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Abstract: More and more vector-based cellular automata (VCA) models have been built to 
leverage parallel computing to model rapidly changing cities and urban regions. During parallel 
simulation, common task decomposition methods based on space partitioning, e.g. grid 
partitioning (GRID) and recursive binary space partitioning (BSP), do not work well given the 
heterogeneity of VCA parcel tasks. In this paper, to solve this problem, we propose a novel task 
decomposition method for distributed VCA models based on k-means clustering, named KCP. 
Firstly, the polygon dataset is converted into points based on centroids, which combines the size 
of two parcels and the outer distance. A low-cost recursive quad-partition is then applied to 
decide the initial cluster centers based on parcel density. Finally, neighbor parcels can be allocated 
into the same subdivision through k-means clustering. As a result, the proposed KCP method 
takes both the number of tasks and computing complexity into consideration to achieve a 
well-balanced local workload. A typical urban VCA growth model was designed to evaluate the 
proposed KCP method with traditional spatial partitioning methods, i.e. GRID and BSP. KCP had 
the shortest total simulation time when compared with GRID and BSP. During experimental 
urban growth simulations, the time spent on a single iteration was reduced by 15% with the BSP 
and by 25% with the GRID method. The total simulation time with a 120 m neighborhood buffer 
size was reduced by more than one hour to around three minutes with 32 cores. 

Keywords: vector-based CA; distributed computing; k-means clustering; task decomposition 
 

1. Introduction 

Vector-based cellular automata (VCA) models extend traditional raster-based cellular 
automata (raster-based CA) models by using irregular vector polygons to represent actual 
geographic features, e.g. parcels and blocks [1]. This extension relieves the sensitivity of a CA 
model to spatial resolution and breaks the limits on uniform neighborhood definition [2,3]. VCA 
models have been widely used to simulate urban dynamics, e.g. land-use and land-cover changes, 
urban growth [4–6], urban planning [7], etc. However, large-scale and highly detailed VCA/CA 
models usually require massive computing resources to obtain timely simulation results. Thus, 
researchers are turning to parallel computing to accelerate these time-consuming model 
simulations, e.g. programs like pRPL [8,9], pSLEUTH [10], CAMEL [11].  

In a given VCA model, irregular parcel polygons evolve through a number of discrete time 
steps following a set of transition rules based on the states of neighboring parcels. Thus, a basic 
parallel VCA (pVCA) task is equivalent to the corresponding polygon parcel. The computation of 



ISPRS Int. J. Geo-Inf. 2017, 6, 93  2 of 17 

ISPRS Int. J. Geo-Inf. 2017, 6, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/ijgi 

one pVCA task includes neighbor search and parcel status transition, and the amount is generally 
proportional to the area of a parcel. 

The task decomposition in pVCA models can be formulated as typical space partitioning 
problems. There is a growing collection of space partitioning algorithms, which can be grouped 
according to how partitioning is conducted and classified into two categories; flat grid partitioning 
and hierarchical tree partitioning. Flat grid-based partitioning algorithms use a rectangular grid to 
partition the target space, thus directly obtaining discrete regular subdivisions. Hierarchical 
tree-based algorithms on the other hand, divide the target space into two or more disjoint subsets 
recursively, eventually producing a binary space partitioning (BSP) tree, e.g., KD-tree.  

However, both flat grid-based and hierarchical tree-based algorithms are not easily applicable 
to pVCA task decomposition because neither the equal subdivision area nor equal task number can 
guarantee an equal workload. Flat grid partitioning can produce equal-area subdivisions, but the 
irregular shape of pVCA parcels leads to different task numbers for each subdivision. Conversely, 
hierarchical tree partitioning can easily produce equal task numbers by recursive division, but the 
workload of each subdivision is still unbalanced because of the varying computing complexity of 
pVCA tasks.  

