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Abstract: The Longzi River Basin in Tibet is located along the edge of the Himalaya Mountains and 
is characterized by complex geological conditions and numerous landslides. To evaluate the 
susceptibility of landslide disasters in this area, eight basic factors were analyzed comprehensively 
in order to obtain a final susceptibility map. The eight factors are the slope angle, slope aspect, plan 
curvature, distance-to-fault, distance-to-river, topographic relief, annual precipitation, and 
lithology. Except for the rainfall factor, which was extracted from the grid cell, all the factors were 
extracted and classified by the slope unit, which is the basic unit in geological disaster 
development. The eight factors were superimposed using the information content method (ICM), 
and the weight of each factor was acquired through an analytic hierarchy process (AHP). The 
sensitivities of the landslides were divided into four categories: low, moderate, high, and very 
high, respectively, accounting for 22.76%, 38.64%, 27.51%, and 11.09% of the study area. The 
accuracies of the area under AUC using slope units and grid cells are 82.6% and 84.2%, respectively, 
and it means that the two methods are accurate in predicting landslide occurrence. The results 
show that the high and very high susceptibility areas are distributed throughout the vicinity of the 
river, with a large component in the north as well as a small portion in the middle and the south. 
Therefore, it is necessary to conduct landslide warnings in these areas, where the rivers are vast 
and the population is dense. The susceptibility map can reflect the comprehensive risk of each 
slope unit, which provides an important reference for later detailed investigations, including 
research and warning studies. 

Keywords: slope units; cell grids; geographic information system (GIS); information content; 
analytical hierarchy process; susceptibility mapping 
 

1. Introduction 

Landslide susceptibility denotes the probability of a landslide occurring in an area based on the 
local geo-environment [1–3]. The identification and susceptibility mapping of landslide regions are 
significantly important for landslide hazard early warnings, especially because the use of mapping 
can reduce numerous losses, including building facilities, injury, and property damage. 

Landslide occurrence is related to various factors, such as precipitation, geology, 
distance-to-fault, vegetation, and topography, which altogether encompass the attributes of 
landslide susceptibility mapping [4–6]. In recent years, different models have been used for 
landslide susceptibility mapping, such as an analytical hierarchy process [7–9], logistic regression 
[10,11], an artificial neural network [12,13], support vector machines [14,15], the entropy method, 
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and the frequency ratio method [16]. Many methods use either a subjective evaluation or an 
objective evaluation, which limited itself the efficacy of the approach. Therefore, it is necessary to 
combine the subjective and objective evaluation methods [17]. 

The Analytical Hierarchy Process (AHP) is an expert-based evaluation method that is often 
applied in landslide susceptibility assessment and mapping [18]. According to the importance of the 
influencing factors, comparison matrices are obtained by experts, which is an important prerequisite 
for landslide hazard assessment [19]. However, the AHP method has the limitation of identifying 
the uncertainty associated with spatial outputs. The information content method (ICM) is an 
objective analysis method based on mathematical statistics. With the advent of GIS technology, the 
combination of the information content method (ICM) and analytic hierarchy process (AHP) 
approaches boasts a higher prediction accuracy [20]. Consequently, the combined approach was 
used in the Longzi River area in Tibet, trying to get rid of the shortcomings of the alternative methods. 

Based on geological information available from remote sensing data and digital elevation 
models (DEMs), slope units are acquired by means of geomorphic units and watershed 
classifications. The significance of breaks in the slope during the quantitative evaluation of 
landforms was confirmed by Savigear, Cox, and Francou [21–23], who developed a method to 
manually interpret the profile of the slope unit. Carrara and Guzzetti thereafter proposed the slope 
unit method and proved the reliability of the approach by predicting landslide susceptibility in 
Umbria [24–28]. In this study, the slope unit was introduced into the evaluation system. The slope 
unit retains the integrity of the geological units, which can truly reflect the geomorphological 
characteristics of a landslide and the spatial characteristics of the valley. Consequently, the 
evaluation process is able to reflect the physical mechanisms responsible for the landslide, therefore 
improving the reliability of the evaluation results [29]. 

The study area is located in the Longzi River Basin in Tibet and belongs to the Yarlung Zangbo 
suture zone within the Himalayan block. The deep-cutting erosion of the river continuously shapes 
the unique landforms of the river valley. The villages on either side of the river are widely 
distributed and densely populated, and as a consequence, over 2400 people are constantly 
threatened by landslides. First, field surveys were performed and measurements were acquired 
with the assistance of GIS technology in order to construct 41 landslide datasets. Second, the eight 
aforementioned influencing factors were chosen to conduct an evaluation of landslide susceptibility. 
Third, the information of each factor was extracted using the slope unit, which was the basic 
evaluation unit. Subsequently, a landslide susceptibility evaluation system was established using 
GIS technology. Finally, the slope unit method was compared with the grid cell method, and the 
accuracy of the approach was verified according to historical landslide data and an evaluation 
accuracy analysis method. 

In this paper, we constructed a landslide susceptibility model through slope units for the 
region along the Longzi River, Southeastern Tibetan Plateau, China. The landslide susceptibility 
was first presented using slope units. The innovation of this paper is that the slope unit method and 
the grid cell method are compared in the landslide susceptibility assessment. Results are discussed 
and a new evaluation framework is proposed based on the slope unit method. 

2. Methodology 

2.1. The Mapping Unit 

The mapping unit is the smallest non-separable spatial entity within a geological hazard 
assessment, and data extraction is based on spatial primitives. That is, the accuracy of the data 
depends on the partitioning of the mapping unit. Therefore, employing the appropriate mapping 
units is essential for an effective landslide susceptibility evaluation. The mapping units, which can 
be regular or irregular primitives, are generally divided into the following five categories: grid cells, 
slope units, terrain units, unique-condition units, and topographic units. 

