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Abstract: Accurate and high resolution bathymetric data is a necessity for a wide range of coastal 

oceanographic research topics. Active sensing methods, such as ship-based soundings and Light 

Detection and Ranging (LiDAR), are expensive and time consuming solutions. Therefore, the 

significance of Satellite-Derived Bathymetry (SDB) has increased in the last ten years due to the 

availability of multi-constellation, multi-temporal, and multi-resolution remote sensing data as 

Open Data. Effective SDB algorithms have been proposed by many authors, but there is no 

ready-to-use software module available in the Geographical Information System (GIS) 

environment as yet. Hence, this study implements a Geographically Weighted Regression (GWR) 

based SDB workflow as a Geographic Resources Analysis Support System (GRASS) GIS module 

(i.image.bathymetry). Several case studies were carried out to examine the performance of the 

module in multi-constellation and multi-resolution satellite imageries for different study areas. The 

results indicate a strong correlation between SDB and reference depth. For instance, case study 1 

(Puerto Rico, Northeastern Caribbean Sea) has shown an coefficient of determination (R2) of 0.98 

and an Root Mean Square Error (RMSE) of 0.61 m, case study 2 (Iwate, Japan) has shown an R2 of 

0.94 and an RMSE of 1.50 m, and case study 3 (Miyagi, Japan) has shown an R2 of 0.93 and an RMSE 

of 1.65 m. The reference depths were acquired by using LiDAR for case study 1 and an 

echo-sounder for case studies 2 and 3. Further, the estimated SDB has been used as one of the 

inputs for the Australian National University and Geoscience Australia (ANUGA) tsunami 

simulation model. The tsunami simulation results also show close agreement with post-tsunami 

survey data. The i.mage.bathymetry module developed as a part of this study is made available as an 

extension for the Open Source GRASS GIS to facilitate wide use and future improvements. 

Keywords: Satellite-Derived Bathymetry; remote sensing; GRASS GIS; near-shore; 

i.image.bathymetry; Python; GWR 

 

1. Introduction 

Near-shore bathymetry is one of the most important parameters for investigations of coastal 

processes and hydrodynamic models in coastal areas. As such, the ability to derive near-shore 

bathymetry using remote sensing techniques is a topic of increasing interest in coastal monitoring 
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and research. The highly dynamic nature of near-shore regions leads to frequent changes in 

bathymetry that are required to be monitored at periodic intervals, and, hence, the survey should be 

carried out repetitively, which is almost not practical. Remote sensing is considered an alternative 

for near-shore bathymetry estimation since a large number of multi-constellation, multi-spectral, 

and multi-spatial satellite data is available as Open Data. Therefore, near-shore bathymetry based on 

optical remote sensing has become a cost-effective alternative to Sound Navigation and Ranging 

(SoNAR) and Light Detection and Ranging (LiDAR) surveys. In order to supplement field based 

approaches, several optical remote sensing methods have been proposed [1–5].  

Satellite-Derived Bathymetry (SDB) models have been purported to retrieve coastal sea bottom 

reflectance from satellite imagery and effectively utilize this information to generate coastal 

bathymetry. Researchers have investigated SDB algorithms over the last 30 years and proposed 

estimation methods falling into categories such as spectral rationing [1,6] and radiative transfer 

models [7–9]. In case of radiative transfer, single spectral band and multispectral band models have 

been proposed. The single band algorithms assume a constant attenuation coefficient and 

homogeneous bottom type [8,10,11]. Reliable SDB is possible when the water is clear and when 

water quality and bottom types are homogeneous. When such conditions are satisfied, single band 

water depth models can provide a reasonable estimate of depth. Nonetheless, coastal water 

environments rarely offer such ideal conditions. Therefore, radiative transfer models using linear 

regression of multispectral bands [7,9,12] have yielded good results.  

In order to improve the efficacy of multispectral models in SDB estimation, many statistical 

approaches have been adopted [13]. Recently, the Geographically Weighted Regression (GWR) 

model has been successfully applied as a predictive weighted linear regression model [14–18] in 

various fields. Further, [19,20] have successfully used a GWR model for improved SDB estimation. 

However, until now, no software module has been proposed to automate the SDB procedures that 

use a GWR model. Therefore, we have implemented a new Open Source Geographic Resources 

Analysis Support System (GRASS) Geographic Information System (GIS) module termed 

i.image.bathymetry to automate the bathymetry estimation from multispectral images. Since 

i.image.bathymetry has been entirely implemented using a Free and Open Source GIS framework, it 

can be easily applied in other areas without the need to invest resources for software and can also be 

further improved in the future. Study further aims to generate an Integrated Coastal Relief Model 

(ICRM) by combining multi-resolution topographic and bathymetry data. The ICRM is used to 

evaluate a practical application scenario of the SDB in tsunami simulation. 

2. System Environment 

The i.image.bathymetry module to estimate SDB has been developed in GRASS GIS Version 7 

[21]. GRASS GIS is a robust Open Source GIS widely used in academia, commercial settings, and 

governmental agencies. A powerful feature of GRASS is the availability of the Python scripting 

library, which is used to implement several customizable modules for geoprocessing. In addition, 

GRASS GIS also provides access to R Project for Statistical Computing (R) through numerous 

packages for geospatial and geostatistical analysis. The availability of the rgrass7 package as an 

interface between GRASS and R is one of the reasons to choose GRASS GIS for the implementation 

of i.image.bathymetry. The effectiveness of GRASS GIS in analyzing big data, its ease in implementing 

Python modules, and the deployment parallel computing platform were also considered. 