In this paper, a novel pVCA task decomposition algorithm based on general k-means 
clustering named KCP is proposed to overcome these drawbacks. The KCP method formulates a 
customized k-means clustering to cluster tasks with higher geographical proximity. This method 
uses parcel centroid to represent parcel polygons and defines a proximity distance combining 
parcel size and outer distance. Through an iterative process, the generated subdivisions will contain 
neighboring parcels, while, at the same time, the technique will separate large-sized parcels using 
the centroid distance. In this way, the KCP decomposition can take both task numbers and their 
computation complexity into consideration to obtain better workload balance. Since the workload 
of each subdivision depends on the number of allocated tasks, the computing complexity and 
communication overhead depend on the amount of ghost parcels, the NSD-PA (normalized 
standard deviation of the area of parcels), NSD-PN (normalized standard deviation of the number 
of parcels), and the number of total ghost agents that are applied to indicate local workload balance 
and the communication overhead. 

An additional VCA-based urban growth model was developed to evaluate the efficiency of the 
proposed KCP algorithm. Further, we parallelized the model based on a bulk synchronous parallel 
model and adopted the ghost agent strategy to reduce information exchange frequency. Two 
groups of experiments were designed, with four subdivision sizes, 4, 8,16, and 32, to test their 
scalability and three buffer sizes, 120 m, 240 m, and 360 m, to test their effects on the 
communication overhead. In addition, we made a detailed study on the local workload and 
communication overhead separately using the NSD-PN, NSD-PA, and the number of total ghost 
agents. The experimental results show that KCP employs the least local computing time with 
acceptable communication overhead and achieves the best parallel performance, compared with 
two common decomposition methods, GRID and BSP. The proposed KCP method can be used to 
partition spatial tasks of large-scale detailed VCA models effectively, which can shorten the 
computing time and improve the efficiency of adopting a VCA model. 

The rest of the paper is outlined as follows. Section 2 provides a detailed introduction to VCA 
models and an overview of existing task decomposition methods with spatial-partitioning. Section 
3 explains the proposed KCP task decomposition method. In Section 4, a parallel VCA urban 
growth model is presented. In Section 5, we evaluate and compare the KCP performance to the 
GRID and BSP performance. In Section 6, we present a discussion and draw some conclusions. 

2. Background and Related Work 

2.1. VCA Models 

VCA originates from the idea of using irregular polygons instead of regular cells to represent 
real features in simulation models [1,2]. A number of researchers have implemented this idea with 
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various spatial segregation strategies, e.g. resolution elements [3], Voronoi polygons [4], Delaunay 
triangles, and cadastral parcel polygons [5–8]. Among these approaches, parcel polygons, rather 
than a mixture of regular cells, most closely correspond to features in the real world. Thus, irregular 
representation of VCA models provides the capability to model more detailed and complex 
behaviors and interaction between features.  

In contrast to the Moore or Von Neumann neighborhood definitions of raster-based CA 
models, a VCA neighborhood can be defined by a spatial relationship; adjacency or buffer. In a 
neighborhood, two parcel polygons sharing points or edges are considered adjacent neighbors. A 
buffer neighborhood is defined by the distance between parcel polygons. All the polygons within a 
user-defined buffer distance are considered neighbors. Dahal et al. [9] made a detailed study of the 
neighborhood sensitivity in irregular CA models using nine types of neighborhoods and buffer 
distances. 

The transition functions in VCA models are usually derived from GIS suitability analysis, e.g. 
Neighborhood, Accessibility, Suitability, and Zone status (NASZ) [10]. However, each parcel 
polygon contains a different number of neighbors, and they are also different in size and shape. 
These heterogeneities make the computing cost of each VCA task fluctuate very sharply.  

Compared to raster CA, VCA model simulations are, however, computer-intensive because of 
irregular spatial representation, complex transition rules, and massive input polygons [8,11]. 
Following parallel CA models, parallel computing technology is required to support large scale 
detailed VCA model simulation. During parallelization, task decomposition is critical to fully 
utilize computing and storage resources. 

2.2. Task Decomposition Methods in Parallel VCA Models 

The spatial task decomposition method determines the workload balance and communication 
overhead influencing the model parallel computing efficiency. The spatial tasks in pVCA models 
are mutually dependent as the status of neighbors is involved in each polygon transition. Moreover, 
the shape and size of corresponding polygons in a pVCA task are very different, and this cannot 
guarantee that equal task numbers or equal subdivision areas produce equal local workloads. Thus, 
pVCA task decomposition should firstly address task dependence to minimize the communication 
overhead and then take both task computing complexity and task number into consideration to 
obtain a balanced workload. 

