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Abstract: Visual coverage is one of the most important quality indexes for depicting the usability of
an individual camera or camera network. It is the basis for camera network deployment, placement,
coverage-enhancement, planning, etc. Precision and efficiency are critical influences on applications,
especially those involving several cameras. This paper proposes a new method to efficiently estimate
superior camera coverage. First, the geographic area that is covered by the camera and its minimum
bounding rectangle (MBR) without considering obstacles is computed using the camera parameters.
Second, the MBR is divided into grids using the initial grid size. The status of the four corners of
each grid is estimated by a line of sight (LOS) algorithm. If the camera, considering obstacles, covers
a corner, the status is represented by 1, otherwise by 0. Consequently, the status of a grid can be
represented by a code that is a combination of 0s or 1s. If the code is not homogeneous (not four
0s or four 1s), the grid will be divided into four sub-grids until the sub-grids are divided into a
specific maximum level or their codes are homogeneous. Finally, after performing the process above,
total camera coverage is estimated according to the size and status of all grids. Experimental results
illustrate that the proposed method’s accuracy is determined by the method that divided the coverage
area into the smallest grids at the maximum level, while its efficacy is closer to the method that
divided the coverage area into the initial grids. It considers both efficiency and accuracy. The initial
grid size and maximum level are two critical influences on the proposed method, which can be
determined by weighing efficiency and accuracy.

Keywords: camera coverage estimation; multistage grid subdivision; line of sight; viewshed
analysis; obstacle

1. Introduction

Visual coverage is an essential quantifiable feature of an individual camera and camera network,
which perform the most fundamental requirements of any surveillance tasks and computer vision
applications. Such diverse applications as camera reconfiguration, optimal camera placement, camera
selection, camera calibration, and tracking correspondence are required for capturing coverage
information, even though they vary in objectives and constraints. Virtually all camera network
applications depend on or can benefit from knowledge about the coverage of individual cameras, the
coverage of the network as a whole, and the relationships of cameras in terms of their coverage [1].
Camera coverage is always an essential issue in Visual Sensor Network (VSN), Directional Sensor
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Network (DSN), and Wireless Multimedia Sensor Network (WMSN). Visual coverage is also an
important issue for (geo-tagged) video data models and retrieval [2], video geospatial analysis [3] and
the integration of GIS and video surveillance [4–6].

In the surveillance system, the physical coverage is crucial for spatial analysis, for example to
determine whether a suspect or vehicle is exactly covered by a certain camera, to count the number of
a certain kind of features covered by camera network, and so on. Consequently, the accurate geometry
of the individual cameras and camera network is desperately needed. Moreover, the acceptable
speed for coverage estimation is crucial when the number of cameras is large or/and the parameters
will be changed frequently—for example optimal camera network deployment, camera network
reconfiguration, and so on. Consequently, coverage estimation method considering the trade-off of
efficacy and accuracy is desirable.

References are seldom explicit concerning the process of estimating coverage even though almost
all applications aim to maximize the overall coverage area sometimes with other constraints, which
depend upon the specific application. The coverage problem involves camera parameters, a scene
model and task parameters [1]. Because the works themselves are very complex and time-consuming,
requiring some approximations when dealing with coverage, the camera model and scene model
are often simplified according to the task. The camera model is simplified as a fixed-size sector or
quadrilateral. The target fields are often considered as a 2D plane with or without obstacles. A few
references investigate algorithms for applications such as coverage optimization considering 3D
modeling of the monitored area. In experimental applications, the target area is sampled by regularly
arranged grids, so the overall coverage of the target area is represented by the coverage of these
grids [7]. It is less time-consuming than methods without sampling, but the result is that simulated
experiments with the above assumptions are discordant with the actual applications. These works
emphasize efficacy rather than accuracy, and the geometry of the individual cameras and camera
network is ignored.

