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Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the 
surface modeling of soil properties in complex geomorphic areas. Here we present a method for 
adaptive surface modeling of combined secondary variables to improve prediction accuracy 
during the interpolation of soil properties (ASM-SP). Using various secondary variables and 
multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex 
geomorphic area (Qinghai Lake Basin, China). Five methods, including inverse distance weighting 
(IDW), ordinary kriging (OK), and OK combined with different secondary variables (e.g., 
OK-Landuse, OK-Geology, and OK-Soil), were used to validate the proposed method. The mean 
error (ME), mean absolute error (MAE), root mean square error (RMSE), mean relative error 
(MRE), and accuracy (AC) were used as evaluation indicators. Results showed that: (1) The OK 
interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a 
stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial 
variability of soil K+. (2) The methods incorporating combinations of different secondary variables 
(e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil) were associated with lower estimation 
bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP 
increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was 
more stable, with lower MEs, MAEs, RMSEs, and MREs. (3) ASM-SP presents more details than 
others in the abrupt boundary, which can render the result consistent with the true secondary 
variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between 
secondary variables and soil properties, but can also adaptively combine the advantages of 
multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.  

Keywords: complex landform; adaptive surface modeling; spatial interpolation; geostatistics;  
soil properties 

 

1. Introduction 

Scientific management and utilization of soil resources is predicated on correct understanding 
of the continuous changes in regional soil properties. Spatial interpolation is the main method used 
to evaluate continuous changes in soil properties [1], as well as being an important research tool in 
the fields of ‘digital soil’ and ‘pedometrics’ mapping [2]. Current spatial interpolation methods 
mainly originate from discrete modern mathematical theories (function theory and differential 
geometry), and can be largely classified into three groups [3]: (1) deterministic or non-geostatistical 
methods (e.g., inverse distance weighting, IDW), (2) geostatistical methods (e.g., ordinary kriging, 



ISPRS Int. J. Geo-Inf. 2017, 6, 178  2 of 16 

 

OK), and (3) combined methods (e.g., regression kriging). These methods are often data- or even 
variable-specific and their performance depends on many factors. No consistent findings have been 
acquired to identify the best interpolation method, and most are global models (i.e., the same model 
is applied over the whole study area) [4,5]. However, in areas of landform complexity, the spatial 
distribution of soil properties is affected by secondary variables such as soil type, land use type, and 
landform type, and it is difficult to satisfy the basic assumptions of current models [6,7]. Further, 
owing to various shortcomings, single interpolation models restrict the improvement of prediction accuracy.  

In recent years, some machine learning methods have been applied to the fields of data mining 
and spatial interpolation and have demonstrated their predictive accuracy; for example, artificial 
neural networks (ANN), random forest (RF), and support vector machine (SVM). Furthermore, 
ANN and SVM have been applied to daily minimum air temperature and rainfall data in some subjects [8,9]. 
However, all of these represent global interpolation models, which are difficult to adapt to landform 
complexity areas. Utilizing the advantages of ensemble learning for regression, we combined a 
series of interpolation models to carry out interpolation simulation of the spatial variation in soil 
properties and verified the reliability of multi-model integration [10]. Despite this, issues still 
remain; for example, in previous work, we only conducted a global regression integration of various 
interpolation models, with limited consideration of discontinuous space and spatial variation 
problems. Furthermore, remaining interpolation models need improvement and optimization before 
they can be integrated. 

In addition, a range of studies have demonstrated that interpolation accuracy and mapping quality 
can be effectively improved by the use of secondary variables as supplementary information [4,11–18]. 
Land use, soil type, grassland type, and geology type might be expected to play a significant 
auxiliary role in controlling the spatial variation of soil properties. Previous work by Shi et al. [1] 
demonstrated the effectiveness of incorporating land use type and soil type to improve interpolation 
simulation of soil properties. In addition, many studies have identified topography as an important 
auxiliary element [3,19], but previous research results suggest it is not a key factor in the study area [10]. 
Therefore, integration of secondary variables in this study should have an important influence on 
interpolation accuracy. 