In practice, space partitioning strategies are usually used to conduct a near optimal pVCA task 
decomposition. Space partitioning divides the target space into a set of non-overlapping 
subdivisions, and then VCA polygons can be allocated to different subdivisions by their spatial 
relationships. Space partitioning algorithms can be categorized into flat grid-based methods and 
hierarchical tree-based methods according to the data structure applied in the partitioning process.  

2.2.1. Flat grid-Based Methods 

Flat grid-based methods are widely adopted in raster-based CA models [12–15]. These 
methods usually exhibit three forms; column-wise, row-wise, and grid-wise. The established grid 
firstly partitions the target space into flat regular cells and directly allocates simulation tasks to the 
corresponding cells. Several parallel CA libraries support these partition methods, e.g. pRPL, 
pRPL2, and CAMEL. 

Figure 1 shows an example of a grid-wise partition applied in a raster-based CA(1a) and in a 
VCA model(1b). Since raster-based CA models contain equal-sized uniform cells, task 
decomposition with this type of space partitioning can easily achieve both a balanced workload and 
a minimum communication overhead. However, when it is applied to VCA models, these methods 
will lead to an ill-balanced workload because of irregular polygons and heterogeneous distribution; 
hierarchical tree-based methods such as BSP overcome this limitation by recursively bisecting tasks. 
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Figure 1. The grid-wise partitioning method of (a) raster-based cellular automata (CA); and (b) 

vector-based cellular automata (VCA).  

2.2.2. Hierarchical Tree-Based Methods 

Figure 2 illustrates the hierarchical space partitioning process by a binary space partitioning 
tree. When applied in pVCA task decomposition, the BSP tree can produce subdivisions with an 
equal number of tasks. However, the BSP tree method does not consider the task computing complexity 
and still cannot guarantee workload balance. In addition, BSP lacks a strong guarantee on the 
communication overhead, which makes it degenerate when exploring neighborhood configurations. 
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Figure 2. Spatial tasks partitioning with a binary space partitioning (BSP) tree of (a) raster-based 
CA and (b) VCA. 

3. The k-Means Based Partitioning Method 

3.1. k-Means Clustering Method 

The k-means clustering method is one of the most widely used clustering algorithms because 
of its simplicity, efficiency, and empirical success [16]. Given a set of samples (x1, x2, …, xn) in which 
each sample is a Rd real vector, k-means clustering partitions n samples into k sets S = {S1, S2, …, Sk}, 
where (k ≤ n) and minimizes the within-cluster sum of squares (WCSS), i.e. the sum of the distance 
functions of each point within one cluster of the k center, as in Equation (1), 

2

1
arg min || ||

i

k

i
s i X S

X μ
= ∈

−  (1) 

where μi is the cluster center in Si. The kernel of k-means clustering is the user-defined distance 
function, which provides a quantitative measurement of proximity between features. The basic 
k-means clustering algorithm has been extended in many different ways, including soft 
membership in Fuzzy c-means [17,18], recursively hierarchical divisive bisecting of the k-means 
[19], automatically critical based k finding in X-means [20], etc. Readers can refer to [16] for a more 
detailed review. 

3.2. The KCP Task Decomposition Method 

In VCA models, both adjacent and buffer neighborhood definitions follow a common idea that 
closer features have a more important effect on the center feature. Inspired by this approach, the 
proposed KCP method formulates a new k-means clustering model to decompose VCA tasks. The 
KCP method consists of three phases; mapping, initial centers choosing, and clustering. The 
mapping phase converts polygon-based tasks into point types. The second phase chooses initial 
centers for each future cluster. The clustering phase carries out iterative clustering computation. 