In this paper, we estimate camera coverage considering the trade-off of efficacy and accuracy.
We propose a grid subdivision algorithm for estimating camera coverage. The main idea is that the
surveillance area is divided gradually into grids of multiple grid sizes, while the coverage area depends
on the coverage statuses of grids in different subdivision levels for the following reasons: (1) the camera
coverage is not large, which demands a high precision data source; (2) a high precision DEM (Digital
Elevation Model) is not always accessible; and (3) the occlusions for line of sight (LOS) from cameras
to targets, including buildings, vegetation and other surveyed heights, are often stored in vector
features. We assume that the cameras are deployed in 3D geographic space while the surveillance area
is a relatively flat ground plane with some occlusions such as buildings, trees and others in vector
format. It is more suitable for real-world implementations in most city areas where the ground is
seldom rolling.

The remainder of the paper is organized as follows. After a literature review of related work in the
next section, the method is described in detail in the third section. Performance of the proposed method
is validated through experiments with simulated data and cameras deployed in a real geographic
space, and the results are evaluated in the fourth section. Finally, concluding remarks and discussions
are presented.

2. Related Works

The researchers in VSN, DSN and WMSN often try to find an efficient algorithm to obtain
an optimized configuration scheme for a camera network for different tasks, such as optimal
placement [7,8], automated layout [9], coverage-enhancement [10–13], coverage improvement [14],
planning optimization [15,16], coverage estimation [17,18], optimal deployment [19–21], camera
reconfiguration [22], object coverage [23], scalable target coverage [24], resource-aware coverage [25], etc.
Hundreds of cameras are engaged and their parameters frequently changed to estimate coverage in
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real time, which poses substantial computational challenges. Thus, more emphasis is placed on specific
camera coverage models for tasks than the optimization algorithms themselves.

The works mentioned above consider the 3D camera model, but the region of interest is simplified
as a 2D plane with/without occlusions and sampled by grid points or control points. Even though
this is a feasible way to estimate coverage rate and reduce computing time, it results in inaccurate
estimation of the geometric shape of a camera or camera network. Ignorance of the coverage geometry
cannot benefit camera network visualization, camera spatial retrieval or later spatial analysis.

Camera coverage can be considered as a particular viewshed analysis because it involves not
only geographic data but also the imaging principle of cameras. Viewshed analysis is applied more
frequently because of the many potential algorithm parameter changes such as altitude offset of the
viewpoint, visible radius, location of viewpoints, effect of vegetation, light refraction, and curvature
of the earth. The computational bottleneck poses a significant challenge to current GIS systems [26].
Consequently, the classic viewshed algorithms, such as inter-visibility based on LOS, the Xdraw
algorithm, and the reference plane algorithm were improved by a variety of algorithms to speed up
calculations [27–31]. Some authors proposed effective parallel viewshed algorithms [26,30,32]. Current
research mainly focuses on viewshed analysis in terrain models whose data structure is a DEM or
TIN (Triangulated Irregular Network). When combined with a Digital Surface Model (or a Digital
Terrain Model), the line of sight method is very effective for surveillance camera placement because
it allows introduction of some important characteristics of cameras such as the 3D position of each
camera, observation azimuth, field of view, the range of the camera, etc. [33]. However, for most public
sources of elevation data, the quality is variable and, in some areas, is very poor (especially in some
mountain and desert void areas). This implies that in some situations it is difficult to obtain enough
elevation points of the region of interest to build a proper DEM [34]. Occlusions including buildings,
vegetation and other surveyed heights are often stored in vector features. Argany et al. [35] stated that
besides positional accuracy, semantic accuracy, the completeness of spatial information, and the type
of spatial representation of the real world is another important issue that has a significant impact on
sensor network optimization. An accurate determination of sensor positions in a raster representation
of the space such as in 3D city models is more difficult because visibility could be estimated more
accurately in vector data [35].

Overall, in VSN, DSN and WMSN, the researchers designed a camera coverage model to meet
the demands of specific optimal tasks. Some of them employed 2D camera models with or without
occlusions, and some of them presented 3D camera coverage models considering one or more of FOV
(Field of View), resolution, focus, angle and occlusions. The criterion to estimate the camera network is
the coverage rate that is determined by the coverage of grid points or control points sampled from the
region of interest rather than the physical coverage of cameras. In GIS, the researchers implemented
various effective viewshed analysis algorithms. In some works, camera coverage is estimated using
an ArcGIS tool [36]. However, the estimated coverage does not exactly conform to the projection
principles of camera. An accurate and effective method to estimate camera coverage is desirable to
visualize a camera’s physical FOV and various optimal applications of a camera network.