In order to solve the global model and secondary variable problems that had long troubled the 
interpolation method, this study aimed to address some of the outstanding issues, with an overall 
goal of improving the prediction accuracy of the single interpolation model in areas with complex 
landforms, using soil K+ as an example. We applied analysis of variance (ANOVA) to select 
secondary variables closely related to the spatial variation of soil K+, integrated secondary variables, 
and constructed a series of soil property interpolation models. To deal with the discontinuity and 
spatial variation of soil properties in areas with complex landforms, error surfaces were constructed 
to enable adaptive partitioning of interpolation surfaces for screening suitable base interpolation 
models. This paper optimized the screened base interpolation models, and built and coordinated 
multi-model integration interpolation methods (different combinations of interpolation models were 
selected for different areas) to realize a high precision simulation of soil properties. We evaluated the 
performance of the different spatial interpolation methods IDW, OK, OK-Landuse, OK-Geology, 
OK-Soil, and ASM-SP, and analyzed their predictive capabilities in terms of soil K+ maps.  

2. Method 

2.1. Study Area and Datasets 

The study area (36°38′–37°29′ N, 99°52′–100°50′ E) is located in the southeast part of the Qinghai 
Lake Basin, on the Tibetan Plateau, China (Figure 1). The long-term combined action of geological 
movement and external forces have formed a complicated and diverse array of geomorphic features 
in the area. The study area covers a total of 2100 km2, with an altitude ranging between 3043 and 
4516 m, and is characterized by complex landforms, including mountains, hills, tablelands, and 
plains. Abundant agricultural and husbandry activities are carried out in the area.  
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The study area is characterized by 6 soil types (Figure 2a); 12 geology types, including alluvial 
terrace, denudate high terrace, and diluvial plain (Figure 2b); and 8 land use types, including cropland, 
grassland, and potential arable land (Figure 2c). The grassland can be divided into 20 types, mainly 
including Achnatherum splendens, leymus, and Blysmus sinocompressus (Figure 2d). We calculated 
the statistical characteristics of soil K+ in secondary variables using 110 training samples (Table 1). 

 
Figure 1. Location of the study area, showing sample sites (circles) and elevation (shading). 

 
Figure 2. Characteristics of the study area: (a) soil types, from the 1: 1,000,000 soil map of the China 
Soil Investigation Office; (b) geology types, from the 1:500,000 geologic map of the Bureau of 
Geological Exploration and Development of Qinghai Province; (c) land use types; and (d) grassland types. 
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Table 1. Descriptive statistical characteristics of soil K+ content in different secondary variables. 

Secondary Variable Subtype Number Mean Standard Error Area/km2 Area Proportion/%

Soil 

Alpine meadow soil 32 1.98 0.14 420.47 20.81 
Chestnut soil 54 2.01 0.18 1360.14 67.31 

Flow sandy soil 10 1.72 0.12 144.76 7.16 
Meadow marsh soil 6 1.84 0.03 31.9 1.58 

Semi-fixed sandy soil 8 1.50 0.07 63.4 3.14 

Geology 

Alluvial terrace 8 2.04 0.14 71.25 3.53 
Denudate high terrace 10 2.15 0.07 266.73 13.22 

Diluvial plain 13 2.10 0.13 515.24 25.53 
Hilly 3 2.14 0.05 3.76 0.19 

Lacustrine plain 20 1.94 0.17 333.33 16.52 
Lake beach 5 1.84 0.09 143.99 7.14 

Large rolling alpine 10 1.89 0.12 132.64 6.57 
Middle rolling alpine 4 1.91 0.10 5.63 0.28 

Sand dune 14 1.63 0.14 193.15 9.57 
Small rolling alpine 14 2.05 0.12 287.08 14.23 

Valley plain 9 1.96 0.08 65.22 3.23 

Land use 

Cropland 10 2.14 0.08 77.16 3.83 
Grassland 41 1.99 0.13 1172.65 58.17 

Meadowland 25 2.02 0.12 417.44 20.71 
Potential arable land 16 1.88 0.14 229.32 11.38 