The grid cell is the most commonly used basic evaluation unit in landslide geological hazard 
assessment. However, the disadvantage of this method is that the partition destroys the integrity of 
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the slope. In this method, the entire research area is divided into several regular grids. Each grid cell 
is assigned with a certain geological factor, but the unit is almost completely unrelated to any spatial 
terrain information [30,31]. 

The slope unit represents the basic unit for assessing landslides, collapses, and other geological 
disasters. For all the influence factors, the developmental stage of valleys and rivers plays an 
important role in the formation of landslides and collapses. On the basis of juvenile valley division, 
the slope unit can be closely correlated with the conditions of the geological environment. 
Considering the effects of various factors, the slope unit ensures that the evaluation results are more 
perceptive of the reality [27].  

Within the ArcGIS platform, a digital elevation model (DEM) is used to classify the slope unit. 
The slope unit can be considered as a part of the slope or as half of the catchment basin (Figure 1) 
[32]. In other words, the catchment basin can be divided into two slope units according to the crest 
line and the valley line. The construction algorithm of the slope unit is illustrated in Figure 2. First, 
the drainage network (i.e., the valley line) is extracted from the original DEM data in order to 
generate the catchment basin in positive relief through the hydrological analysis module in ArcGIS. 
Second, the original DEM data is inverted, wherein the highest point becomes the lowest point and 
vice versa. According to the same method, the drainage network (i.e., the crest line) is extracted 
according to the negative relief, thereby generating the catchment basin. Finally, the two catchment 
basins obtained using the positive and negative reliefs are superimposed and merged [33]. As a 
consequence, two slope units of the catchment basin are acquired.  

 
Figure 1. Division of two slope units in a catchment: (a) a slope unit sketched map; (b) a slope unit 
planar map. 

 
Figure 2. Construction process of the slope unit. 
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2.2. The Analytic Hierarchy Process 

The analytic hierarchy process (AHP) is a multi-index analysis and evaluation method that was 
initially proposed by Saaty [34]. The AHP method constructs a matrix by estimating the relationship 
between two influencing factors subjectively. The weight of each factor is assigned by the AHP, the 
process of which is divided into four steps as follows: 

1. The first step is to establish a hierarchy model. 
2. Judgement matrices are constructed through pairwise comparison. The results of comparison 

between the different factors are scored on a 1~9 scale method, and factors are assigned 
different values according to their importance (Table 1). The judgement matrix A  = (aij) is 
established as follows: 

( )
11 1n

ij n n

n1 nn

a a
= a

a a
Α

×

 
 =  
 
 


  


 (1) 

Table 1. Scale of the judgement matrix and the corresponding descriptions. 

Importance Scale Meaning
1 ai has the same importance as aj 

3 ai is slightly more important than aj 
5 ai is significantly more important than aj 
7 ai is much more strongly important than aj 
9 ai is extremely more important than aj 

2, 4, 6, 8 Represents the intermediate value of the above Judgement 

3. The judgement matrix must satisfy the following formula: 

maxAα λ α=  (2) 

where maxλ  is the largest eigenvalue of the judgement matrix A , and α  is the eigenvector 

corresponding to maxλ . 
4. The AHP requires a consistency of the judgement matrix in order to ensure that the calculation 

results are reasonable. The random consistency ratio cR  is required to satisfy the following 
formula: 

/c c RR I I=  (3) 

( )max / 1cI n nλ= − −  (4) 

where n  is the order of the judgement matrix A , cI  is the consistency index of the 

judgement matrix A , and RI  is the random index, which is listed in Table 2.  

If 0.1cR < , the judgement matrix is considered to have good consistency, which suggests the 
weight distribution is reasonable. Otherwise, the judgement matrix needs to be adjusted until 
reasonable consistency is achieved. 

Table 2. The random consistency ratio RI . 

n 1 2 3 4 5 6 7 8 9 10 11 

cR  0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 
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2.3. The Information Content Model 

The information content model (ICM) is derived from information theory and an engineering 
geological analogy method. Its theoretical basis lies within probability statistics and contrast 
mapping. In recent years, the ICM has often been applied to landslide risk assessments. The model is 
capable of calculating the effects of various engineering geological environments on the landslide 
using statistical analysis [35,36]. The calculation procedures are as follows: 

1. The information content ( ),iI X H  of each factor that influences landslide occurrence is 

calculated separately: 

( ) ( )
( )

,
, ln i
i

i

P X H
I X H

P X
=  (5) 

where ( ),iP X H  is the probability of occurrence of iX  in the landslide area, and ( )iP X  is 

the probability of occurrence of iX  in the study area. 

( ) /
, ln

/
i

i
i

N NI X H
S S

=  (6) 

where N  is the number of landslide pixels in the study area, S  is the total number of pixels in the 
study area, iN  is the number of pixels for factor iX  in the landslide area, and iS  is the number 

of pixels for factor iX  in the study area. 

2. Calculate the total amount of information content for each factor iX : 

( )
1 1

/
, ln

/

n n
i

i i
i i i

N NI I X H
S S= =

= =   (7) 

where iI  is the total amount of information content for factor iX . The greater the value, the more 
likely the landslide will occur. 

