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Abstract: Interpolation and prediction of spatiotemporal data are integral components of many 
real-world applications. Thus, approaches of interpolating and predicting spatiotemporal data 
have been extensively investigated. Currently, the grey dynamic model has been used to enhance 
the performance of interpolating and predicting spatiotemporal data. Meanwhile, the Extensible 
Markup Language (XML) has unique characteristics of information representation and exchange. 
In this paper, we first couple the grey dynamic model with the spatiotemporal XML model. Based 
on a definition of the position part of the spatiotemporal XML model, we extract the corresponding 
position information of each time interval and propose an algorithm for constructing an AVL tree 
to store them. Then, we present the architecture of an interpolating and predicting process and 
investigate change operations in positions. On this basis, we present an algorithm for interpolation 
and prediction of spatiotemporal data based on XML integrated with the grey dynamic model. 
Experimental results demonstrate the performance advantages of the proposed approach. 

Keywords: spatiotemporal Extensible Markup Language (XML); grey dynamic model; AVL tree; 
interpolation and prediction 

 

1. Introduction 

The management of spatiotemporal data has been intensively studied in recent years on 
account of the global spatiotemporal data increase [1–4]. Among various applications (e.g., flight 
control, land management, blood forecasting, traffic supervision), the objects whose positions 
change over time, such as airplanes, ships, clouds, and so on, significantly contribute to the study of 
spatiotemporal data. 

Researchers have addressed a variety of approaches in modeling and querying the location of 
the moving spatiotemporal data both in relational databases [5–8] and spatiotemporal databases [9–11]. 
Early studies on the positions of spatiotemporal data assumed that the spatiotemporal data remain 
static in each time interval [12,13]. In addition, representing and querying the locations of moving 
spatiotemporal data as a linear function of time, which assigns a set of possible values rather than a 
unique value, was introduced in [14]. With respect to continuously moving regions, Tøssebro and 
Güting [15] provided algorithms to interpolate between two snapshots, transitioning from simple 
convex polygons to arbitrary polygons. Güting et al. [6] identified the k nearest neighbors of a set of 
moving object trajectories for any instant of time within the lifetime. However, the fixed value 
model and linear model generate too many errors on account of the limited sampling rate and 
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indeterminacy of the snapshot when increasing indeterminacy is concerned [16]. Furthermore, the 
linear prediction models have limits [17]. For example, the movement is not always linear; if it is 
linear, it is not usually known. If it is linear and known, it changes so fast that prediction using the 
movement parameter information is meaningless. Moreover, many spatiotemporal applications not 
only query the historical spatiotemporal data, but they also strive to retrieve the near-future 
evolution of spatiotemporal data. Although the fixed value model and moving objects 
spatiotemporal (MOST) model [18] can provide the near-future evolution of spatiotemporal data, 
they assume the movement functions are already known. Additionally, when information is limited, 
the originally sampled data will generate errors. Therefore, a new modeling technology of 
interpolation and prediction of spatiotemporal data is required to overcome these problems. 

In recent years, the grey system theory [19] has developed rapidly, and its applications have 
extended to the spatiotemporal data field. The grey prediction model, GM (1, 1), is used to enhance 
the estimation performance because it can reduce the randomness inside the history query results 
sequence and it generates a holistic measure. The grey system theory is fairly appropriate for 
predicting spatiotemporal information because the accumulated generating operation is the most 
important characteristic for the grey system theory. Its purpose is to reduce the randomness of data. 

However, for grey generation in snapshots, the model reduces the randomness in the snapshot 
data sequence. Moreover, the model can more precisely predict the near-future evolution of 
spatiotemporal data. In [16], the grey modeling approach was used to generate the discrete 
spatiotemporal model for two-dimensional indeterminate moving point objects. In [20], Bao 
introduced a histogram-based grey estimator for spatiotemporal selectivity estimation according to 
the continuity of movement. However, their study was based on the traditional database. Thus, 
interpolation and prediction of spatiotemporal data are relatively complex primarily because of the 
imposing of strict restrictions on structure [21] and data types [22] of spatiotemporal data. In such a 
case, interpolation and prediction of spatiotemporal data require a new efficient medium. 