(1) Mapping phase 

As the k-means clustering algorithm requires point input, a mapping is firstly conducted to 
convert VCA polygons into points representing the centroid of its minimum bounding box. Shown 
in Figure 3, the distance d between polygons consists of three parts: d1 and d3 represent the sizes of 
two polygons, and d2 is the actual outer spatial distance between parcels. By this distance definition, 
two bigger parcels are more likely to be separated. For example, parcel A and B are big parcels, and 
parcel C is small. Although A and B have shorter outer distances than A and C, nevertheless, A and 
C are more likely to be allocated into the same subdivision. Furthermore, A and B are more likely to 
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be allocated into different subdivisions because A and C have a smaller combination distance than 
A and B under this mapping strategy. 

 
Figure 3. An illustration of distance definition between parcels. 

Thus, this mapping strategy exhibits two advantages: (1) two close big polygons may end up 
with a large distance, and thus these two polygons are likely to be allocated into two different 
subdivisions and (2) though two dispersed small polygons have share a smaller distance, they are 
likely to be allocated into the same subdivisions. Since bigger polygons usually create more 
computation than smaller ones when geometry computation involved, these two traits can ensure a 
more balanced local workload among subdivisions. 

(2) Choosing the k initial cluster centers  

The total number of clusters, k, and initial centers are important for convergence speed and 
final clustering results. There are many customizations designed to find a cluster number or initial 
centers, such as canopy clustering and hierarchical clustering. As for task decomposition, k can be 
trivially defined as the number of processors. Usually initial cluster centers should be picked from 
the high-density areas of input points. In this paper, a simple recursive 4-way method was designed 
to determine the initial cluster centers. Shown in Figure 4, it partitions the whole space into 4level  
sub grids and records the point number in each sub grid. For a given cluster number k, the 
geometric centers with the k highest values are chosen as the initial cluster centers. 

 
Figure 4. An illustration of recursive 4-way partitioning. 

In order to determine the partitioning level, let 1∂≥  indicate the selection freedom factor 
(SFF); then the least total sub grid numbers is n k= ∂  and the least partition level is 4lognlevel  =   . 

For example, k is 4, ∂ is 4, and the minimum number of sub grids is 16, which means the minimum 
partition level is 2. 

(3) Clustering phase 
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Each subdivision has a center at Cj, which represents the geometric center of all the spatial 
tasks belonging to this subdivision. The goal of k-means clustering is to minimize the value J in 
Equation (2). 

1 1

n k

i j i j
i j

J pred X C→
= =

= −  (2) 

where predi->j is a criterion function. If the feature Xi belongs to the subdivision Cj, the predi->j is 1; 
otherwise it is 0. Repeat the following three steps until the cluster members stabilize. 

(a) Generate a new clustering by assigning each spatial task to its closest cluster center according 
to Equation (3). 

: arg mint
i i jc X C= −  (3) 

(b) Compute new cluster centers following Equation (4) 

1 i j it
j

i j

pred X
C

pred
−>+

−>

=


 (4) 

(c) Check if the current clustering results are stable according to the criteria in Equation (5). If true, 
go to step a) and repeat the assignment operation; otherwise the clustering is finished. 

1t t
j j jC C θ+∀ − >  (5) 

4. A Parallelized Urban Growth Model Based on VCA 

In order to evaluate the KCP method, a parallel urban growth model was designed to study 
the performance of KCP on workload-balance and communication overhead. 

4.1. The VCA Based Urban Growth Model 

The design of the VCA model is illustrated in Figure 5. The model input contains a collection 
of data layers related to urban growth, including transportation, terrain, and parcels. The model 
output represents a future urban growth area. The whole urban growth simulation can be viewed 
as an iteration process; each iteration spans a period of time, e.g. a month, a quarter, or a year. 
During iteration, the new status of each polygon is derived according to the status and its neighbor 
information.  

In this model, each parcel polygon has two statuses: undeveloped and developed. The initial 
parcels status of each polygon was extracted from the initial urban map by overlap analysis. The 
polygons covered by the initial urban area were assigned to developed parcels; otherwise they were 
set as undeveloped. A buffer neighborhood was included in the neighbor definition, and three 
buffer distances (120 m, 240 m, and 360 m) were applied to evaluate how the neighborhood size 
affected the communication overhead. 