2.4. The Landslide Susceptibility Assessment 

Based on the AHP and ICM, the information weight for each factor can be obtained using the 
following formula: 

( )
1 1

/
, ln

/

n n
i

i i i
i i i

N NI I X H
S Sω ω

= =

= = ×   (8) 

where iω is the weight for each factor obtained through the AHP, and iI ω is the comprehensive 
index of the landslide sensitivity. Subsequently, the information content value for each evaluation 
unit is sorted and divided, after which the sensitivity of the landslide can be classified as well. 

3 Study Area and Data 

3.1. Study Area 

The study area is located in Longzi County in Southeastern Tibet (Figure 3). The area, which is 
bounded between 28°12′ N–28°26′ N and 92°30′ E–92°45′ E, is marked by deep gorges, glaciated 
valleys, and rugged topography. It covers an area of about 517 km2. Located in the Himalayan plate 
region, the north of the area is the Yalung Tsangpo suture zone and the south is the main boundary 
fault zone of Xiwalike. Controlled by the tectonics of the Himalayan block and the Yalung Tsangpo 
suture zone, it belongs to the Kangma–Takako fold and thrust belt [37–39]. 
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A spot investigation reveals that landslide disasters in the vicinity of the Liemai–Jiayu town, 
Longzi County, Tibet, are mainly distributed on either side of the Longzi River. Landslides within 
the study area are characterized by different degrees of potential danger and threat to the personal 
safety and property of local residents. According to census statistics, 2421 people reside in the study 
area and are affected by landslides. However, few attempts have been made to ameliorate these 
hazards. 

The study area possesses a semi-arid temperate monsoon climate. The rainy season spans from 
May to September, with the precipitation during this period accounting for 90% of the total 
throughout the year. The seismic intensity within the area has a degree of VIII on the modified 
Mercalli index. At present, the continental crust is relatively stable, and there have been no reports 
concerning earthquake-induced landslides. 

The study area belongs to the zone of stratigraphic division of the Northern Himalayan block. 
The exposed strata are mainly composed of Mesozoic Cretaceous, Jurassic, Triassic, and Cenozoic 
units. The Mesozoic Cretaceous contains the Laka Formation (K1l), the lithology of which mainly 
consists of calcirudyte, argillaceous slate, and siltstone. The Jurassic includes the Ritang Formation 
(J1r), the Lure Formation (J2lr), the Zhela Formation (J2z), and the Weimei Formation (J3w). The 
lithology of the Jurassic formations is mainly composed of siltstone, silty slates, basalt, tuff, and 
conglomerates. The Triassic primarily consists of the Nieru Formation (T3n), the lithology of which 
mostly encompasses metamorphic fine rock, and quartz sandstone. Finally, the Cenozoic strata 
primarily include Quaternary alluvium (Qal 

4 ) and Quaternary slope wash (Qel+dl 
4 ).  

Extensive field investigations and acquisition of measurements were implemented in Longzi 
County in order to produce an accurate and detailed landslide inventory map. A total of 41 
landslides were recorded and mapped by means of field investigation and laboratory analysis. Two 
types of landslide deformation modes occur in the region: slump-tensile rupture and creep-tensile 
rupture, both of which eventually lead to landslide instability. The maximum volume of the 
landslides is 3600 × 104 m3, and the minimum volume is 36.3 ×104 m3. Figure 4 illustrates the location 
of the major landslides and their impacts on residents in the study region. The spatial resolution of 
the DEM is 5 m × 5 m. According to the slope unit method, the flow direction of each grid cell is 
demonstrated in Figure 5, and the study area can be divided into 3261 slope units (Figure 6). The 
minimum unit area is 0.01 km2, and the maximum is 1.26 km2. 

 
Figure 3. Geographical location of the study area. 
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Figure 4. Typical landslides and their impacts on residents within the study area. (a) Lunba 
Landslide in a tributary. (b) Zhuolonglang landslide in Jiayu County. (c) Mentang power station 
landslide. (d) Landslide due to a tension fissure in Danglaimu. (e) Sino-Nepalese Highway cracking. 
(f) Wall cracking in a Public Security Bureau computer room. 
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Figure 5. Flow direction of each grid cell. 
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Figure 6. Division of slope units in the study area. 

3.2. Influencing Factors 

Landslide factors considered in this study include slope angle, slope aspect, plan curvature, 
distance-to-fault, distance-to-river, topographic relief, annual precipitation, and lithology. The 
selection of eight influencing factors was based on (a) the works of previous researchers [40,41] (b) 
field geological investigation experience and knowledge on landslide activities in the study area, 
and (c) collection of data availability in the study area. Because of the sparse vegetation in the study 
area, most of the bedrock is exposed, so the influence factor of vegetation coverage is not taken into 
account. The traces of the artificial excavation roads in the study area are not obvious, and the range 
of the distance-to-river is almost the same as that of the distance-to-river, so it is also not taken into 
account.  

As the slope angle increases, shear stress within the soil or unconsolidated sediment generally 
increases [42]. According to field surveys and measurements, the eight aforementioned causative 
factors are selected in order to evaluate landslide sensibility. The slope angle map was extracted 
from the DEM through the slope unit, and the average slope angle of each slope unit was thereafter 
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obtained [43]. The slope map was reclassified into nine classes: (1) 0°–8.5°, (2) 8.5°–15.7°,  
(3) 15.7°–20.0°, (4) 20.0°–23.7°, (5) 23.7°–27.2°, (6) 27.2°–30.5°, (7) 30.5°–34.0°, (8) 34.0°–38.3°, and  
(9) 38.3°–47.1°. 