3. Camera Coverage Estimation

3.1. Overview of the Method

When the target area is sampled into regularly arranged grids of the same size, the grid size is
the most important factor for coverage estimation [35]. If it is undersized, the coverage estimation
is of high precision and lower computing efficiency. If it is oversized, the coverage estimation is of
low precision and higher computing efficiency because some details are ignored. It is hard to balance
the precision and computing efficiency when the target area is sampled into grids of the same size.
This paper proposes a method to meet this challenge. The proposed method is shown as Figure 1.
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First, the theoretical camera coverage and its minimum bounding rectangle (MBR) are computed
according to camera parameters. Second, the minimum bounding rectangle is subdivided into grids of
the initial size written as w0, and the grid division level, which is written as l, is set to 0. The status of
each corner of a grid is estimated by the method depicted in Section 3.2. If a corner point is covered by
a camera, then its status is marked as ‘1’; otherwise, it is marked as ‘0’. Thus, four digital numbers
(0 or 1) are used to code the status of a corresponding grid. Encoding (0000) means that the grid is not
covered by a camera and encoding (1111) means that the entire grid is covered. Other encodings such
as (0101), (0011), which contain both 0 and 1, mean that the grid is partly covered. The presentation
status of a grid is discussed in Section 3.3. Third, each grid in level l whose encoding is not (0000) or
(1111) must be subdivided into four sub-grids. The sub-grids will be divided until encoding is (0000)
or (1111). Infinite subdivision is not appropriate because it is time-consuming and does not increase
accuracy. We stop subdivision when the division level l reaches the threshold max_level. The detail of
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subdivision is presented in Section 3.4. Finally, the geometry of camera coverage is the union of grids
whose encoding is not (0000); the area is also estimated.

3.2. Coverage Model for Ground Point

Two conditions need to be satisfied if a point is covered by a camera: the ray from the camera to
the point should intersect with the image plane and there should not be an obstacle between the camera
and the point. The former relates to the camera model and the latter to obstacles in the geographic
environment. The camera model is illustrated in Figure 2. Camera C is located at (XC, YC, HC).
Its coverage in theory is the pyramid C-D1D2D3D4, which is determined by intrinsic and external
parameters of the camera. Intrinsic parameters include focal length f, principle center (u0, v0), etc.
External parameters include pan angle P, tilt angle T, roll angle v, etc. P is the angle between the
north direction and the principal optic axis in a clockwise direction, T is the angle from the horizontal
direction to the principal optic axis in a clockwise direction, while v is often close to 0 and is ignored in
this paper. The point G in the geographic environment is located at the coordinates (XG, YG, HG), the
corresponding image point g, which is projected from point G by a camera, is located at the coordinates
(x, y) in an image coordinate system. The camera model is shown as Equation (1), where λ is a non-zero
scale factor:  f

x
y

 =

 cos T 0 − sin T
0 1 0

sin T 0 cos T


 cos P sin P 0
− sin P cos P 0

0 0 1


 XG − XC

YG −YC
HG − HC

. (1)
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Figure 2. Camera model.

A point G is visible in an image if and only if the sight line CG determined by camera C and point
G crosses the image plane and there is no obstacle across the sight line CG. As shown in Figure 2, the
point G1 is visible, but the point G2 is blocked by obstacle B. The profile is shown in Figure 3. (XB, YB,
HB) are the coordinates of B. The height H of the line of sight CG at the location of B is calculated by
Equation (2):

H =
l2

l1 + l2
HG +

l1
l1 + l2

HC, (2)

where l1 = ‖(XB − XG, YB −YG)‖, l2 = ‖(XB − XC, YB −YC)‖. If HB ≥ H, then the current point is
visible. HB can be obtained from the attribute tables of vector data.
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3.3. Presentation for Grid

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to their
visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-down.
Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the grid is (0000),
the grid is not covered. If the status is (1111), the grid is covered. Other codes in the table represent
partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to ambiguity. Under the
circumstances, an extra point should be sampled in the grid center to confirm the actual coverage.

Table 1. Codes of grids.