As shown in Figure 6, the transition status of a parcel contains two phases; calculating the 
transition probability to developed status and conducting a transition rule test. The NASZ scheme 
was used to calculate the transition probability of the parcels. This scheme contains three steps; 
accumulate the effect of neighbors, evaluate the suitability of a parcel on its own, and synthesize 
these two results. 
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Figure 5. A typical urban growth model based on GIS suitability analysis. 

 
Figure 6. The evolution flowchart of each parcel polygon. 

The derived transition probability combines its current conditions, the status of its neighbors, 
and a set of suitability criteria in Equation (6), 

1 1( ) ( )t t t
i g i j

j
p F cond c effect c− −=   (6) 

where, Ct 
i  is the current condition of parcel i at time 1t−  and Fg is the global factor indicating the 

external driving force, such as positive policy, the vitality of the city, etc. The second term cond(Ci) is 
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a function that calculates the suitability of a parcel for development, based on a set of suitability 
criteria, including the distance to major roads, the slope, and area. The last accumulated term 
represents the accumulated effect of neighboring parcels on the center parcel, e.g. if there are more 
developed cells around it, it is more likely to be developed.  

After computing transition probability, a transition rule test is applied to all parcels. Generally, 
there are two kinds of transition rule tests, i.e. threshold and stochastic tests. The threshold type 
uses a user-specified threshold value to determine if the transition probability of a parcel can pass 
the test. In contrast, the stochastic type of rule test applies a random number generator to determine 
if a parcel can make a transition. In this way, the stochastic type of test can introduce random 
factors to an urbanization process, which can simulate uncertainties such as policy planning, 
environment change, etc. A threshold transition rule was applied in our urban growth model 
parallelization testing design. 

4.2. Research Area and Input Datasets 

The research area covers a small city near San Bernardino, California, with area of around 
207.823 km2. The major parcel dataset used in this case study was downloaded from the Internet 
[21] and contains 38820 parcels, as shown in Figure 7.  

  
Figure 7. The reasearch area and experimental parcel dataset. 

The detailed attributes of other relevant datasets are also listed in Table 1. 
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Table 1. Basic information of the dataset used in the VCA-based urban growth model.  

Dataset Format Scale Description
Parcels Vector 1:2500 Parcels represented as polygons, including their areas, owner types  

Initial urban 
Area Vector 1:2500 

Initial urban areas, the closer the undeveloped parcels are to these 
areas, the larger probability to be developed  

Roads Vector 1:2500 
Roads including local roads and major roads. The parcel accessibility 

factor was derived from the roads layer 
DEM Raster 1:5000 The DEM of the research area where slope image can be extracted 

4.3. Parallelization of the VCA-Based Urban Growth Test Model  

As described in Section 4.1, the kernel of an urban growth model is to evaluate the new status 
of each parcel iteratively, and each parcel is equal to an independent task unit in the whole 
simulation process. During parallelization, the task decomposition method, e.g. KCP, GRID, or BSP, 
divides all VCA tasks into discrete groups, and each processing element is in charge of one group 
simulation.  

A bulk synchronous parallel strategy was used to coordinate the computation and 
communication during parallel simulation [22], consisting of local computing and synchronization 
in each iteration. In the local computing phase, the local status of each parcel was computed 
according to the transition function. The synchronization phase conducts neighboring information 
exchange between processors. The parallel VCA urban growth model is illustrated in Figure 8. 

 
Figure 8. Parallelization of the urban growth model based on a bulk synchronous parallel 
strategy.  

Neighboring information exchanges result in additional communication overhead. In order to 
reduce the communication overhead, ghost parcels [23,24] were created to lower the status 
exchange frequency between cells. Figure 9 illustrates how ghost parcels reduce the communication 
overhead [14]. To avoid requesting the status of remote parcels during each iteration, current 
processing nodes will cache selected parcels on the local process; these are called ‘ghost parcels’. 
Each ghost parcel acts as a copy of an original remote parcel. Local process can query the status of a 
ghost parcel but does not have permission to update their status. Their status can be only updated 
during the synchronization phase when the original parcels are changed.  
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Figure 9. The ghost agent strategy used in the parallelized VCA model. 