The distance-to-river has a particular controlling effect on the development of landslides [17]. 
Meanwhile, the significant influence of river erosion on landslide development is primarily due to 
the following aspects: (1) The softening effect of water on a rock mass reduces its strength. (2) Due to 
the long-term erosion of water, the river bank becomes steep. (3) The tension crack that is filled with 
surface water or groundwater will produce hydrostatic pressure on either side of the rock and soil, 
which is not conducive to the stability of the slope. (4) Hydrodynamic pressure will substantially 
affect the slope near the valley. (5) The buoyancy force of the groundwater will affect the free surface 
of the slope base, which can induce the occurrence of a landslide. 

The distance-to-fault is closely related to the occurrence of landslides [44]. A weak structural 
plane within the faulted zone is developed, which leads to fragmentation and weathering of the 
rock, forming a zone of deep and significant weathering within the crust. Since almost all the 
landslides are located within 1000 m of the fault, 200 m is taken as the calculation interval for the 
distance-to-fault map. 

Topographic relief is often used to describe and reflect the macroscopic features of the terrain 
surface, which is of great significance for landslide sensitivity analysis. Topographic relief of the 
study area was hence divided into nine classes. 

Since rainfall is one of the most significant factors that can trigger a landslide, landslide hazards 
often occur during the rainy season [45]. Rainfall infiltration reduces both the shear strength of the 
soil and the friction between the soil and the bedrock, thus inducing geological hazards. However, 
the average precipitation of the study area varies insignificantly between 230 and 280 mm. As a 
result, rainfall is not regarded as the most important factor in sensitivity mapping.  

Multiple temperature and climate factors, including sunshine exposure time, solar height, solar 
radiation, and temperature differences, among others, can affect the water state and soil texture [46]. 
For instance, changes in temperature cause the expansion and contraction of rock substrates. The 
freezing and melting of water during freeze–thaw processes eventually lead to the disintegration of 
rocks. The slope aspect also has an indirect effect on landslides, which will lead to a decrease of 
landslide stability.  

The plan curvature of the mountain is the rate of change of the slope angle, which directly 
affects surface runoff and the development of landslides [47,48]. Plan curvature includes three types: 
concave, convex, and flat. The results of classification of all the influencing factors in the study area 
are shown in Figure 7. 

0 2 4 61
km

Lithology

Q4
al

Q4
el+dl

J3w

J2z

J2lr

J1r

K1l

T3n

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

0 2 4 61
km

Distance-to-river

Landslide

0-396m

396-629m

629-1,000m

>1,000m

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

(a) (b)



ISPRS Int. J. Geo-Inf. 2017, 6, 172  10 of 20 

 

0 2 4 61
km

Distance-to-fault

0-677m

677-1017m

1017-1370m

1370-1600m

＞1600m

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

0 2 4 61
km

Precipitatiom

230-245mm

245-260mm

260-278mm

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

(c) (d)

0 2 4 61
km

Slope  Angle

0-14

14-19

19-23

23-26

26-29

29-31

31-34

34-38

38-47

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

0 2 4 61
km

Topographic Relief

0-73

73-93

93-111

111-128

128-145

145-166

166-193

193-246

246-396

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

(e) (f)

0 2 4 61
km

Plan curvature

Concave

Flat

Convex

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

0 2 4 61
km

Slope  Aspect

North

Northeast

East

Southeast

South

Southeast

West

Northwest

Landslide

92°45'N

92°45'N

92°40'N

92°40'N

92°35'N

92°35'N

92°30'N

92°30'N

28
°2

5'
E

28
°2

5'
E

28
°2

0'
E

28
°2

0'
E

28
°1

5'
E

28
°1

5'
E

±

(g) (h)

Figure 7. Maps of the influencing factors within the study area: (a) lithology; (b) distance-to-river;  
(c) distance-to-fault; (d) precipitation; (e) slope angle; (f) topographic relief; (g) plan curvature;  
(h) slope aspect.  
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4. Results  

4.1. Determination of AHP Weights 

In the study area, the evaluation factors incorporate the lithology, slope angle, topographic 
relief, distance-to-river, distance-to-fault, plan curvature, precipitation, and slope aspect. According 
to the principles of the analytic hierarchy process (AHP) mentioned above, these eight evaluation 
factors are compared with each other in order to determine their relative importance. The judgement 
matrix for these eight evaluation factors is shown in Table 3. In terms of Equations (2) and 
(3), cI and cR are calculated, resulting in 0.0417cI =  and 0.0296cR = . Because cR is less than 0.1, 
the judgement matrix satisfies the consistency requirement, and the weights are deemed reasonable. 

Table 3. Pair-wise comparison matrix for influencing factor weights. 

Heading X1 X2 X3 X4 X5 X6 X7 X8 Weights 
X1 1 1 2 3 3 4 7 9 0.2544 
X2 1 1 2 3 3 4 7 9 0.2544 
X3 1/2 1/2 1 2 2 3 6 8 0.1645 
X4 1/3 1/3 1/2 1 1 2 5 7 0.1050 
X5 1/3 1/3 1/2 1 1 2 5 7 0.1050 
X6 1/4 1/4 1/3 1/2 1/2 1 4 6 0.0698 
X7 1/7 1/7 1/6 1/5 1/5 1/4 1 3 0.0291 
X8 1/9 1/9 1/8 1/7 1/7 1/6 1/3 1 0.0176 

Notes: X1: lithology; X2: distance-to-river; X3: distance-to-fault; X4: precipitation; X5: slope angle; X6: 
topographic relief; X7: plan curvature; X8: slope aspect. 