ID Code Coverage ID Code Coverage ID Code Coverage
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table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

11 1011
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

2 0010

ISPRS Int. J. Geo-Inf. 2017, 6, 110  6 of 19 

 

3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

7 0111
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

12 1100
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

3 0011
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

8 1000
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

13 1101
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

4 0100
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

9 1001
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

14 1110

ISPRS Int. J. Geo-Inf. 2017, 6, 110  6 of 19 

 

3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
table represent partial coverages. As illustrated in Table 1, the codes (0110) and (1001) lead to 
ambiguity. Under the circumstances, an extra point should be sampled in the grid center to confirm 
the actual coverage. 

Table 1. Codes of grids. 

ID Code Coverage ID Code Coverage ID Code Coverage 

0 0000 
 6 0110 

10 1010 
 

1 0001 
 

11 1011 
 

2 0010 
 

7 0111 12 1100 
 

3 0011 
 

8 1000 13 1101 
 

4 0100 
 9 1001 

14 1110 
 

5 0101 
 

15 1111 
 

3.4. Multistage Grid Subdivision 

After dividing the MBR into unified grids, each grid needs to be reviewed to determine whether 
it should be subdivided further according to its status as presented in Section 3.3. For each grid in a 
level, there are two issues that need to be resolved: (a) convert and (b) conflict. 

(a) convert 

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory. 
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points of 
the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial grid 
size . We record a corner point as ( , , ), where l is the subdivision level of the points, i and j are 
the number of current corner points in the current subdivision level. A corner point ( , , ) and its 
location in geographic coordinate ( , )  can be converted from one to the other by following 
Equations (3) and (4): = ( − ) × 2

= ( − ) × 2 , (3) 

= min( + × 2 , )= min( + × 2 , ). (4) 

The points ( , , ) and ( + 1,2 × , 2 × ) are located at the same place. Likewise, the points ( , , ) and ( + , 2 × , 2 × ) are the same point. When the grids are subdivided, only new points 
need to be estimated. Others can inherit their status from upper levels. 

5 0101
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3.3. Presentation for Grid 

Each grid has four corners, so its status can be represented by four digits (0 or 1) according to 
their visibility. We arranged them in the left-up corner followed by right-up, left-down, and right-
down. Consequently, there are 16 possibilities, which are illustrated as Table 1. If the status of the 
grid is (0000), the grid is not covered. If the status is (1111), the grid is covered. Other codes in the 
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(a) convert

As shown in Figure 4, the quadrilateral with the blue border is the FOV of the camera in theory.
The rectangle with a black bold border is its MBR. The positions of left-down and right-up points
of the MBR are (XMin, YMin) and (XMax, YMax). The MBR is divided into grids with the initial
grid size w0. We record a corner point as (l, i, j), where l is the subdivision level of the points, i and j
are the number of current corner points in the current subdivision level. A corner point (l, i, j) and
its location in geographic coordinate (X, Y) can be converted from one to the other by following
Equations (3) and (4):  i =

⌊
(X−XMin)×2l

w0

⌋
j =

⌊
(Y−YMin)×2l

w0

⌋ , (3)

{
X = min(XMin + i× w0

2l , XMax)
Y = min(YMin + j× w0

2l , YMax)
. (4)

The points (l, i, j) and (l + 1, 2× i, 2× j) are located at the same place. Likewise, the points (l, i, j)
and (l + n, 2n × i, 2n × j) are the same point. When the grids are subdivided, only new points need to
be estimated. Others can inherit their status from upper levels.
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(b) conflict

The sample grid in blue shown in Figure 4a, whose status is (1101) in level 0 (see Figure 4b),
is partly covered by the camera because of occlusion. Therefore, it needs further subdivision to the
next level, which is shown in Figure 4c. The right-up grid masked in yellow in Figure 4c is coded
as (1111); it does not need to be subdivided. However, its left neighbor grid needs to be subdivided,
a new mid-point of the adjacent edge is added and its status is 0. This means that the grid masked in
yellow must be subdivided because it is not completely covered by the camera. The current grid will
be subdivided to the same level as its neighboring grid. Therefore, the grid is subdivided in Figure 4d.
Likewise, if the status of the new mid-point is 1 and its neighboring grid is coded as (0000), then the
neighboring grid will be subdivided.