The simulation was implemented in a parallel simulation framework, 4D-SAS [25]. Its 
GIS-enabled functionalities provided essential support for geometric computing required by the 
VCA test model. The 4D-SAS framework accommodated the proposed KCP task decomposition 
method and the ghost-parcel strategy to reduce the communication overhead. 

5. Case study and Experiments 

In this paper, two groups of experiments were carried out with the designed parallel VCA 
urban growth model to evaluate the proposed KCP algorithm. The evaluations compared the 
proposed KCP method with two other task decomposition methods, GRID, and BSP. The first 
group used different numbers of divisions, i.e. 4, 8, 16, and 32, to test scalability. The second group 
was configured with different buffer distances, i.e. 120 m, 240 m, and 360 m, to inspect 
communication overhead sensitivity. The 4D-SAS simulation framework was deployed on a 
high-performance computing cluster, consisting of five machines configured as follows; one was 
used as a master node, three machines were used as simulation engines, and the last one was used 
for input/output dataset storage. All the servers were directly connected by a dedicated 1 Gbps 
Ethernet. The hardware and OS of these servers are listed in Table 2. 

Table 2. Detailed configuration of the cluster servers. 

Type Master Node Simulation Engines Storage Server 

CPU 
Intel Xeon E5-2620  

(2×6 cores, 2.00 GHz each core) 
Intel Xeon E5-2620  

(2×6 cores, 2.00 GHz each core) 
Intel Xeon E5-2620  

(2×6 cores, 2.00 GHz each core) 
Memory 32 GB (1333 MHz) 32 GB (1333 MHz) 32 GB (1333 MHz) 

Hard disk 500 GB (15000 rpm, SAS) 500 GB (15000 rpm, SAS) 1 TB (15000 rpm, SAS) 
Kernel 3.10.0-123.el7.x86_64 3.10.0-123.el7.x86_64  

OS CentOS 7 CentOS 7 Windows Server 2008 

5.1. Experimental Results  

5.1.1. The Total Simulation Time 

In order to evaluate the overall parallel efficiency of KCP, GRID, and BSP, the total simulation 
time of a 24-year simulation (24 iterations, each iteration represents a year) were recorded as in 
Table 3.  
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Table 3. Total computing time for 24 iterations. 

Buffer Size Method 1 4 8 16 32 

120 m 
KCP 

3629.20 
792.75 562.85 345.15 179.23 

GRID 997.38 700.09 476.64 294.74 
BSP 854.64 591.54 368.69 249.14 

240 m 
KCP 

3754.20 
863.74 598.48 422.56 240.86 

GRID 1037.03 873.04 530.21 352.75 
BSP 985.19 683.28 470.37 347.00 

360 m 
KCP 

3887.63 
1036.25 739.14 531.76 323.48 

GRID 1163.13 897.52 611.01 453.94 
BSP 1143.19 849.97 639.43 476.42 

As seen in Table 3, KCP achieves the best parallel efficiency with the least simulation time; 
about 15% less than BSP and 25% less than GRID. The total simulation time for KCP was reduced 
from over one hour to about three minutes, using 32 cores with a 120 m neighborhood buffer. The 
simulation results after 24 iterations are shown in Figure 10. Compared to Figure 9, a large part of 
the parcels has become developed. Parcels near the initial urban area and with good transportation 
are more likely to be developed. Those areas with limitations, e.g. a protected zone or steep slope, 
were less likely to be developed. 

 
Figure 10. Simulation results of the designed urban growth model. 
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5.1.2. Execution Time in a Single Iteration 

In order to understand how the computation workload and communication overhead affect 
parallel efficiency, the time of local computing and synchronization were recorded separately with 
different subdivisions and buffer sizes. The results were recorded as shown in Tables 4 and 5. 

Table 4. Average local computing time for an iteration. 