Scrubland 0 1.91 0.22 1.18 0.05 
Swamp meadowland 5 1.84 0.04 32.09 1.59 

Unused land 13 1.64 0.09 86.43 4.29 

Grassland 

Achnatherum splendens 37 1.93 0.17 719.58 35.59 
Artemisaarenariadc 2 1.49 0.07 31.83 1.57 

Blysmus sinocompressus 5 1.93 0.14 30.00 1.48 
Bush cinqefoil 18 2.06 0.14 517.19 25.58 

Coarse beak carex 2 1.86 0.04 20.10 0.99 
Elymus nutans 3 1.73 0.08 18.49 0.91 

Ephedra 1 1.50 0 2.49 0.12 
Gravel 4 1.68 0.10 135.38 6.70 

Iris ensata thunb 1 1.96 0 34.47 1.70 
Leymus 6 1.94 0.27 28.95 1.43 

Kobresia humilis 4 2.02 0.08 28.30 1.40 
Koeleria tibetica 4 1.80 0.10 24.45 1.21 

Kobresia capillifolia 7 2.05 0.08 157.90 7.81 
Kobresia myosuroides 3 2.16 0.06 82.99 4.11 

Salix oritrepha 2 2.02 0.05 16.33 0.81 
Serpent grass 2 1.94 0.08 4.29 0.21 
Stipa krylovii 3 1.82 0.05 51.77 2.56 

Stipa purpurea 5 2.14 0.07 111.51 5.52 
Water bai zhi 1 2.08 0 5.64 0.28 

Field sampling of surface soil (0–30 cm) at 110 sampling points was carried out in September 
2013 to supplement map data. The mean distance between soil sampling locations was 
approximately 6.74 km. The sampling sites were designed to cover the whole area and include 
different landscapes. In order to ensure rational distribution of the sampling points across the 
different geo-environments, a spatially stratified sampling strategy was applied based on landscape 
types [20]. Supported by the Qinghai Environmental Monitoring Center, we recorded information 
such as soil type, altitude, geology, and land use for each sample location. Each position was 
sampled three times and the mean was recorded as the sample value. Soil samples were taken back 
to the laboratory for analysis. After air drying, grinding, and screening through a 2 mm sieve, soil K+ 
of the samples was measured using sodium hydroxide melting analysis [21].  

The secondary variables were compiled in ArcGIS 10.2, and converted to a resolution ratio of 30 
m through resampling. Since the study area covers a comparatively large range of landscape types, 
and the number of samples was relatively small, the spatial distribution of samples was uneven 
(Figure 1) and some landscape types with a relatively high degree of fragmentation are poorly 
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represented. In the study area, the subtypes of secondary variables not sampled anywhere covered 
only a very small area (i.e., scrubland; Figure 2c; Table 1). For this area, we directly used the nearest 
five-point surrounding values for the subtype to calculate the mean value. 

2.2. Methods for Spatial Interpolation 

2.2.1. Inverse Distance Weighting 

IDW is a deterministic method for multivariate interpolation using a known scattered set of 
points. Values assigned to unknown points are calculated with a weighted average of the values 
available at known points. Weights are usually inversely proportional to the power of distance [22], 
which, at an unsampled location x, leads to an estimator: 
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where Z*(x) is the predicted value, Z (xi) is the measured value, n is the number of closest points 
(typically 10 to 30), p is a parameter (typically p = 2), and d is the cut-off distance. 

2.2.2. Ordinary Kriging 

Kriging interpolation is considered the best unbiased linear estimation method [23]. When the 
mathematical expectation of the regionalized variable Z*(x) is unknown, it is termed ordinary 
kriging. Z*(x), the estimated value of variables at point x, is obtained by the linear combination of n Z 
(xi)s, the effective observed value, using the expression: 
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where iλ  is the weight given to the observed value ( )iZ x  and represents the contribution of each 
observed value to the estimated value Z*(x). It can be calculated by the semi-variance function of the 
variables on the condition that the estimated value is unbiased and optimal. The semi-variance 
function can be expressed by the equation:  
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where ( )hγ  is the semi-variance, N(h) is the point group number at distance h, ( )iZ x  is the 

numerical value at position ix , and ( )iZ x h+  is the numerical value at distance ( )ix h+ .  