4.2. The Information Content (IC) of the Eight Factors 

According to Equations (4), (5), and (7), the eight factors were used for an evaluation index, and 
the information contents of all the factors were calculated, the results of which are listed in Table 4. 
The sensitivity of a landslide has a close correlation with the value of the IC (Information Content). 
If IC ﹥ 0, the probability of landslide occurrence is greater than average. If IC ＜ 0, the probability 
is lower than average. If IC = 0, the probability of occurrence is average. 

Table 4 shows that, for most landslides (74.12%), the results of IC are statistically significant. 
Eight lithologies exist within the study area. Landslides are primarily developed within the 
Quaternary slope wash (Qel+dl 

4 ), the Weimei Formation (J3w), the Ritang Formation (J1r), and the 
Nieru Formation (T3n), for which the IC values are 1.2524, 0.1434, 0.3251, and 0.1505, respectively.  

With regard to natural breaks, the slope angle was divided into nine classes. The slope angle 
values of each class were subtracted from the slope unit, following which the mean of each slope 
unit was generated. As a result, the slope angle of each slope unit varied between 0 and 47°. The 
areas in which the landslides occurred along the river demonstrate relatively flat slopes. In the vast 
mountainous areas, from which the faults are geographically distant, the slope was steeper, and the 
river erosion was inconspicuous, resulting in landslides being undeveloped. 

The topographic relief was also divided into nine classes through the distribution of natural 
breaks. The average values of the topographic relief in the study area ranged from 0 to 396 m. The IC 
values for the classes of 0~73 m, 73~93 m, 93~111 m, 128~145 m, and 193~246 m were respectively 
0.3596, 0.1936, 0.2331, 0.1581, and 0.2903. It can be observed that the topographic relief classes in the 
study area of 0~111 m, 128~145 m, and 193~246 m were prone to slope failure.  

The slope aspect was also divided into eight types depending on the azimuth, encompassing 
north, northeast, east, southeast, south, southwest, west, and northwest. With regard to the ICM, the 
slope aspects in the northeast, southeast, and south, which possess respective IC values of 0.1082, 
0.2241, and 0.5357, were more inclined to trigger landslides. 

Areas closer to the river are characterized by stronger soil erosion properties, so a landslide in 
close proximity to the river is liable to occur. The distance-to-river map was divided into four 
regions. Faults provide extremely advantageous conditions for landslide development, and in 
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addition, faults can directly dominate the boundaries of landslides and impact their range and 
extent. It is shown in Table 4 that the landslides were mainly distributed within 0–1370 m of the 
faults and 0–1000 m of the river. It is thus concluded that the IC values for regions farther away from 
the faults and the river were relatively smaller. 

Table 4. Distribution of the training pixels. 

Factor Class 
Landslide Not Occurred Landslide Occurred 

Total Count Information Content 
Count Ratio/% Count Ratio/% 

Lithology 

Qal 
4  100,097 0.02 3304 0.02 103,401 −0.0589 

Qel+dl 
4  73,734 0.01 9919 0.06 83,653 1.2524 

J3w 701,858 0.14 28,572 0.16 730,430 0.1434 
J2z 1,249,709 0.25 41,863 0.24 1,291,572 −0.0446 
J2lr 1,128,142 0.23 23,619 0.13 1,151,761 −0.5024 
J1r 1,053,208 0.21 51,839 0.30 1,105,047 0.3251 
K1l 528,129 0.11 9521 0.05 537,650 −0.6491 
T3n 163,656 0.03 6712 0.04 170,368 0.1505 

Distance-to-River/m 

0–396 839,391 0.17 68,334 0.39 907,725 0.7981 
396–629 623,944 0.12 46,396 0.26 670,340 0.7140 
629–1000 1,095,600 0.22 44,388 0.25 1,139,988 0.1388 

>1000 2,439,594 0.49 16,235 0.09 2,455,829 −1.6344 

Distance-to-Fault/m 

0–677 625,294 0.13 40,170 0.23 665,464 0.5772 
677–1017 534,944 0.11 30,329 0.17 565,273 0.4594 
1017–1370 511,669 0.10 19,977 0.11 531,646 0.1032 
1370–1600 825,477 0.17 26,357 0.15 851,834 −0.0911 

>1600 2,501,149 0.50 58,516 0.33 2,559,665 −0.3937 

Precipitation/mm 
0–245 1,433,091 0.29 89,925 0.51 1,523,016 0.5551 

245–260 2,503,337 0.50 60,808 0.35 2,564,145 −0.3571 
260–278 1,062,105 0.21 24,616 0.14 1,086,721 0.0551 

Slope Angle/° 

0–14 111,669 0.02 9234 0.05 120,903 0.8125 
14–19 404,744 0.08 14,696 0.08 419,440 0.0333 
19–23 546,682 0.11 40,019 0.23 586,701 0.6994 
23–26 726,071 0.15 28,815 0.16 754,886 0.1189 
26–29 789,023 0.16 18,016 0.10 807,039 −0.4175 
29–31 809,161 0.16 19,855 0.11 829,016 −0.3472 
31–34 702,254 0.14 23,853 0.14 726,107 −0.0312 
34–38 545,874 0.11 13,447 0.08 559,321 −0.3434 
38–47 363,055 0.07 7414 0.04 370,469 −0.5268 

Topographic relief 

0–73 222,641 0.04 11,363 0.06 234,004 0.3596 
73–93 469,259 0.09 20,128 0.11 489,387 0.1936 