The next-generation language of the Internet, the Extensible Markup Language (XML) is 
playing an increasingly important role as a medium for integrating and exchanging data from 
different sources. Furthermore, XML significantly influences data management [23,24] (e.g., 
interpolation and prediction of spatiotemporal data) because the data can remain in a tree structure 
and a node or subtree can be considered metadata. Thus, interpolation and prediction of 
spatiotemporal data based on XML seems to have greater performance advantages than a traditional 
database. This can explained by two factors. Firstly, the basic data structure in XML is the labeled 
ordered rooted tree [25], which can facilitate extraction of the corresponding position nodes for 
interpolating and predicting spatiotemporal data. Secondly, XML can handle time by adding labeled 
edges with time intervals as the time dimension [26], as opposed to the complex extensions of 
traditional models [22,27]. This handling of time can facilitate extraction of the corresponding 
temporal information. In that case, it makes interpolation and prediction of spatiotemporal data 
much easier because the desired interpolating or predicting of spatiotemporal data can be achieved 
by directly extracting the corresponding position nodes and corresponding temporal information. 
Accordingly, it is significant to lead XML into interpolation and prediction of spatiotemporal data.  

To the best of our knowledge, there are no reports on interpolation and prediction of 
spatiotemporal data based on XML integrated with the grey dynamic model. In this paper, we 
present a novel approach to interpolating and predicting the positions of moving spatiotemporal 
data, as well as the first use of GM (1, 1) on the spatiotemporal XML model. According to the 
structure of the spatiotemporal XML model, we add development Functions along the x- and y-axis 
into the position part. Then, we extract the position information of each time interval and construct 
an AVL tree to store them. After discussing the architecture of the interpolating and predicting 
processes based on GM (1, 1), we investigate the change operations in the position containing the 
update, delete, and insert functions. Then, we provide an algorithm for interpolation and prediction 
based on XML integrated with GM (1, 1). Our experimental results validate our analysis and show a 
substantial performance improvement.  
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The remainder of this paper is organized as follows. In Section 2, we discuss basic information 
on types of interpolation and prediction models, the grey system theory, and GM (1, 1). We then 
couple GM (1, 1) with the spatiotemporal XML model in Section 3. Section 4 presents the architecture 
of interpolating and predicting processes, and Section 5 investigates the change operations in the 
position. In Section 6, we propose an algorithm for interpolation and prediction. Section 7 presents 
the experimental results, and Section 8 concludes the paper. 

2. Basic Knowledge 

2.1. Types of Interpolation and Prediction Model 

In many areas of spatiotemporal databases, positions of spatiotemporal data are usually 
interpolated or predicted for both continuous and discrete changes because only finite position data 
are recorded in the database. Accordingly, some desired position information of spatiotemporal data 
should be interpolated or predicted. Continuous changes mean that changes occur throughout their 
entire lifespans, while discrete changes indicate that changes occur at specific time instants. For 
several phenomena (e.g., blood forecasting, forest fires, cloud waves, typhoon movements, etc.), we 
must track and monitor the respective spatiotemporal data to analyze or predict near-future 
movements. 

We first introduce interpolation and prediction models of spatiotemporal data, which are 
mainly comprised of a fixed value model, linear model, and grey model. The fixed value model [13] 
assumes values of spatiotemporal data between snapshots to be constant, and it changes when a 
new snapshot is generated. Figure 1a shows the actual tracking of a moving point; Figure 1b 
represents it using the fixed value model. In Figure 1b, there are only five values in each time 
interval, and the values change when a new snapshot is generated. For instance, an individual 
waiting in a queue for tickets is found at a certain position, but the individual may change position 
from time to time (a new snapshot is generated).  

The linear model [14] assumes that the development of spatiotemporal data during a time 
interval is a linear function. In each time interval, the beginning spatiotemporal data are stored as 
well as its development function. They are both used for interpolation or prediction when the 
spatiotemporal data are required at an arbitrary time point. In Figure 1c, there are four lines to 
record the spatiotemporal data tracking (the trends of the first two lines are the same). The grey 
model [19] generates movement functions from a sequence of spatiotemporal data. Figure 1d 
simulates tracking of the moving point in Figure 1a. It can be observed that the approximation in 
Figure 1d is the closest one to the actual track. 