2.2.3. Base Interpolation Models  

As a kind of geostatistical model [24,25], each observation z(xmn,ymn) of a specific soil K+ at 
location (x, y) in the n-th type of the m-th kind of secondary variable can be expressed as: 

( , ) ( ) ( , )mn mn mn mn mnz x y m E r x y= +  (4) 

where m(Emn) is the mean value of z(xmn,ymn) in the n-th type of the m-th kind of secondary variable, 
and r(xmn,ymn) is the residual computed by subtracting the mean value m(Emn) of the n-th type of the 
relative m-th secondary variable from the measured value of soil K+. We assumed that m(Emn) and 
r(xmn,ymn) are mutually independent and that variation of r(xmn,ymn) is homogeneous over the entire 
study area. The residuals were then used to interpolate the surface of residuals over the whole study 
area by OK. Finally, the interpolated residual values were summed to the soil K+ means of the 
relevant secondary variable as the final interpolated values of OK with secondary variable for the 
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soil K+; that is, the mean was modified with surface modeling of residuals. See Section 3.3.1 for the 
specific modeling process of base interpolation models (i.e., OK-Landuse, OK-Soil, OK-Geology). 

2.3. Method for Adaptive Partitioning 

A series of interpolation surfaces of soil properties were generated from the base interpolation 
models to calculate simulation errors for soil sampling points. The error surface, derived from linear 
interpolation, was used to determine whether the error of each raster cell exceeded a threshold 
value. Raster cells below the threshold value were clustered to determine the spatial range of 
applicability of each interpolation model after multiple iterations. The individual steps are shown in 
Figure 3a and detailed below.  

 
Figure 3. Adaptive partitioning process (a) and clustering (b). 

Step one: Raster cell simulation. For a specific soil property interpolation model (e.g., Mi), soil 
properties are calculated for the whole study area at a specific resolution ratio C0 to give the raster 
simulation value S0;  

Step two: The soil property simulation error at each sampling point is calculated by subtracting 
the simulation value from the measured value;  

Step three: Error surface construction. The error surface is constructed using linear 
interpolation based on the simulation error obtained in step two;  

Step four: Calculate the simulation error of soil properties at each raster cell, based on the error 
surfaces obtained in step three;  

Step five: Determine whether ei (i=1, 2, …m), the error of each raster cell, satisfies | ei | < ε, 
where ε is the error threshold. If it does, this raster cell is marked as a clustering cell; 

Step six: Clustering. Areas that meet the accuracy threshold are clustered based on the spatial 
locations clustering cells. Ri1, Ri2, and Rik, etc., are the cluster spaces of the interpolation model Mi 
(Figure 3b);  

Step seven: Repeat the above steps for each interpolation model to determine their applicable 
spatial ranges.  

2.4. Assessment of Performance 

Independent validation was applied to assess interpolation accuracy. The soil K+ sample data 
were randomly split into two groups, one of which was used for interpolation and the other for 
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validation. A total of 90 soil K+ sample points were used for interpolation and the remaining 20 were 
used for validation.  

We assessed the accuracy of the different interpolation methods by comparing the mean error 
(ME), mean absolute error (MAE), mean relative error (MRE), root mean square error (RMSE), and 
accuracy (AC) of predicted and measured values. The specific equations used are as follows:  
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where n is the number of samples; PEV is the potential error variance (PEV); ( )ixz  and ( )ixz∗
 are 

the measured and predicted values, respectively; and o  is the mean measured value. AC varies 
between 0 and 1, with larger values indicating a better predicted result. Smaller values of ME, MAE 
and RMSE, indicate greater interpolation accuracy. MRE is dimensionless and smaller values 
indicate greater interpolation accuracy.  