Here is the algorithm (Algorithm 1):
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Algorithms 1: Camera Coverage Estimation Based on Multistage Grid Subdivision

Input: Camera parameters, obstacle information, initial grid size w0, max level max_level
Output: Geometry and area of coverage
Process:

Subdivide the MBR of FOV in theory into grids with size w0
Set current subdivision level l to 0.
While l < max_level and not all grids are coded as (0000) or (1111) do

l++
for each grid in level l

Obtain and record the statuses of each grid (l, i, j).
If its code is not (0000) or (1111), then

detect the coverage statuses of five new points, which are composed of the center of the
current grid, and the mid-points of four edges.

record the statuses of each grid.
For each new mid-point

if it conflicts with the neighbor grid,
then subdivide the neighbor grid to the current level..

Convert the grid information from (l, i, j) to (X, Y)
Generate the geometry of coverage, which is the union of all the grids in different levels.
Obtain the area of coverage according to the geometry information.

4. Experiments and Results

The initial grid size and max level are two important factors that affect the accuracy and efficiency
of the proposed method. To determine the impacts of the initial size and level of grid on the proposed
method, a series of experiments were performed using simulated and real data.

In the experiments, we used the number of points needing to be judged for coverage by the camera
to represent the efficiency of the method because the judgment process is the most time-consuming
step. The more points that need to be judged, the more time-consuming the process. We employed the
percentage of coverage area relative to real area to represent the accuracy of the simulated experiments.

4.1. Prototype System

Our method is designed for camera coverage estimation for the prototype system shown
in Figure 5. The system is deployed in the sever with four main modules: (1) optimal camera
network deployment, (2) camera control, (3) physical coverage visualization, and (4) spatial analysis
for coverage. The system requires the accurate geometry of the individual cameras and camera
network for coverage visualization and spatial analysis, and the acceptable speed to obtain optimal
deployment scheme. Only the certain camera parameters need to be transferred between system and
the corresponding camera other than camera coverage. The communication complexity is out of range
of our method. Consequently, coverage estimation method considering the trade-off of efficacy and
accuracy is desirable.

The experimental environment of this study is Ubuntu 64-bit operating system, Intel i5 processor,
2.0 G memory (San Jose, CA, USA, Apple). The study uses Python as the developing language, an
open source QGIS to carry out geometric target description and topological relations operation.
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4.2. Simulated Data

In this section, we employed three geometrical objects to simulate different geographic
environments with different complexity. Three geometric shapes are covered by a camera, and the
other areas covered by the camera are ignored because the process for them is the same for our method
as for others. We employed a circle with a radius of 100 units, a diamond with side length of 100 units,
and a five-pointed star with external and internal radiuses of 100 and 50 units to simulate different
coverage situations. The circle is the simplest one, while the five-pointed star is the most complex.

As shown in Figures 6 and 7, the red area is the real coverage and the blue area is obtained by the
proposed method with different initial grid sizes and max levels. Points filled with white mean the
corner points are not covered by a camera while the ones filled with black mean that they are covered.
In Figure 6, the max level is set to 1, and the initial grid sizes are specified as 100, 75, 50, 25 and 5.
Similarly, in Figure 7, the initial grid sizes are set to 100, and the max level for subdivision is specified
as 1, 2, 3 and 4.
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The results of experiments with different initial grid sizes and max levels are shown in  
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The results of experiments with different initial grid sizes and max levels are shown in Figures 8–10.
In these figures, the point number stands for efficiency, which is represented by the number of points
needing to be judged for whether they are covered by the camera. The coverage rate stands for
accuracy, which is represented by the percentage of the coverage area relative to the real area.ISPRS Int. J. Geo-Inf. 2017, 6, 110  10 of 19 
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(b) coverage rate.
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From the details illustrated in Figures 6–10, the following considerations can be remarked.

(a) When the initial grid size is fixed, as the max level increases, the geometries of the simulated
shapes are closer to the real shapes, and the point number of the proposed method increases
dramatically. There are twice the point numbers of the former max level, and as the max level
increases accuracy increases.