 
Figure 1. Types of interpolation and prediction models (a–d).  
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2.2. Grey System Theory and GM (1, 1) 

The grey system theory [19] was first presented in the late 1970s. Its main task is to seek the 
mathematic relations and movement rule among factors from the behavioral data of a system. The 
core of this theory is the dynamic grey model, whose characteristic is the generating function and the 
grey differential equation. The dynamic grey model uses differential fitting as a modeling method 
based on the concept of the grey generating function. Assuming the system’s internal behavioral 
data is unknown, the single series first-order linear dynamic model GM (1, 1) of the grey system 
theory uses grey generations on the random external behavioral data to reduce randomness. It then 
establishes the grey difference equation for calculation and prediction. The arithmetic to generate 
GM (1, 1) from behavior data sequence X can be described as follows: 

Let X be a non-negative behavioral data sequence: 
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and yn = [x(0)(2), x(0)(3),…, x(0)(n)]T. 

The grey difference equation, x(0)(k) + az(1)(k) = b, is called the GM (1, 1) of sequence X. It can be 
used in near-future evolution prediction, even when the behavioral data sequence has a relatively 
high error rate or randomness [28]. In addition, it can predict data not recorded in database. 

3. Coupling GM (1, 1) with Spatiotemporal XML Model 

To interpolate and predict the positions of spatiotemporal data more accurately and efficiently, 
GM (1, 1) is integrated in the spatiotemporal XML model. In this section, we first illustrate the 
utilized spatiotemporal XML model. We then demonstrate how the spatiotemporal XML model is 
integrated with GM (1, 1) to interpolate and predict the positions of the spatiotemporal data. 

devXML document is a labeled ordered rooted tree. We thus regard spatiotemporal data as a 
structured tree for metadata. As a result, operations between spatiotemporal data are actually 
operations between trees. According to the nature of spatiotemporal data, the definition of the 
spatiotemporal XML model is defined as follows. 

Definition 1 Spatiotemporal XML model XSP is a five-tuple, XSP = (OID, ATTR, P, M, T), where 

• OID is the changing history of the spatiotemporal data. 
• ATTR denotes the attributes of the spatiotemporal data. 
• P is the position of the spatiotemporal data. 
• M is motion of the spatiotemporal data. 
• T is time of the spatiotemporal data. 

Because GM (1, 1) uses grey generations to seek the mathematic relations and movement rule, 
the corresponding part of the spatiotemporal XML model only involves the position part. 
Accordingly, we mainly investigate how to use GM (1, 1) on the position part of the spatiotemporal 
XML model. 

We consider the position part of the spatiotemporal XML model as a sub-data tree and provide 
its definition as follows. 
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Definition 2 (Position part of the spatiotemporal XML model.) The position part of the 
spatiotemporal XML model XP is a five-tuple, XP = (x, y, fx, fy, T), where 

• x and y are abscissa and vertical coordinates. 
• fx and fy are development functions along the x- and y-axis, respectively. 
• T is the time of the position. 

Following the GM (1, 1) model, the position part of the spatiotemporal XML model can be 
expressed as a five-tuple. The development functions fx and fy can be generated from the GM (1, 1) 
model according to x and y in history records at each time T. Note that the position part of the 
spatiotemporal XML model defined above is used for zero-dimensional spatiotemporal data because 
it is the most common case. Furthermore, some one-dimensional or even two-dimensional 
spatiotemporal data can be considered zero-dimensional spatiotemporal data when the shape of the 
spatiotemporal data is irrelevant in terms of the whole situation.  

The approach can be applied to one-dimensional or even two-dimensional spatiotemporal data 
as the development of functions. For instance, when we study an airplane route, we can consider the 
airplane as a point, even though it is actually two-dimensional spatiotemporal data. Another case is 
a typhoon. We are primarily concerned about the central part of the typhoon called the typhoon eye 
when its track is studied. 

The position part fragment of the spatiotemporal XML model is shown in Figure 2. Node p is an 
abbreviation connoting that it is the position part of the spatiotemporal data node. For the case of x 
and y nodes, we not only add their value nodes, but we also add their development function nodes. 
Firstly, we use two child nodes of node p, denoted x and y, to identify the x node and y node, 
respectively. Then, for each child node of node p, the two child nodes are added to store the value 
and development functions. For the value nodes xval or yval, they are usually obtained by 
observation or even interpolation and prediction; for the development function nodes fx and fy, they 
are computed by GM (1, 1) using original values of x nodes and y nodes. Accordingly, the position 
node can store the position information (xval and yval) as well as the development functions (fx and 
fy). In that case, we can interpolate and predict the position of spatiotemporal data by reading the 
corresponding position values and the development functions. Although it may generate a great 
amount of redundancy since the development functions of x and y should be generated and stored at 
each transaction time interval, it saves the query time because we need only read the corresponding 
node values; it is not necessary to compute the development functions when querying. On the other 
hand, the so-called redundancy is actually useful and may be used when interpolating position 
nodes at a distant-past times. 