93–111 794,321 0.16 35,505 0.20 829,826 0.2331 
111–128 946,833 0.19 24,052 0.14 970,885 −0.3134 
128–145 892,467 0.18 36,891 0.21 929,358 0.1581 
145–166 777,605 0.16 25,008 0.14 802,613 −0.0841 
166–193 528,299 0.11 8327 0.05 536,626 −0.7812 
193–246 292,790 0.06 13,895 0.08 306,685 0.2903 
246–396 74,318 0.01 180 0.00 74,498 −2.6410 

Plan Curvature 
<−0.01 1,814,217 0.36 63,302 0.36 1,877,519 −0.0052 

−0.01–0.01 1,365,686 0.27 46,365 0.26 1,412,051 −0.0317 
>0.01 1,818,630 0.36 65,682 0.37 1,884,312 0.0281 

Slope Aspect 

North 10,337 0.00 109 0.00 10,446 −1.1780 
Northeast 570,240 0.11 22,379 0.13 592,619 0.1082 

East 894,047 0.18 29,250 0.17 923,297 −0.0675 
Southeast 894,555 0.18 39,613 0.23 934,168 0.2241 

South 714,674 0.14 43,930 0.25 758,604 0.5357 
Southwest 643,541 0.13 14,653 0.08 658,194 −0.4203 

West 800,088 0.16 16,831 0.10 816,919 −0.4977 
Northwest 471,051 0.09 8584 0.05 479,635 −0.6385 

Since the plan curvature factor describes the slope shape, it effectively provides the space 
condition for landslides to occur. The IC values of the concave slope, flat slope, and convex slope 
were −0.0052, −0.0317, and 0.0281, respectively. The convex slope reflected the strong crustal uplift, 
wherein the stress concentration was prominently enhanced. As a consequence, the convex slope 
reduced the stabilization of the slope. 
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4.3. Landslide Susceptibility Mapping 

The eight influencing factors have been reclassified through the ICM. According to the weights 
of the eight factors calculated by the AHP, the eight factor maps were combined based on Equation (8) 
for the final landslide susceptibility mapping results. Since the different factors had diverse IC 
values, the comprehensive ICs were normalized to (0,1) for the purpose of comparison by the 
following equation: 

( ) ( )min max min/A IC IC IC IC= − −  (9) 

where A is the normalized value of the comprehensive ICs, IC is the information content for each of 
the disparate classes, and maxIC and minIC are the maximum and minimum information contents of 
all of the classes, respectively. 

The study area was partitioned and extracted using the slope units, which is the primary and 
minimum geomorphic unit [24]. Typically, one landslide is comprised of several slope units. In the 
evaluation process, eight factors were chosen for the landslide sensitivity evaluation index. The 
precipitation was extracted and mapped using grid cells, while the other seven factors were 
extracted using the slope units (Figure 7). The final landslide susceptibility maps of slope units and 
grid units are shown in Figure 8.  

 

 
Figure 8. Landslide susceptibility map results using (a) slope units and (b) grid cells. 
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In recent years, the natural breaks classification method has been extensively applied towards 
the evaluation of landslide susceptibilities. The purpose of the natural breaks classification method 
is to determine the optimal permutation that effectively divides numerical values into different 
categories [49]. As a method of data clustering, the average deviation of each class is minimized, and 
the mean value of each class deviating from the others is maximized. That is, the variance within 
each class is optimally reduced, while the variance between classes is maximized. Therefore, the 
natural breaks method is more suitable for a classification of the parameters obtained using the slope 
unit method. 

Through a natural breaks classification and the use of GIS software, the landslide susceptibility 
maps of the slope units were reclassified into four categories: low (0–0.3346), moderate 
(0.3346–0.4764), high (0.4764–0.6417), and very high (0.6417–1). To facilitate a comparison with the 
slope unit evaluation method, the study area was evaluated using grid cells with a cell size of 10 m × 
10 m. The landslide susceptibility maps of the grid cells were also reclassified into four categories: 
low (0–0.4016), moderate (0.4016–0.5236), high (0.5236–0.6574), and very high (0.6574–1). The 
statistical results using both the slope units and grid cells are shown in Tables 5 and 6, respectively. 

Table 5. Statistical results of landslide susceptibility mapping using slope units. 

Susceptibility 
Landslide Occurred Total Study Area 

Count Ratio (%) Area (km2) Count Ratio (%) Area (km2)
Low 8093 4.62 0.81 1,177,713 22.76 117.68 

Moderate 22,744 12.97 2.27 1,999,249 38.64 199.77 
High 75,061 42.81 7.50 1,423,380 27.51 142.23 

Very High 69,455 39.61 6.94 573,540 11.09 57.31 

Table 6. Statistical results of landslide susceptibility mapping using grid cells. 

Susceptibility 
Landslide Occurred Total Study Area 

Count Ratio (%) Area (km2) Count Ratio (%) Area (km2)
Low 5605 3.20 0.56 1,116,341 21.59 111.62 

Moderate 13,558 7.73 1.35 1,669,578 32.29 166.93 
High 70,954 40.46 7.09 1,573,986 30.44 157.38 

Very High 85,235 48.61 8.52 810,840 15.68 81.07 

4.4. Validation 

It is essential to validate the accuracy of the two methods, and the receiver operating 
characteristic (ROC) curve was constructed to measure the classification performance. The ROC 
curve is constructed by plotting the true positive rate (sensitivity) against the false positive rate 
(1-specificity) with the various cut-off thresholds. The area under the ROC curve (AUC) was used 
for quantitative comparison of the two methods, and the value of AUC is between 0.5 and 1. The 
larger the AUC value, the higher the accuracy of the model. 