(b) When the max level is fixed, as the initial grid size increases, the geometries of the simulated
shapes are closer to the real shapes, and the point number of the proposed method decreases.
At a small initial grid size, the number of points declined sharply and leveled off gradually with
the increase of the initial grid size. As the initial grid size increased, the coverage rate decreased
overall. The larger the max level is, the slower the coverage rate decreases.

(c) When the initial grid size is small, in the experiments, it is set to 5, and the accuracy of the
proposed method for all three shapes is high, approaching 99%. The point number increases
dramatically as the max level increases.

(d) When the initial grid size is large, in the experiments, it is larger than half the shape width, and
the accuracy of the proposed method for all three shapes is slightly unstable, but it decreases
overall. The point numbers become close to each other.

(e) The point numbers for the five-pointed star are more than the other two shapes, and the coverage
rate is a little less with the same initial grid size and max level. Because the five-pointed star
simulated the complex geographic phenomenon, most of the grids needed to be subdivided.

(f) The coverage rate vibrates, which is shown in Figures 8–10. The points filled in red, blue and
green in Figure 11 are the grid points, which the FOV is divided into with the certain initial grid
size of 25, 15 and 10. In addition, the corresponding sub-grid points are filled in with similar
colors. As shown in Figure 11, the sub-grid points need to be judged with initial grid size of 25,
15 and 10 not overlapping. Consequently, the status of each grid point is not the same, and then
the coverage rate vibrates as shown in Figures 8–10.ISPRS Int. J. Geo-Inf. 2017, 6, 110  12 of 19 

 

5
10

20
25

30
35

40
45

50

 
Figure 11. Initial grid size and subdivision. 
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coverages are illustrated in Figure 12. The digits in red represent the ID of the camera, and the areas 
in transparent blue are the coverages estimated by our proposed method. In the experiment, the 
buildings are the major obstacles because the height of the cameras is much lower than building 
height. There are 85 features in the building layer. 
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4.3. Real Geographic Environment Data

As illustrated in Figure 12, there are 15 cameras deployed, including eight PTZ (Pan/Tilt/Zoom)
ones and seven still ones. PTZ cameras can rotate and tilt at a certain angle and provide optical zoom;
therefore, their coverage is a sector composed of the coverages from all possible camera positions.
In the experiment, the steps for pan and tile are one degree. If the pan and tile range are (230,310) and
(25, 65) respectively, then the coverage is estimated 3200 times. Consequently, the point numbers of
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PTZ cameras is the sum of point numbers from cameras with certain pan and tile. The still camera’s
coverage is a quadrangle. All the camera parameters are listed in Table 2. Their locations and coverages
are illustrated in Figure 12. The digits in red represent the ID of the camera, and the areas in transparent
blue are the coverages estimated by our proposed method. In the experiment, the buildings are the
major obstacles because the height of the cameras is much lower than building height. There are
85 features in the building layer.
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Table 2. Camera parameters.

Type Id
Height
(Meter)

Format
(Millimeter × Millimeter)

Focal
(Millimeter)

Pan (Degree) Tilt (Degree)

Mini Max Mini Max

PTZ
Camera

1 14 4.8 × 3.6 3.6 230 310 25 65
2 14 4.8 × 3.6 3.6 163 243 46 86
3 16.8 4.8 × 3.6 3.6 50 130 25 65
4 14 4.8 × 3.6 3.6 240 320 20 60
5 6 4.8 × 3.6 3.6 185 265 20 60
6 6 4.8 × 3.6 3.6 350 70 20 60
7 6 4.8 × 3.6 3.6 185 265 20 60
8 4.8 × 3.6 3.6 5 85 20 60

Still
Camera

9 3 3.2 × 2.4 3.6 90 80
10 3 3.2 × 2.4 3.6 280 80
11 3 3.2 × 2.4 3.6 90 80
12 3 3.2 × 2.4 3.6 270 80
13 3 3.2 × 2.4 3.6 270 80
14 3 3.2 × 2.4 3.6 270 80
15 3 3.2 × 2.4 3.6 270 80