 
Figure 2. Structure of the position fragment. 

Since the structure of the spatiotemporal XML model is not a regular tree, and the attribute 
nodes may be multiple, searching for the corresponding position information becomes complicated. 
To overcome this difficulty, we extract the position information in the spatiotemporal XML model 
and construct an AVL tree to store them. The advantage is mainly comprised of the following: (a) 
useful position information is extracted; (b) the data used in the experiment in the later section are 
relatively small and are suitable for using an AVL tree to store the extracted information; and (c) 
both the AVL tree and B− tree are similar in that they are data structures that cause the heights of 
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their respective trees to be minimized according to their requirements. This “shortness” allows 
searching to be performed in O (log n) time because the largest possible number of reads corresponds 
to the height of the tree.  

An AVL tree is a self-balancing binary search tree that is balanced to maintain O (log n) height. 
A B− tree is a balanced tree, but it is not a binary tree. Nodes have more children. This increases the 
per-node search time, but it decreases the number of nodes the search must visit. We choose the AVL 
tree because its overall performance is better than that of the B− tree and B+ tree. In addition, 
inserting, deleting, updating, and querying nodes in the AVL tree are faster than those in the B− [29] 
tree and B+ [26] tree. Moreover, (d) techniques of creating, deleting, inserting, and searching nodes 
in the AVL tree have been studied and are applicable. Accordingly, we introduce an AVL tree to 
store the extracted position information. 

In the algorithm Construct_AVL_Tree, we construct an AVL tree from the spatiotemporal XML 
model, extract the position information used, and store them in the constructed tree. Function 
Grey_Estimate calculates the GM (1, 1) model from the given subsequence. Its algorithm is given in 
Section 7. 

Algorithm Construct_AVL_Tree (x, y, fx, fy)
01 let t = null 
02 for (m = i; m <= i; m−−) 
03 let ai = $o/../position/x/xvali [@Ts = Ti] 
04 let bi = $o/../position/y/yvali [@Ts = Ti] 
05 let ci = $o/../position/x/fxi [@Ts = Ti] 
06 let di = $o/../position/y/fyi [@Ts = Ti] 
07   Sequence (si) = add (ai, bi, ci, di) 
08   SequenceB () = add (si) 
09 end for 
10 for each si in SequenceB () do 
11 let x = Grey_Estimate (ai.x) 
12 let y = Grey_Estimate (bi.y) 
13 insert the current node (x, y, ci, di) to result tree t 
14 end for 
15 return t 

4. Interpolation and Prediction Process Architecture  

The architecture of the interpolating and predicting process is based on the spatiotemporal 
XML model integrated with GM (1, 1), as illustrated in Figure 3. When there is an XQuery request, 
we should firstly normalize the corresponding data. Take the typhoon eye route as an example. The 
data recorded are the longitude and latitude coordinates for predicting the typhoon eye position. We 
should normalize the position data into coordinates along the x- and y-axis. Then, the GM (1, 1) 
generator is set up according to the GM (1, 1) model using a certain number of the most recent 
history data in the constructed AVL tree as the initial sequence for interpolating and predicting the 
query result at a given time.  

Furthermore, we should also process the result into the readable data since the corresponding 
generating process data are based on the spatiotemporal XML model and coordinate system. In that 
case, we should process the computed data into the exact position (longitude and latitude) so that 
they are readable. Finally, the query result can be returned. In the case of the interpolation or 
prediction of position of the spatiotemporal data, GM (1, 1) is actually used twice to generate x- and 
y-axis values, respectively. 