3. Results 

3.1. Parameter Specification and Selection of Secondary Variables 

Based on fitted nugget, sill, and range values, the semi-variogram model was selected for 
analysis of spatial correlation. Other models were considered, including exponential, spherical, 
Bessel, circular, and Gaussian, while exponential and K-Bessel models were selected for the OK and 
base interpolation models as they better fitted the data/residuals (Figure 4). To determine the 
number of kriging samples, we chose the best samples from 5 to 30 at 5-step intervals.  

The spatial correlation of residuals showed good performance after removal of the local mean 
within the different secondary variables (Table 2). All of the semi-variograms of residuals tended to 
show a smaller sill and a shorter range, indicating that drift had been removed [26]. The nugget/sill 
ratio (N/S) of residuals was <0.3 for all models except OK-Geology, which indicates strong spatial 
correlation of the residual data [27]; the spatial correlation increased after trend removal. This 
finding suggests that the OK and base interpolation models were appropriate for the study area.  

Table 2. Semi-variogram models. 

Parameter Residue of OK_Landuse Residue of OK_Soil Residue of OK_Geology OK
Model K-Bessel K-Bessel Exponential Exponential 

Range/10 km 1.1984 1.2169 1.1984 2.5058 
Nugget (N) 0.0204 0.03124 0.1866 0.2483 

Sill (S) 0.4842 0.5043 0.4783 0.6012 
N/S 0.0421 0.0619 0.3901 0.4130 
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Figure 4. Semi-variograms of soil K+ residuals for: (a) OK-Soil; (b) OK-Geology; (c) OK-Landuse; and 
(d) OK (original values). 

The secondary variables used for each method were analyzed by ANOVA. The soil K+ data 
were grouped into classes in order to compare soil K+ for the different secondary variables. For 
example, in terms of soil type, the soil K+ data were grouped into five classes: alpine meadow soil, 
chestnut soil, flow sandy soil, meadow marsh soil, and semi-fixed sandy soil, with 32, 54, 10, 6, and 8 
samples in each, respectively. The soil K+ variances between and within soil types were determined 
by ANOVA using SPSS 21.0 for Windows. 

3.2. ANOVA Analysis of Soil Properties for Different Secondary Variables 

The ANOVA results comparing the influence of different secondary variables on Soil K+ are 
shown in Table 3. Geology type, soil type, and land use type are strongly correlated with the spatial 
variation in soil K+, with significance at the 0.01 level. However, grassland type is poorly correlated 
with soil K+ (significance level of 0.2). This is mainly due to the larger degree of fragmentation of the 
soil map of grassland types, and the limited number of sample points for some grassland, with some 
subtypes of grassland having just 1 or 2 sampling points (Table 1). Hence, grassland type was not 
used in the process of constructing the base interpolation and ASM-SP models.  

Table 3. ANOVA analysis for testing the significance of secondary variables on soil K+ variance. 

Geo-Factors 
Soil 

Property 
Sources of 
Variance 

Degree of 
Freedom 

Sum of 
Variance 

Mean 
Variance 

F Value p Value 

Geology type Soil K+ 
In-group 9 1.033 0.115 2.856 0.005 

Between groups 101 4.060 0.04   
Total 110 5.093    

Soil type Soil K+ 
In-group 4 0.722 0.181 4.378 0.003 

Between groups 106 4.371 0.041   
Total 110 5.093    

Land use type Soil K+ 
In-group 4 0.462 0.116 2.645 0.008 

Between groups 106 4.631 0.044   
Total 110 5.093    

Grassland 
type 

Soil K+ 
In-group 16 0.934 0.058 1.319 0.202 

Between groups 94 4.159 0.044   
Total 110 5.093    

3.3. ASM-SP 

The ASM-SP was constructed in three steps: first, a number of base interpolation models were 
produced (e.g., OK-Landuse, OK-Soil, and OK-Geology); second, the base interpolation models 
were partitioned by an adaptive method; third, the base interpolation models were combined using 
a popular combination scheme. The models OK-Landuse, OK-Soil, and OK-Geology were used as 
the base interpolation models. Adaptive partitioning was conducted on the base interpolation 
models using the method described in Section 2.3 to construct error surfaces; partitions that met the 
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accuracy requirement were screened and the ASM-SP was constructed based on raster cell 
optimization. The specific steps were as follows.  