Figure 9 displays the evaluation results of the ROC curve, and the prediction accuracy using 
slope units was 82.6%, which was slightly lower than that using grid cells with an accuracy of 84.2%. 
The results show that both slope units and grid units are good at predicting the landslide 
susceptibility for the region along the Longzi River. However, due to the tiny size of the regular grid 
cell, some of the macroscopic properties of the factors were incapable of being exhibited well. The 
evaluation based on slope units is stiff with regard to the boundary of the slope, but the natural slope 
unit was superior to the grid cell for the description of the mechanical mechanisms, lithologies, and 
environmental boundaries of the slope. As a result, the prediction accuracy using slope units 
remained faithful by using the ICM and AHP methods, and the susceptibility mapping is  
deemed reliable. 
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Figure 9. Receiver operating characteristic (ROC) curve evaluation of the two methods. 

5. Discussion 

5.1. Application of AHP-ICM 

The ICM is an objective evaluation method commonly applied for statistical analysis and is 
suitable for an evaluation of landslide susceptibilities. The ICM converts the actual value of 
landslide factors into an IC value that reflects the regional stability [50]. However, the ICM cannot 
reflect the relative significance of each influencing factor. Moreover, objective methods may retrieve 
misleading information. Based upon the field survey observations, an AHP is used to establish the 
hierarchical structure of the influencing factors. The relative significance of each factor is then 
determined by expert scoring, and the weight of each factor is subsequently acquired. The AHP-ICM 
approach combines the objective data with the semi-quantitative evaluation, thereby obtaining the 
landslide susceptibility map. The AHP-ICM method is superior to the other lone methods. 

It can be observed from field investigations, historical data records and interpretation of Google 
imagery that lithology, river erosion, and fault development play significant roles in the 
deformation preceding a landslide and the ultimate failure. The weights of the eight influencing 
factors (lithology, distance-to-river, distance-to-fault, precipitation, slope angle, topographic relief, 
plan curvature, and slope aspect) calculated through the AHP were 0.2865, 0.1828, 0.1828, 0.1127, 
0.1127, 0.0740, 0.0303, and 0.0182, respectively. The final landslide susceptibility map was created 
through the integration of various classification maps from the eight causative factors multiplied by 
the corresponding weight values obtained by the AHP. 

5.2. Evaluation Results of the Slope Units 

The statistical results of landslide susceptibility mapping utilizing slope units are shown in 
Table 5. The slope unit method indicated that the zone of very high susceptibility had an area of 
57.31 km2, accounting for 11.09% of the entire study area. This region is mainly comprised of the 
Ritang Formation (J1r) and Quaternary-aged material. The high susceptibility zone close to the rivers 
and faults spanned an area of 142.23 km2, accounting for 27.51% of the total study area, which was 
mainly constituted by the Zhela Formation (J2z), the Weimei Formation (J3w), and the Ritang 
Formation (J1r). The lithologies of the very high and high susceptibility zones were mainly 
composed of slate, sandstone, siltstone, and so on. The rock group was a combination of soft- and 
medium-hardness substrates, which were prone to moderate-to-large landslides. Due to the erosion 
of the river and tectonic movement along the fault, both the rock and soil were strongly weathered, 
which provided a rich source of material for landslide development. The moderate and low 
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susceptibility zones were 199.77 and 117.68 km2, accounting for 38.64% and 22.76%, respectively. The 
exposed strata of this area were mainly comprised of the Nieru Formation (T3n) and the Lure 
Formation (J2lr), the lithologies of which both constituted sandstone, metamorphic fine rock, and 
quartz sandstone. Since the moderate and low susceptibility areas were located far away from the 
fault and the river, the lithology was stable, and the occurrence of landslides was rare [51]. 

With respect to landslide occurrence, the very high, high, moderate, and low susceptibility 
zones spanned areas of 6.94 km2, 7.50 km2, 2.27 km2, and 0.81 km2, respectively, accounting for 
39.61%, 42.81%, 12.97%, and 4.62% of the total landslide area. The proportion of the very high and 
high susceptibility zones to the total landslide area was 82.42%. The main stratum of this area was 
based in the Jurassic Period. With regard to the current investigation, most of the landslides 
occurred within very high and high sensitivity ranges. Consequently, it appears that it is more 
rational to predict and judge the landslide hazard range using the slope unit method. 

5.3. Comparative Analysis of Slope Units and Grid Units 

Advantages and limitations of the grid cell method were expressed during the susceptibility 
evaluation of landslides. As a consequence of utilizing regular grid cells, rapidity and simplification 
were achieved during computer processing. Nevertheless, as the grid cells became more and more 
refined, the unit became nearly unrelated to the geological, geomorphological, or other spatial 
terrain information [32]. Slope units, which are often utilized in numerous land resource 
investigations and disaster management, are more than capable of revealing such spatial 
information and geomorphologic context of the slopes. 

The statistical results of the landslide susceptibility mapping utilizing grid cells are shown in 
Table 6. The results demonstrate that the area of the very high susceptibility zone was 81.07 km2, 
accounting for 15.68% of the entire study area. The high susceptibility zone was 157.38 km2, 
accounting for 30.44% of the entire study area. The proportions of the moderate and low 
susceptibility zones to the entirety of the study area were 32.29% and 21.59%, respectively. The 
extent of the low susceptibility area derived using the grid cell was equal to that acquired using the 
slope units. The moderate susceptibility area determined using the slope unit was larger than that 
using the grid cells, while the very high and high susceptibility areas were smaller when derived 
using slope units compared to those acquired from the grid cell approach. The study area was 
separated into regular square grids in the grid cell method, after which each cell was assigned a 
causative factor (e.g., the slope angle, slope aspect, and topographic relief), which was able to boost 
computational efficiency. Nevertheless, the grid cells lack a close association with geological 
conditions and topographic relief. Therefore, an inability to reflect the environmental boundaries 
and mechanical mechanisms of slope failure is another defect of grid cells. Since the area of the slope 
unit is much larger than that of the grid cell, equalization phenomena persist during the extraction of 
the influential factors using the slope unit [52]. 