The interpolating and predicting process architecture, as shown in Figure 3, mainly contains 
two parts: a user-related part and a machine-related part. The former provides two user interfaces, 
including the readable input and output data; the latter deals with the data and gives it the capability 
of satisfying user needs based on the spatiotemporal XML model integrated with GM (1, 1). The latter 
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can be further divided into two parts: data processing and data computing. Data processing contains 
data normalization, which transforms the user-readable data into machine-readable data. The result 
processing reverses the normalized data. Data computation interpolates and predicts the desired 
result according to the GM (1, 1) model using a certain number of the most recent history data items 
in the constructed AVL tree as the initial sequence. 

 
Figure 3. Interpolating and predicting process architecture. 

5. Position Change Operations  

Spatiotemporal XML documents are subject to continuously changing operations, namely 
update, delete, and insert. These continuously changing operations may lead to different effects on 
elements and attributes in the position part of the spatiotemporal XML model. These change 
operations are related to interpolation or prediction of spatiotemporal data. Because the integrated 
grey dynamic model only deals with the position part of the spatiotemporal XML model, in this 
section we demonstrate how their effect on elements and attributes can be represented in the 
position part of the spatiotemporal XML model. The following is the effect of performing each 
operation on position elements and attributes. 

Update. Updating the value of a position can be seen as replacement of the corresponding elements 
and attributes with other ones that have the same name but different content. Actually, not only the 
content of the position (x and y), but also the temporal interval of the position and development 
functions (fx and fy) should be updated. We discuss the transaction time and data recorded in the 
database. When position element p is updated at time t: 

(i) A new element with the same name p and all its descendants (x, y, fx, fy) are appended after the 
original ones. 

(ii) Compute fx and fy according to the original corresponding elements using GM (1, 1). 
(iii) The attributes Ts and Te of position element p and all its descendants are set to [t, Now]. 

Delete. Deleting the value of a position involves only deleting the position node and all its 
descendants and corresponding attributes. However, the deletion of the position node affects the 
development functions of later position nodes because the development functions are generated by 
later position nodes. 

When position element p is deleted at time t: 

(i) For t ∈ [T1, T2] ∧ T1 = max (Ts) ∧ T2 = min (Te), delete position element p and all its descendants at 
time interval [T1, T2]. 
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(ii) For position element p where // p [@Ts > @T2], again compute fx and fy of the position element 
nodes after position element node p according to fresh original corresponding elements using 
GM (1, 1), respectively. 

Insert. Inserting the value of a position can be considered insertion of the corresponding elements 
and attributes. The position element whose attribute time is involved in the insertion should also be 
updated. In addition, the insertion of the position node affects the development functions of later 
position nodes because the development functions are generated by later position nodes. In that 
case, these development functions should be updated. 

When position element p is inserted at time t: 

(i) For the position element p whose time interval contains t (t ∈ [Ts, Te]), the inserted element with 
the same name p and all its descendants (x, y, fx, fy) are appended after this position p. 

(ii) The time attributes of the inserted element and all its descendants are set to [t, Te]. 
(iii) The time attributes of position element p and all its descendants are set to [Ts, t − 1]. 
(iv) For the position elements after this position element p, again compute fx and fy according to the 

fresh original corresponding elements using GM (1, 1), respectively. 

6. Interpolations and Predictions 

In this section, we propose an approach to interpolating and predicting the positions of 
spatiotemporal data. Following the definition of the position part of the spatiotemporal XML model, 
the position of spatiotemporal data can be expressed as (x1, y1, fx1, fy1, T1), (x2, y2, fx2, fy2, T2), …, (xi, yi, fxi, 
fyi, Ti), …, (xn, yn, fxn, fyn, Tn), where xi and yi are coordinates along the x- and y-axis, and Ti is the time of 
the position as (xi, yi). The development functions, fxi and fyi, are the GM (1, 1) model generated from 
xi and yi, respectively.  

Because the position contains two variables, it can be resolved into (x1, fx1, T1), (x2, fx2, T2), …, (xi, 
fxi, Ti), …, (xn, fxn, Tn) and (y1, fy1, T1), (y2, fy2, T2), …, (yi, fyi, Ti),…, (yn, fyn, Tn). When the position 
information at time t is needed, simply find i, which makes t ∈ [Ti-1, Ti]. Then, the interpolation is 
obtained as initial value (xi−1) + fx (t) and initial value (yi−1) + fy (t). The formula can also be used for the 
near-future prediction of the positions of spatiotemporal data. However, the prediction time length 
should be limited in [Tm, Tm + r], where r ≤ min (Ti − Ti−1). The algorithm for interpolation and 
prediction in the spatiotemporal XML model using GM (1, 1) is described below. 