3.3.1. Construction of Base Interpolation Models 

Step one: Equation (4) was used to calculate mean soil K+ for each geological factor and obtain 
mean surface m(Emn). The mean soil K+ was correlated to the secondary variables, based on measured 
values of soil K+ (Figure 5).  

 
(a) (b) (c) 

Figure 5. Mean surface m(Emn) of soil K+ for different secondary variables: (a) land use; (b) geology; 
(c) soil type. 

Step two: The mean value of soil K+ was subtracted from the measured value to calculate the 
residuals of soil K+. The residuals were then interpolated by OK to obtain the residual surface 
r(xmn,ymn) (Figure 6).  

 
(a) (b) (c) 

Figure 6. Residual surfaces r(xmn,ymn) of soil K+ for different secondary variables: (a) land use; (b) 
geology; (c) soil type. 

Step three: The mean (Figure 5) and residual surfaces (Figure 6) were added to give z(xmn,ymn), 
the spatial interpolation result of soil K+ that integrates the secondary variables, which is the base 
interpolation surface to be integrated.  
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3.3.2. Adaptive Partitioning of Interpolation Surfaces 

Based on the method for constructing error surfaces outlined in Section 2.3, the local 
polynomial interpolation was used to obtain error surfaces for the different interpolation models 
(Figure 7) and to determine the spatial range of applicability for each interpolation model.  

 
(a) (b) (c) 

Figure 7. Error surfaces of base interpolation models: (a) land use; (b) geology; (c) soil type. 

3.3.3. Integration of Interpolation Surfaces 

On the basis of raster cell optimization, interpolation results of raster cells with the minimum 
error were selected as the optimal raster cell to be integrated. Figure 8 displays the principle of the 
raster cell optimization method, and Figure 9 shows the optimal partitions corresponding to the 
different interpolation models.  

 
Figure 8. The raster cell optimization process (‘a’ and ‘b’ are different models of raster interpolation, 
‘c’ and ‘d’ are the interpolation error, ‘e’ is the optimal raster cell mosaic result). 
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Figure 9. Regional distribution of optimized base interpolation models. 

3.4. Comparison of Interpolation Performance 

The accuracy of ASM-SP for simulating the spatial variation of soil K+ was evaluated by 
comparing the simulation effectiveness of six interpolation methods, namely OK-Landuse, 
OK-Geology, OK-Soil, IDW, OK, and ASM-SP. Five evaluation indexes, ME, MAE, RMSE, MRE, and 
AC, were used to independently validate the models (Table 4). As indicated in Table 4, the ME of the 
interpolation methods that combined secondary variables (i.e., OK-Landuse, OK-Geology, OK-Soil, 
and ASM-SP) was closer to 0 than those of the conventional interpolation methods (i.e., IDW and 
OK). This implies that interpolations that integrate secondary variables are less biased. The ASM-SP 
method had lower ME, MAE, RMSE, and MRE values than the other interpolation methods, 
indicating better performance, and this was reflected in its greater AC (0.9950). The interpolation 
accuracy of ASM-SP was higher overall for two reasons. First, the method combines secondary 
variables so it more accurately depicts soil K+ boundaries as they vary with the changing 
geo-environment. Second, based on given accuracy thresholds, ASM-SP adaptively screens the 
optimal prediction area of multiple interpolation models and regroups them in an optimized way. 
The other methods, OK-Landuse, OK-Geology, and OK-Soil, only consider the influence of 
secondary variables on the spatial variance of soil K+, but do not further screen and optimize the 
interpolation results. Thus, they are inferior to ASM-SP in terms of interpolation accuracy.  

Table 4. Comparison of the accuracy of OK, OK-Landuse, OK-Geology, OK-Soil, inverse distance 
weighting (IDW), and ASM-SP interpolation. 