With regard to the generation of landslides, the very high, high, moderate, and low 
susceptibility zones derived using the grid cells were 8.52 km2, 7.09 km2, 1.35 km2, and 0.56 km2, 
respectively, accounting for 48.61%, 40.46%, 7.73%, and 3.20% of the landslide areas. The very high 
susceptibility area of the grid unit is 9 percentage points higher than that of the slope unit, and the 
discrepancy between the two methods presents dominantly in the northern region. It can be 
concluded from the field investigation and Google imagery that the landslides in the northern area 
were distributed principally throughout the wide valleys. Arable land is abundant on both sides of 
the river and is characterized by large-scale landslides and low slope angles. The slope angle 
obtained through the grid cell varies greatly in concentration, not considering the integrity of the 
landslides. However, if the numerous grid cells cohesively form a slope unit, the average slope angle 
retrieved can embody the macroscopic characteristics of the landslides [53]. This is the equalization 
phenomenon referred to previously. In addition, the topographic relief is the most representative 
feature of the slope unit, which can efficiently express the fluctuation of landslides. The 
distance-to-fault and distance-to-river extracted from the slope unit can manifest the effects of the 
fault or the river on the entire slope unit, but not on a single grid cell. In summary, the two methods 
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have their own distinct advantages and disadvantages, and it is worth noting that the slope unit 
evaluation reveals macroscopic characteristics. The slope unit is conducive to the investigation, 
evaluation, and management of a single landslide, which facilitates concentration on a single basin 
unit or a component of the landslide for research purposes. 

The two evaluation methods demonstrated that the southeast and western regions of the study 
area were characterized by low or moderate susceptibility zones. These areas are predominantly 
alpine and are less affected by rivers and faults, and thus possess greater lithologic stability and few 
traces of human habitation and engineering construction. Due to the flat terrain near the river, the 
villages are mostly gathered in the northern, central, and southern areas that demonstrated high or 
very high susceptibilities. Inevitably, landslides pose a substantial threat to those proximal houses 
and fields. Tectonic movement plays an important role in the formation of landslides, and numerous 
types of weak structural planes control the distribution of sliding surfaces and the spatial 
distribution of landslides [54]. Large- and medium-sized landslides were mainly distributed in the 
range from 0 to 1000 m on either side of the river. The long-term lateral erosion and slope infiltration 
reduce the strength of the rock and soil and are consequently highly significant to landslide 
formation and development. Since the large area of a landslide may block the river, which will pose 
a considerable threat to the lives and property of local residents, it is essential that landslides should 
be prevented as soon as possible. 

6. Conclusions 

Landslide susceptibility maps are of great significance for the early warning of villages and 
residents in the Longzi River Basin. Based on a field investigation and analysis of remote sensing 
data, eight factors (the slope angle, slope aspect, plan curvature, distance-to-fault, distance-to-river, 
topographic relief, annual precipitation, and lithology) were selected as the relevant factors for an 
assessment of landslide susceptibility. Except for the rainfall factor, which was derived from grid 
cells, all the other factors were classified using the slope unit method. More importantly, the 
accuracy of the model has been verified, and it has been proven that the slope unit method is 
credible for evaluating landslide hazards. 

The landslide susceptibility maps generated through the slope unit technique were divided into 
four categories: low, moderate, high, and very high susceptibility, accounting for 22.76%, 38.64%, 
27.51%, and 11.09% of the study area, respectively. The ROC curve has been constructed to verify 
the accuracy of the slope unit method, and the prediction accuracy using slope units was 82.6%. It is 
proved that the slope unit is a good method to evaluate landslide susceptibility.  

The range of very high susceptibility areas on the map produced with the slope unit method 
was less than that with the grid cell method, and vice versa for the case of high susceptibility areas. 
The slope unit presented a comprehensive macroscopic analysis and evaluation for each unit. 
Compared with the traditional rectangular grid cell, the slope unit was used as the evaluation unit 
with which to improve the consistency with the actual topography. Consequently, the final 
sensitivity map can precisely reflect the geological environmental conditions. 

Most objective evaluation methods ignore the subjective understanding of the actual field 
survey, and the factor weight distribution is inconsistent with the reality. Thus, a subjective solution 
like that of the AHP approach should be utilized to assign weights. The ICM is a type of statistical 
analysis method that is most appropriate for an evaluation of the landslide sensitivity. A landslide 
hazard susceptibility map was generated utilizing the combination of an objective statistical method 
(ICM) and subjective weighting (AHP), thereby obtaining much more accurate results. The 
correctness and rationality of the solution were affirmed by an analysis of landslide sensitivities 
based on 41 landslides that have occurred in the field. 

The slope unit was applied as the evaluation unit with which to estimate the landslide 
sensitivity, as is capable of truly expressing the spatial characteristics of a landslide. This method is 
beneficial to the quantification of watershed geomorphic factors, so that the evaluation process can 
preferably elaborate the physical mechanisms of landslides, thus improving the reliability of the 
evaluation results. Furthermore, the risk level of each watershed unit can be directly extracted from 
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the susceptibility map, and the decision management department can readily take applicable 
measures to avoid the potential hazards inherent of landslides. 
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