Algorithm Grey_Estimate (o) 

01 for (m = i; m <= i; m−−) 
02 let ai = $o/../position/x/xvali [@Ts = Ti] 
03 let bi = $o/../position/y/yvali [@Ts = Ti] 
04   Sequencex () = add (ai) 
05   Sequencey () = add(bi) 
06 end for 
07 if Length (Sequencex > 3) and Length (Sequencey > 3) 
08   Coefficientx = Calculate_GM_Coeffcient (Sequencex) 
09   Coefficienty = Calculate_GM_Coeffcient (Sequencey) 
10   Resultx = Estimate_at (Coefficientx, Sequencex , Ti) 
11   Resulty = Estimate_at (Coefficienty, Sequencey , Ti) 
12 end if 
13 return Resultx 
14 return Resulty 

According to the algorithm Grey_Estimate, we can interpolate or predict the position of 
spatiotemporal data. The difference of interpolation and prediction is whether the time queried is 
between the time interval of recorded spatiotemporal data or after the maximum time point of 
recorded spatiotemporal data. In the process of interpolation or prediction, we should obtain the 
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latest data of the position information. To employ the GM (1, 1) model, the latest data of the position 
should be more than three. The functions Calculate_GM_Coeffcient and Estimate_at generate the GM (1, 1) 
model from the sequence data and interpolate or predict the required value. Their algorithms can be 
designed from the arithmetic presented in Section 2; they are not addressed here on account of space 
constraints. 

When we use the GM (1, 1) model, the latest data of the position information are required. 
According to definition 2, the latest data of Sequence () are obtained in reverse order (from recent 
time to distant-past time). In addition, the number of data in Sequence () is random according to 
actual needs and must be more than three. In other words, it is difficult to acquire the latest required 
data since the latest data are computed in reverse order. Consequently, we use two stacks to process 
the latest data so they are easily obtained, as shown in Figure 4.  

Firstly, the required latest data produce a data stream (x1, …, xi−1, xi). Stack a processes the data 
stream. Hence, the recent data are located at the bottom of stack a and the distant-past data are 
located at the top of stack a. Then, these data are extracted so that the data stream is transformed into 
(xi, xi−1, …, x1). Finally, stack b processes the extracted data stream so that the distant-past data are 
located at the bottom of the stack, and the recent data are located at the top of the stack. After 
processing the two stacks, the latest data can be easily added to Sequence (), and it can guarantee that 
the latest data in Sequence () are ordered from the most recent time to the distant-past time. 

 
Figure 4. Stacks for processing the most current data. 

7. Experiments 

To evaluate the effectiveness of interpolation and prediction of spatiotemporal data based on 
XML integrated with the grey dynamic model, we evaluated the feasibility and accurateness using 
GM (1, 1). We compared its performance with that of GM (1, 1) based on MATLAB. The experiments 
were implemented in MATLAB 7.0.1 and Microsoft Visual C++ 6.0, and they were performed on a 
system with a 1.8-GHz Pentium IV processor, 1 GB RAM, and the Windows XP operating system. 

7.1. Experimental Setup 

Data set: The data set, shown in Figure 5, was from tropical storm data [30]. The left part of Figure 5 
shows the track of the Muifa storm; the right part of Figure 5 displays data information of the Muifa 
storm containing the name, date, time (UT), latitude (degrees), longitude (degrees), course (true), 
speed (knots), pressure (mb), and wind (knots). Because interpolation and prediction of 
spatiotemporal data only addresses the position part, we extracted the latitude and longitude 
information of each time from the data set, which consisted of 60 data items. In the case of the 
generated AVL tree, there were 60 nodes, and the depth of the AVL tree was six. In other words, the 
generated AVL tree had six levels. 
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Figure 5. Data of Muifa storm tracking. 

Experimental environment: The experimental environment was comprised of MATLAB 7.0.1 and 
Microsoft Visual C++ 6.0. In the MATLAB environment, we evaluated the effectiveness of the 
interpolation and prediction of storm tracking based on XML integrated with a grey dynamic model 
with the actual track. We considered the 60 time instants of the actual time as isomorphic to a natural 
number in the experiment. For a performance comparison, both experimental environments were 
used. Searching for the corresponding node in the AVL tree and reading its contents were evaluated 
in Microsoft Visual C++ 6.0, while generating the development function and computing the values of 
x and y were evaluated in MATLAB. 