In this experiment, we first set the initial grid size to 4, 2, 1 and 0.5 m. Then, we estimated
camera coverages without further subdivision. Second, we set the initial grid size to 4 m and set
the max level to 0, 1, 2 and 3. Third, we set the size of the grid max level to 0.5 m. In other words,
we set the initial size and max level as 4 m and three levels, 2 m and two levels, 1 m and one
level, and 0.5 m without subdivision. Because of ignorance of the ground truth, we compared our
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estimated results with ones taking 0.5 m as the initial grid size and 0 level as the max level. Because of
differences in the order of magnitude, the results of PTZ cameras and still cameras are illustrated in
Figures 13 and 14, respectively.ISPRS Int. J. Geo-Inf. 2017, 6, 110  14 of 19 
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From the results illustrated in Figures 13 and 14, the same conclusions can be made as with the
experiment with simulated data, along with the following considerations:

(a) When the size of the grid in max level is the same, which is 0.5 m for example, the initial size
and max level are set as 4 m and three levels, 2 m and two levels, 1 m and one level, the point
numbers increase with the initial grid size, and they are significantly lower than results with
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0.5 m as the initial grid size and 0 as the max level. However, the coverage areas are close to the
ground truth.

(b) When the size of the grid in max level is similar, for example, the initial size and max level are set
as 3 m and three levels, 5 m and four levels, 7 m and four levels, the point numbers and coverage
area are close to each other.

(c) On one hand, the point number depends on the camera’s physical coverage, which is influenced
by camera parameters and geographic environment. As the physical coverage increases, the
point number increases. On the other hand, the point number is influenced by the initial grid size
together with the max level proposed by our method.

(d) As shown in Figures 13c and 14c, with the same initial grid size, the processing time of different
cameras increases as the max level increases. With the same max level, the processing time
increases with the initial grid size. When the size of the grid at the max level is the same, the
processing times of different cameras are close to each other. Even though the point numbers of
different cameras are close to each other, the processing times vary. Moreover, the processing
times of different cameras vary because of their locations, poses and obstacles.

(e) The processing times of PTZ cameras is very time-consuming because the total coverage is
combined with lots of coverages estimated with certain pan and tile.

5. Analysis and Discussion

The accuracy and efficiency of our proposed method are greatly influenced by camera parameters,
obstacles, initial grid size and max level. The camera parameters can be employed to estimate the FOV
in the theory, and obstacles must be considered when physical coverage is needed. However, it is
hard to make a quantitative analysis of the influences before camera deployment. In general, cameras
for city public security are usually deployed in entrances, exits and road intersections for monitoring
moving targets. The geographic environment with obstacles such as buildings and trees is simpler
than the simulated five-star. Consequently, in the paper, we emphasized the later factors: the initial
grid size and the max level.

We use Nl and Ml to represent the row and column number of grid points from subdivision of the
MBR with unified grid size w0/2l , where w0 is the initial grid size, and l is the current subdivision level: Nl =

⌈
(XMax−XMin)×2l

w0

⌉
+ 1

Ml =
⌈
(YMax−YMin)×2l

w0

⌉
+ 1

. (5)

Therefore, the number of grid points from subdivision of the MBR with unified grid size w0, which
is written as GridPointNum0, is computed by Equation (5) with l = 0. The number of grid points
from subdivision of the MBR with unified grid size w0/2l is written as GridPointNuml in Equation (6).
In theory, the number grid points should be estimated in the proposed method with initial grid size w0

and max level l, which is written as GridPointNumw0_l , not less than GridPointNum0 and not bigger
than GridPointNuml . That is, GridPointNumw0_l ∈ [GridPointNum0, GridPointNuml ]:{

GridPointNum0 = N0 ×M0

GridPointNuml = Nl ×Ml
. (6)

Consequently, the time complexity of our algorithm is O(GridPointNumw0_l × f eatureNum). To
avoid judging the status of gird point repeatedly, our method needs to record the judged grid points.
Consequently, the space complexity is also O(GridPointNumw0_l). In reality, when the camera is
deployed in an environment with complex occlusions, the efficacy of the proposed method is close to
GridPointNuml . When the camera is deployed in a relatively flat area with few obstacles, the proposed
method is more efficient.
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On average, our method trades off efficacy and accuracy. Experiments with simulated and real
data reveal the same conclusions. Overall, the oversize initial grid results in less accuracy, and the
oversize max level is less efficient without obvious accuracy improvement. An undersize initial grid
results in more computing time, and the undersize max level could cause less accuracy. Consequently,
it is important to choose a proper combination of the initial grid size and max level. In application,
there are three suggestions resulting from our experiments:

(1) If high efficacy is given priority over high accuracy, a larger initial grid size and smaller max level
should be chosen.