Evaluation Index OK-Landuse OK-Geology OK-Soil IDW OK ASM-SP
ME 0.0030 −0.0037 0.0024 0.0072 0.0093 0.0017 

MAE 0.0294 0.0301 0.0236 0.0362 0.0314 0.0072 
RMSE 0.0742 0.0672 0.0815 0.1637 0.1067 0.0586 
MRE 95.91% 96.57% 95.87% 96.04% 95.34% 89.69% 
AC 0.9047 0.9186 0.9242 0.8756 0.8976 0.9903 

3.5. Comparison of Interpolated Maps 

The predictive capabilities of the six interpolation methods in terms of the soil K+ maps are 
compared in Figure 10. The IDW interpolation gives a good representation of the overall pattern of 
soil K+ distribution, but the accuracy of small scale variations is low. Also, a relatively strong 
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‘bull’s-eye’ effect is created in areas with greater or fewer sampling points. The simulation surface of 
OK is smoother and its interpolation range is at an intermediate level. Owing to the smoothing effect 
of kriging, the range of variation in soil K+ is narrower than the true value, which is what has been 
found in other studies [28–31]. The OK map also shows a weak ‘bull’s-eye’ effect. The OK-Landuse, 
OK-Geology, and OK-Soil maps eliminate the smoothing effect of OK interpolation relatively well, 
and their interpolation accuracy is slightly higher. The ASM-SP method is most effective in depicting 
the pattern of spatial variation in soil K+ and has a moderate interpolation range (1.31–2.38), and can 
give more details of soil K+ distribution in different secondary variables, especially in the abrupt 
boundary. In contrast, soil K+ values of OK and IDW interpolation map did not have the discrete 
information. The method has stronger adaptability to the spatial interpolation of soil properties in 
areas with complex landforms, which allowed it to describe the patterns of spatial variation in soil 
properties in the study area more accurately.  

 
Figure 10. Comparison of soil K+ maps constructed using different interpolation methods: (a) 
OK-Landuse, where OK is ordinary kriging; (b) OK-Geology; (c) OK-Soil; (d) inverse distance 
weighting (IDW); (e) OK; and (f) ASM-SP.  

4. Discussion 

4.1. Performance of Multi-Model Integration for Reducing Predictive Error 

Unlike more traditional spatial interpolation methods (e.g., IDW and OK), which use one 
interpolation model to train data sets, the ASM-SP method uses a series of base interpolation models 
and constructs error surfaces to adaptively screen and regroup the interpolation models in an 
optimized way. Its interpolation accuracy is usually higher than that of a single interpolation model [10]. 
Thus, it has great advantages for conducting interpolation with multiple models. The systematic 
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analysis followed in this study indicates that the improved performance of the ASM-SP interpolation 
is mainly due to the following reasons:  

(1) The sample data used to predict soil properties cannot usually provide the complete 
information for individual interpolation models, requiring assumptions to be made about 
different conditions. In other words, it is difficult for a single interpolation model to accurately 
describe the spatial variance of soil properties across the whole study area. For instance, using 
sampling data for one soil property, a number of interpolation models might share similar 
interpolation accuracies, with no optimal interpolation. The accuracy of spatial interpolation of 
soil properties can be well improved by effectively combining the advantages of multiple base 
interpolation models.  

(2) The sample data used to predict soil properties often cannot accurately express patterns of 
spatial variation. However, the integration of multiple models is able to provide a better 
approximation than use of a single model. For example, the patterns of spatial variance in soil 
K+ in dry farmland differ greatly in areas with chernozem and clay soils. Therefore, if land use 
type is the only secondary variable used in the spatial interpolation of soil K+ (e.g., in 
OK-Landuse), it is usually impossible to achieve a relatively high prediction accuracy. An 
effective solution is to integrate a series of spatial interpolation methods (e.g., OK-Landuse, 
OK-Soil, OK-Geology, etc.) to realize simultaneous approximation.  

Based on the above, it is clear that the interpolation results derived from the ASM-SP method 
provide a better physical explanation of the spatial variation in soil properties. Also, the simulation 
accuracy of ASM-SP is greatly enhanced compared with OK, OK-Landuse, OK-Soil, OK-Geology etc. 
Thus, ASM-SP is a more suitable method for application in areas with complex landforms.  