7.2. Experimental Results 

We compared the interpolation and prediction of spatiotemporal data based on XML integrated 
with the grey dynamic model to the interpolation and prediction in a normal environment over the 
above data set. To analyze the effectiveness of our proposed approach, we performed three groups 
of experiments. The first two experiments were performed to demonstrate the feasibility and 
accurateness of the proposed approach using GM (1, 1), and the last experiment was performed to 
demonstrate the performance advantages of our approach. 

In the first group of experiments, we performed interpolation and prediction of Muifa storm 
tracking based on the spatiotemporal XML model integrated with GM (1, 1). Figure 6 shows the 
comparison between the actual track of the Muifa storm and the fitting storm tracked by the GM (1, 1) 
model. The solid curve represents the actual track of the Mufia storm; the dashed curve represents 
the fitting storm tracked by the GM (1, 1) model. As shown in Figure 6, a considerable deviation of 
the fitting storm track from the actual Mufia storm track is apparent. The deviation increases because 
all 60 data items are fitted in one time; thus, the deviation of the fitting track increases when the track 
tendency varies. However, the fitting track by GM (1, 1) still holds the holistic moving tendency and 
remains stable. 
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Figure 6. Storm track with a high indeterminacy. 

In the second group of experiments, we improved the fitting track by the GM (1, 1) model to 
reduce the deviation, as Figure 7 shows. As depicted in the figure, the solid curve represents the 
actual track of the storm; the dashed curve represents the fitting storm tracked by the GM (1, 1) 
model. The approach we used in this experiment involved dividing the 60 data items into 12 groups 
and generating the corresponding storm track, respectively. The improvement enabled the storm 
tracking to flexibly adjust to the actual storm track. In that case, Figure 6 shows the storm track with 
high indeterminacy; Figure 7 shows the storm track with low indeterminacy. It is observed that the 
latter performs better than the former. 

 
Figure 7. Storm track with low indeterminacy. 

Finally, in the third group of experiments, we compared the performances. To this end, we 
evaluated the execution time and memory cost of interpolating and predicting the Muifa storm 
tracking based on XML integrated with the grey dynamic model (noted as GXML for simplicity), as 
well as the execution time of that in the relational databases (here we used MATLAB for the 
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evaluation), as shown in Figures 8 and 9. Figure 8 shows the performance comparison between the 
execution times computed with GXML and MATLAB. We observe that the execution time of GXML 
increases slightly more than that in MATLAB in accordance with the increasing number of data 
items. The execution time of GXML is longer than that of MATLAB when the number of data items 
is small (less than approximately five data items), and the GXML execution time is less than that of 
MATLAB with an obvious increase in the difference over time. This can be explained by the fact that 
GXML first needs structural transforming; then, the position information can be directly extracted.  

Figure 9 shows a memory cost comparison between GXML and MATLAB. It is observed that 
the memory cost of GXML is smaller than that of MATLAB. This can be explained by the fact that the 
memory costs not only depend on the cost size of the dataset, but they also depend on the 
complexity of the approach. In our approach, after structural transforming, only the position nodes 
of the structural model should be considered. 
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Figure 8. Execution time comparison. 

 

Figure 9. Memory cost comparison. 

8. Conclusions 

To effectively process the interpolation and prediction of spatiotemporal data, a novel approach 
for interpolation and prediction of spatiotemporal data based on the spatiotemporal XML model 
integrated with the grey dynamic model was introduced in this paper. We extracted the 
corresponding position information of each time interval from the position part of the proposed 
model. We then constructed an AVL tree to store them. After discussing change operations, we 
additionally presented an algorithm for interpolation and prediction based on the spatiotemporal 
XML model integrated with GM (1, 1). The experimental results showed that our approach 
efficiently performed interpolation and prediction of spatiotemporal data. 
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Interpolation and prediction of spatiotemporal data based on XML with the grey dynamic 
model require further research. In this regard, most spatiotemporal data should be studied. Another 
future research topic is to extend our studies on the basis of other formats, such as JSON and YAML. 
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