Buffer Size Method 4 8 16 32 

120 m 
KCP 39.03 27.48 16.47 8.18 

GRID 49.46 34.46 23.20 13.92 
BSP 41.72 28.44 17.12 10.93 

240 m 
KCP 41.92 29.00 19.06 9.65 

GRID 50.90 37.45 24.75 15.29 
BSP 46.95 31.54 20.58 13.95 

360 m 
KCP 47.93 33.26 22.71 12.19 

GRID 55.99 42.39 27.83 18.70 
BSP 52.04 36.79 25.71 17.09 

Table 5. Average synchronization time for an iteration. 

Buffer Size Method 4 8 16 32 

120 m 
KCP 0.62 0.70 0.80 0.82 

GRID 0.36 0.54 0.63 0.79 
BSP 1.01 1.13 1.32 1.52 

240 m 
KCP 1.27 1.51 2.06 2.43 

GRID 0.95 1.32 1.74 2.39 
BSP 2.31 2.62 2.93 3.34 

360 m 
KCP 3.96 3.71 3.89 4.01 

GRID 2.02 2.34 2.58 3.89 
BSP 5.08 5.66 6.23 6.80 

As the buffer size increased, both the local computing time and the synchronization time for all 
methods increased, which means the computing of each parcel increases as more neighbors become 
involved. As compared to GRID and BSP, the local computing time of KCP was shorter because 
both the number of tasks and the computing complexity were considered, based on the centroid 
distance in KCP. Considering synchronization, KCP takes less time than BSP and more time than 
GRID, as the communication overhead was lower than that of BSP and higher than that of GRID in 
terms of the total number of ghost agents. 

5.2. Analysis and Discussion 

5.2.1. Local Workload Comparison of Different Partition Methods 

We assumed that large-sized parcels are surrounded by more neighboring parcels, involving 
more geometric computing. In this paper, the number of allocated parcels and their total area were 
examined to analyze workloads obtained from GRID, BSP, and KCP.  

(1) The payload distribution of subdivision parcels  

Firstly, the normalized number of parcels nni in each subdivision was calculated, and the 
corresponding normalized standard deviation of the number of parcels (NSD-PN) θ  was 
computed according to Equation (7),  
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where K is the subdivision size, i.e. 4, 8, 16, or 32, and N represents the total number of tasks. Ni is 
the allocated number of tasks for subdivision i. Shown in Table 6 are the results from the BSP 
method that generates an equal number of parcels for each subdivision. Compared with GRID, KCP 
results in a better distribution of parcels. As the subdivision number increased, the NSD-PN θ value 
of GRID and KCP both decreased.  

Table 6. Normalized standard deviation of the number of parcels (NSD-PN) of different patitioning 
methods. 

Method 4 8 16 32
KCP 0.086 0.062 0.032 0.015 

GRID 0.132 0.086 0.059 0.032 
BSP 0 0 0 0 

(2) The subdivision parcel area distribution  

The same as the NSD-PN calculation, the first step is to compute normalized allocated area nsj 
of each subdivision, and then the normalized standard deviation of the resulting partition areas 
(NSD-PA) μ  is computed according to Equation (8), 
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where si represents the area of parcel i, and nsj represents the ration of allocated parcels area for 
subdivision j. Shown in Table 7, the GRID method resulted in a well-balanced distribution of task 
areas among subdivisions, while the BSP method resulted in an unbalanced workload. In addition, 
the μ value decreased as the subdivision sizes increased.  

Table 7. Normalized standard deviation of the resulting partition areas (NSD-PA) of different 
patitioning methods. 

Method 4 8 16 32
KCP 0.045 0.041 0.029 0.018 

GRID 0.029 0.023 0.016 0.009 
BSP 0.104 0.091 0.060 0.038 

As shown in Tables 6 and 7, GRID generated the highest NSD-PA and the lowest NSD-PN, 
while the results produced by BSP were the reverse of the GRID task allocation results. The 
proposals by KCP were moderate in both aspects. The GRID method weights more spatial task 
complexity over number of spatial tasks. In contrast, the BSP method focuses on balancing the 
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number of spatial tasks allocated among subdivisions. The KCP method makes a compromise 
between these two factors, which can achieve the optimum local workload balance. 