4.2. Effectiveness of Secondary Variables for Spatial Interpolation  

Different land uses, soil types, and geology all influence the spatial variation of soil properties. 
Previous research has also demonstrated that there is a relatively strong spatial correlation between 
secondary variables and the spatial variation of soil properties [14,32–34]. Work by [35,36] explained 
the correlation between the spatial variation of soil properties and secondary variables, and 
effectively improved the prediction accuracy of soil properties using secondary variables as 
secondary variables.  

In this study, we compared spatial interpolation models that integrate secondary variables as 
the secondary variables (e.g., ASM-SP) and spatial interpolation models that do not incorporate any 
secondary variables (e.g., IDW and OK). The results indicated that an appropriate integration of 
secondary variables can effectively improve the spatial interpolation accuracy of soil properties. This 
supports the conclusion of Goovaerts (1999) that CoKriging interpolation combining secondary 
variables usually achieves a better simulation effect than OK. However, as pointed out by [24], the 
Cokriging interpolation result is only better than OK when the correlation between secondary 
variables and the sample data of soil properties is greater than 0.4. When the correlation is greater 
than 0.75, the simulation accuracy of spatial interpolation methods that combine secondary variables 
is higher than OK. Nevertheless, as shown by our previous research, the integration of secondary 
variables does not always effectively increase the spatial interpolation accuracy, though there is a 
relatively strong spatial correlation between secondary variables and the sample data of soil 
properties [10]. However, in general, an appropriate integration of geo-environmental factors as 
secondary variables is able to effectively depict soil property boundaries that abruptly change as the 
geo-environmental factors change.  

5. Conclusions 

Affected by secondary variables, the spatial distribution of soil properties is subject to problems 
such as spatial discontinuity and variability. It is difficult for a single global interpolation model to 
fully explain the spatial instability of spatial variables of soil properties, especially in areas with 
complex landforms. Using soil K+ as a case study, we proposed a kind of adaptive surface modeling 
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that combines secondary variables (ASM-SP). Compared with methods such as OK and 
OK-Landuse, OK-Soil, and OK-Geology that also combine secondary variables, ASM-SP is able to 
depict the spatial variation of soil properties in areas with complex landforms more accurately, and 
reduce simulation errors more effectively, owing to its integration of multiple base interpolation 
models. In addition, since ASM-SP combines secondary variables and its simulation surface better 
accords with geographical laws, it provides detailed information about the spatial variation of soil 
properties that is more accurate and reasonable. This provides greater opportunity for physical 
explanation of the spatial variance characteristics of soil properties. However, ASM-SP is based on 
error minimization surfaces; therefore, there is a risk of over-fitting, which will be addressed in 
future work. 

The interpolation accuracy of soil properties in areas with complex landforms has two main 
challenges. First, there is a non-linear relationship between the soil properties of sampling points 
and the secondary variables, and the fitting precision of conventional linear models is rather limited. 
Second, the selected interpolation model must have relatively high simulation accuracy and, 
preferably, provide the optimal interpolation. However, in reality, every interpolation model has 
advantages and disadvantages. Even though it is possible to find a global optimum interpolation 
model through adequate data exploration and analysis, a simple global model is unable to explain 
the spatial instability of soil property spatial variables. A feasible solution is to combine secondary 
variables to integrate multiple models, so that different combinations of interpolation models can be 
selected for different areas. Soil K+ is comparatively representative of soil properties that vary 
severely within a short horizontal distance. The ASM-SP method would also be applicable to the 
interpolation of other soil properties (e.g., soil P, PH, Ca, Mg, and Zn). Previously, we verified the 
advantages of an ensemble learning algorithm in the serial integration of multiple models [10]. In future 
research, we plan to comprehensively utilize the machine learning algorithm, combine secondary 
variables, and build and coordinate adaptive multi-model integration interpolation methods to solve 
over-fitting problems and to conduct high accuracy surface modeling of soil properties.  
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