(2) If high accuracy is given priority over high efficacy, a smaller initial grid size and larger max level
is appropriate.

(3) When the focus is a balance between accuracy and efficacy, the parameters can be determined by
the following steps: (a) roughly estimate the FOVs in theory and their MBRs; (b) estimate the
smallest grid size and max level for the desired accuracy; and (c) estimate the initial grid size and
max level for acceptable efficacy and accuracy using Equations (5) and (6).

In this paper, there are some limitations. This is unavoidable when sampling. In theory, if the grid
size is small enough, a best grid approximation will be obtained, but it is impractical to divide the area
infinitely. It is usually divided into grids according to practical requirements.

(1) If the initial grid size is not small enough, our method may ignore the conditions, which
are illustrated in Figure 15. When the grid coded as (1111) has a few holes, its geometry and area
are overestimated. When the grid coded as (0000) has a few islands, its geometry and area are
underestimated. To avoid or reduce the impacts of sampling without loss of computing efficiency, it is
suitable to choose a relatively smaller initial grid size and then determine the max level according to
the desired deepest grid size. The conditions shown in Figure 15 are infrequent.ISPRS Int. J. Geo-Inf. 2017, 6, 110  17 of 19 
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(2) The efficacy and accuracy of our method is affected by boundaries. As shown in Figures 5 
and 6, the boundary of physical coverage is not perpendicular to the vertical or horizontal direction. 
Therefore, the estimated coverage is serrated, and the grids crossing the boundary need to be divided 
by the max level to approach the physical coverage, which may cause more computing time.  

(3) The monitored area in our method is flat ground, some errors may result when the area is 
rolling, and a few points may be occluded by the terrain. Our method can be improved for 3D terrain 
because its core for a visibility test is LOS when high precision DEM/DSM is accessible. 

6. Conclusions 

In this paper, a method is proposed to estimate camera coverage that balances accuracy and 
efficacy. In this method, the camera FOV in theory is divided by grids of different sizes with on-
demand accuracy rather than by grids with one fixed size. Accuracy is approximately equivalent to 
the method employing the same deepest grid size, but efficacy is equivalent to the method employing 
the same initial grid size. It is suitable for a camera network, which contains hundreds of cameras 
and needs to obtain coverage frequently because of reconfiguration, coverage enhancement, optimal 
placement, etc. In this paper, we employed the LOS to estimate the visibility of the grid corner points. 
Even though the experiments cater to 2D areas with obstacles in vector format, it is easy to expand to 
3D camera coverage when the high-precision grid DEM is available. In addition, different LODs of 
3D buildings will be considered in our future works.  
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(2) The efficacy and accuracy of our method is affected by boundaries. As shown in
Figures 5 and 6, the boundary of physical coverage is not perpendicular to the vertical or horizontal
direction. Therefore, the estimated coverage is serrated, and the grids crossing the boundary need to be
divided by the max level to approach the physical coverage, which may cause more computing time.

(3) The monitored area in our method is flat ground, some errors may result when the area is
rolling, and a few points may be occluded by the terrain. Our method can be improved for 3D terrain
because its core for a visibility test is LOS when high precision DEM/DSM is accessible.

6. Conclusions

In this paper, a method is proposed to estimate camera coverage that balances accuracy and
efficacy. In this method, the camera FOV in theory is divided by grids of different sizes with on-demand
accuracy rather than by grids with one fixed size. Accuracy is approximately equivalent to the method
employing the same deepest grid size, but efficacy is equivalent to the method employing the same
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initial grid size. It is suitable for a camera network, which contains hundreds of cameras and needs to
obtain coverage frequently because of reconfiguration, coverage enhancement, optimal placement, etc.
In this paper, we employed the LOS to estimate the visibility of the grid corner points. Even though
the experiments cater to 2D areas with obstacles in vector format, it is easy to expand to 3D camera
coverage when the high-precision grid DEM is available. In addition, different LODs of 3D buildings
will be considered in our future works.
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