5.2.2. Global Communication Overhead Comparison of Partition Methods 

As described in Section 4.2, the status synchronization of ghost parcels is the major source of 
the communication overhead. The number of ghost parcels was used to measure the 
communication overhead among the three task decomposition methods.  

Shown in Table 8, KCP leads to less ghost parcels than BSP but more than GRID. As the 
subdivision size increased, the ghost parcel number of KCP increased more slowly than that of 
GRID and BSP. In addition, for the same number of subdivisions, as the buffer size increased, KCP 
also increased more slowly than GRID and BSP. Therefore, KCP is less sensitive to subdivision and 
buffer size, which makes it suitable for exploring the effect of neighborhood factors. 

Table 8. Global communication overhead in the total ghost agent number. 

AOI  Method  4 8 16 32 

120 m 
KCP 531 682 968 1756 

GRID 190 451 855 1433 
BSP 563 1151 2078 3096 

240 m 
KCP 1107 1612 2577 4478 

GRID 494 1100 2215 3900 
BSP 1542 2856 4907 7416 

360 m 
KCP 2022 3446 5029 9290 

GRID 1358 2705 4793 8495 
BSP 2635 5315 8864 13503 

As shown by the experiment results, the KCP method achieved the most efficient parallel 
performance in comparison to GRID and BSP. However, due to the inherent empirical success of 
k-means, the KCP method cannot guarantee optimal task decomposition. Moreover, there is no 
control on the weighting between the local workload balance and the communication overhead, 
which is critical for the parallelization efficiency of a VCA model operating on a heterogeneous 
computing cluster. 

6. Conclusions 

Compared to raster-based CA models, task decomposition in VCA models is more complex 
because of heterogeneous parcel distributions and task computing complexity. Existing task 
decomposition methods employ space partitioning directly (e.g. GRID and BSP) to decompose 
simulation tasks and thus cannot guarantee a balanced workload and minimum communication. In 
this paper, a novel task decomposition method based on k-means clustering is proposed to partition 
tasks in VCA models. The KCP method adopts the centroid distance of parcel polygons as a 
measurement of proximity, which enables both the task numbers and their computing complexity 
to be taken into consideration. Illustrated by our experimental results, KCP obtains the optimum 
workload balance with an acceptable communication overhead, therefore achieving high parallel 
efficiency. KCP can be applied as an effective approach to do task decomposition in parallelization 
of large-scale detailed VCA, where the variety in computing units cannot be ignored. In the future, 
we will conduct a detailed study of KCP performance in urban growth models based on VCA 
involving geometric change. We will add weights to the local workload balance and 
communication overhead to make task decomposition more responsive to the characteristics of 
heterogeneous computing clusters. 

Acknowledgments: This work is supported by the Natural Science Foundation of China (Grant No.: 41301411), 
the Natural Science Foundation of Hubei Province (Grant No.: 2015CFB399) and Grand Special of High 



ISPRS Int. J. Geo-Inf. 2017, 6, 93  16 of 17 

ISPRS Int. J. Geo-Inf. 2017, 6, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/ijgi 

resolution On Earth Observation: Application demonstration system of high resolution remote sensing and 
transportation (Grant NO: 07-Y30B10-9001-14/16). 

Author Contributions: Zhenqiang Li and Xuefeng Guan conceived and designed the experiments; Zhenqiang 
Li performed the experiments; all authors analyzed the data and experimental results; Huayi Wu and Jianya 
Gong contributed the high-performance computing infrastructure and gave other financial aid; and Zhenqiang 
Li and Xuefeng Guan wrote the paper. In addition, we sincerely thank Mr. Steve Mcclure for the language 
polishing and revising.  

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

KCP     K-means clustering based task partitioning 
KD-Tree    k-dimensional tree 
GIS     Geographical Information System 
OS     Operating System 
VCA Vector-based CA model 
KCP k-means clustering partitioning strategy 
GRID Grid partitioning 
BSP Binary space partitioning 
NSD-PA Normalized standard deviation of the area of parcels 
NSD-PN Normalized standard deviation of the number of parcels 
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