length ratio of 
the boundary remains very slight, which is in accordance with people’s visual cognition. Under the 
same condition, the results of the Hausdorff distance method show that the simplified boundary 
with 50% vertices retained has a larger distance than that with 25% vertices retained. By comparing 
the corresponding pair of boundary data, one vector of larger distance to the other boundary is 
found. This phenomenon shows that the Hausdorff distance method is sensitive to extreme points. 

Overall, the quality variation during simplification stays relatively low, showing that the 
Douglas–Peucker algorithm retains the main shape feature and location accuracy of the linear 
feature effectively. 

2. Simplification by VDA 

Visually, the results of VDA have a greater degree of loss in main shape and feature points; 
thus, quality assessments should reveal a lower quality of VDA than of DPA. 

Linear features simplified by VDA share some characteristics in common with linear features 
simplified by DPA: (1) the results of all the quality assessment methods decrease as the number of 
vertices retained decreases; (2) the length ratio shows a higher quality of boundary used in both 
scales, while the Hausdorff distance shows a higher quality of hydrolines used in both scales. 

A strange phenomenon exists in which the simplified linear feature with 50% vertices retained 
scored a lower result than that with 25% vertices retained. To further examine this phenomenon, 
structure differences of the corresponding DMC-Trees were checked from the top down, revealing 
that VDA leads to a loss of one feature vertex in the 2nd layer, which in turn leads to a worse result. 
As the results show, almost all quality indexes of all scales on both linear features show a worse 
quality of the vertical distance algorithm (except a slightly better Hausdorff distance of hydroline 
with 50% vertices retained (15 vs. 14)). The average and max uncertainty indexes are much worse 
than those of the DPA. Overall, the quality variation during simplification is rather unstable for 
different linear features, showing that the use of the vertical distance algorithm may be taken into 
careful consideration. 

4.3.2. Contrast between Different Scales 

As the conclusion in upper sections shows that the VDA has a greater influence than the DPA in 
both main shape and feature vertices, the contrast experiments between different scales are 
conducted on DPA. 

Here, the ratio of vertices retained is used as the representation for scale. Quality assessment 
methods are used for nine different ratios of vertices retained, as shown in Tables 9 and 10.  

1. Hydroline 

Table 9. Quality assessments for hydroline. 

Vertices Retained 
Quality Indexes 

90% 80% 70% 60% 50% 40% 30% 20% 10% 

Length Ratio (100%) 99.92 99.74 99.5 99.3 98.81 97.99 96.79 95.19 92.12 
Hausdorff Distance (10−4°) 8.44 8.81 8.81 13 15 17 17 46 46 
Average Uncertainty (10−4°) 3.68 3.7 3.74 3.84 3.96 4.13 4.38 5 6.02 
Max Uncertainty (10−4°) 5.01 5.09 5.17 5.46 5.83 6.46 6.97 8.39 10.55 

2. Boundary 

The span between the original scale and the target scale clearly affects the quality of 
simplification. Theoretically, in the linear feature simplification, the smaller the scale is, the fewer 
vertices retained, the greater the information loss. However, the effect of scale on simplification is 
not linear: the larger the scale span is, the faster the information is lost. 
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Table 10. Quality assessments for boundary. 

Vertices Retained 
Quality Indexes 90% 80% 70% 60% 50% 40% 30% 20% 10% 

Length Ratio (100%) 99.99 99.99 99.99 99.97 99.94 99.87 99.73 99.43 98.21 
Hausdorff Distance (10−4°) 30 35 45 54 54 83 97 108 222 

Average Uncertainty (10−4°) 3.65 3.67 3.71 3.78 3.91 4.09 4.36 5.16 8.8 
Max Uncertainty (10−4°) 4.53 4.76 4.97 5.34 5.86 6.39 7.61 10.15 22.46 

Visually, the differences between linear features expand when the scale decreases, leading to 
more significant differences between them. The results presented here reveal that the quality indexes 
decline in almost all cases when the scale decreases, except for only one case: quality indexes for a 
hydroline simplified by VDA between the ratio of vertices retained by 50% and 25%. Checking the 
corresponding linear feature reveals that VDA leads to a loss of one feature vertex in the 2nd layer, 
which in turn causes this unusual result. 

4.3.3. Contrast between Different Linear Features 

All these linear features are simplified by DPA, with 50% and 25% vertices retained. Indexes 
including average maximum spatial uncertainty, average spatial uncertainty, length ratio and 
Hausdorff distance are used to show the simplification results, as shown in Tables 11 and 12.  

Table 11. Linear features simplified by DPA with 50% vertices retained. 

Methods 

Features 

Multi-Scale Spatial Uncertainty Average
Length Ratio 

Average Hausdorff 
Distance 

Average Maximum 
Uncertainty 

Average 
Uncertainty Ratio Distance 

Hydroline (10 °) 11.38 4.18 98.29% 14.92 
Boundary (10 °) 11.81 4.95 98.95% 17.83 
Contour line (m) 11.63 4.12 98.51% 17.82 

Road (10 °) 8.23 3.26 99.97% 9.69 

Table 12. :Linear features simplified by DPA with 25% vertices retained. 

Methods 

Features 

Multi-Scale Spatial Uncertainty 
Average 

Length Ratio 
Average Hausdorff 

Distance 
Average Maximum 

Uncertainty 
Average 

Uncertainty Ratio Distance 

Hydroline (10 °) 14.35 6.41 96.33% 43.59 
Boundary (10 °) 13.29 5.64 96.54% 42.66 
Contour line (m) 14.27 6.30 95.83% 41.75 

Road (10 °) 12.52 4.41 99.66% 25.72 

Overall, the span between the original scale and the target scale clearly affects the quality of 
simplification significantly; all indexes of all linear features with 25% vertices retained are lower 
than that of 50% vertices retained. Specifically, the simplification quality of roads outperforms other 
linear features, showing that the quality of simplification is positively related to the complexity of 
the linear feature under the same simplification degree, which is also in accordance with human 
cognition. However, spatial uncertainty obtained by the method presented in this paper is consistent 
with that of the other two methods, showing its usability for different linear features. 

4.4. Discussion 

By regarding the linear feature as a whole, the length ratio method provides a kind of 
coarse-grained simplification method, whose advantages lie in its easy implementation, low 
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computation cost and robustness. The widely used Hausdorff distance method also regards the 
linear feature as a whole to assess the quality of linear feature simplification, and its advantage lies 
in its wide applicability. Compared with the traditional Euclidean distance method, Hausdorff 
distance has the ability to calculate the line-line distance of any pair of intersecting lines. However, 
as the Hausdorff distance is determined solely by the maximum of the distance between all the 
vertices on the line segments, it is vulnerable to outliers. 

By comparison, the MS2U method takes full account of features (feature points and spatial 
uncertainty) of linear feature and its simplification (multi-scale consistency), thus drawing a more 
objective conclusion (e.g., the quality assessment results of the Hausdorff distance method and 
MS2U on 50% and 25% vertices retained by VDA). 

On the other hand, the MS2U method has the ability above the other two methods mentioned 
above in computing the spatial uncertainty of any point, rather than just vertices, in any scale, which 
provides the ability for getting the quality distribution along the whole linear feature. 

5. Conclusions 

The importance of quality assessment for linear feature simplification is increasingly important 
for both geographers and customers. Thus, in this study, we introduced the quality assessment 
method for linear feature simplification based on multi-scale spatial uncertainty (MS2U). 

In this method, a hierarchical representation of linear feature is proposed by reorganizing the 
linear feature to a weighted multiway tree, DMC-Tree. Then, the spatial error of the original linear 
feature and the spatial location deviation caused by simplification are integrated as the spatial 
uncertainty. By adjusting the scale parameter, this method can obtain spatial uncertainty of any 
point (rather than just vertices) under any scale, which is very useful for both geographers and 
users. Experiments on both simulated data and real data indicate the advantages of MS2U in 
granularity, objectivity and usability.  

However, the proposed MS2U method still has its deficiency, namely the hypothesis of the 
strict reservation of start and end vertices. Once this hypothesis becomes false, the DMC-Tree 
structure will be totally changed from the root, making the match between linear features chaotic, 
which in turn biases the assessment results. Future studies may include quality assessment under 
such a circumstance. 
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