2.1. GRASS Python Scripting Library 

Python [22], a widely used programming language provides a powerful scripting environment 

in GRASS GIS. It enables users to efficiently exploit the capabilities of GRASS GIS software for 

developing new modules and extensions. In this study, the GRASS Python scripting library [23] has 

been used to combine multiple modules and functions from GRASS and R to implement the SDB 

algorithm.  

2.2. R Packages 
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R [24] is an Open Source statistical computing environment that provides several spatial 

analysis packages and functions. rgrass7 [25] provides an interface between GRASS GIS 7 and R. The 

package provides access to all GRASS commands from the R command line. The rgrass7 package 

can be used to import/export data from GRASS to R and vice versa. The rgrass7 package is only 

available beyond R Version 3.1; therefore, that should be installed in order to use the 

i.image.bathymetry module. Another library, data.table, is used to manage the spatial data frame of 

the raster data in R. GWmodel [26] is a collection of functions, which is considered a particular 

branch of spatial statistics, called geographical weighted models, and is used to deploy the GWR 

functionality.  

3. Implementation of SDB Model as GRASS GIS Module 

The i.image.bathymetry is a collection of many existing GRASS GIS and R modules and new 

functions. The main functionalities of the module are (1) delineating water region; (2) atmospheric 

and water corrections; (3) GWR. An atmospheric and water corrections algorithm was adopted from 

previous authors and improvements have been made in terms of band selection [9,12]. 

Geometrically and radiometrically corrected spectral bands of any optical multispectral remote 

sensing data can be used to estimate SDB from the suitable coastal region. In the flowchart (Figure 1), 

the dotted box shows the required spectral bands, optional spectral bands, and other input data such 

as calibration depth points (as vector point type) and tide height. The spectral bands in the green, 

red, Near-infrared (NIR), and Short Wave Infrared (SWIR) wavelengths are mandatory inputs. 

Other spectral bands available in the visible domain can be supplemented as additional bands 

depending upon the satellite sensor. 

 

Figure 1. Flowchart of the workflow of i.image.bathymetry. 

3.1. Delineation of Water Region 

The first step in the processing chain of i.image.bathymetry is the delineation of the water region. A 

rule based combination of the Normalized Difference Vegetation Index (NDVI) and a band ratio 

between the green and infrared bands were used for effective delineation. A band ratio of greater than 

or equal to 1 was classified as water and less than 1 was classified as land [11]. A masked water region 
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has been used for further processing. NDVI has been used to remove the cloud, ice, etc., from the 

water region. GRASS GIS module r.mapcalc is used for these calculations to delineate water pixels 

effectively (Step 1 in Figure 1).  

3.2. Tide Correction 

In spite of the availability of numerous satellite images, very rarely satellite images are acquired 

at the time of zero tide. Therefore, the i.image.bathymetry module has an option to provide a tide 

height specific to the time of satellite image capture and to carry out tide correction (step 2 in Figure 

1). The tide height at the time of image acquisition can be provided and used to correct the 

calibration depth. If the tide at the time of satellite image acquisition is lower than zero, a negative 

value can be provided as tide height. The user provided tide height value will be incremented to 

calibration depth, and, hence, the tide height at the time of image acquisition and the calibration 

depth would be synchronized. This option can also be used when the same calibration depth is used 

in multi-temporal SDB estimation. 

3.3. Atmospheric and Water Corrections  

The radiance observed by a satellite sensor on shallow water basically consists of four 

components, namely, atmospheric scattering, surface reflection, in-water volume scattering, and 

bottom reflection components [20]. Many authors have proposed various algorithms for 

atmospheric and water corrections [6,8,10]. Among them, some authors [12] have suggested to 

perform atmospheric correction prior to the water corrections. Nonetheless, this study adopted a 

more refined way of retrieving bottom reflectance originally proposed by [9] by removing 

atmospheric, water surface, and water column components. The observed spectral radiance L(λ) is a 

function of the wavelength and can be expressed as shown below;  

𝐿(𝜆) = 𝑉(𝜆) + 𝐵(𝜆) + 𝑆(𝜆) + 𝐴(𝜆) (1) 

where V(λ) is the in-water volume scattering, B(λ) is the bottom reflectance, S(λ) is the water surface 

reflectance, and A(λ) is the atmospheric scattering [20].  

In deep water, even a short wavelength band does not include a bottom reflectance component 

and can be considered to correspond to pixels of infinite depth (L(λ∞)i). The target of interest in SDB 

is the shallow-water area that contains bottom reflectance, which can be transformed to depth. 

Delineation of deep water pixels is relatively simple by visual interpretation, but, in this case, 

calibration depth points have been used to demarcate the shallow water pixels or the area of interest. 

Pixels that have lower reflectance than the minimum reflectance value of the shallow water region 

will be considered deep water pixels. This assumption is based on the fact that deep water pixels of 

any visible spectral band show lower reflectance than shallow water pixels. Spectral radiance of a 

deep water region is mainly a contribution of atmospheric scattering, surface reflectance, and 

in-water volume scattering. Therefore, one can expect a correlation between the visible band and the 

NIR band. The estimation of regression coefficients using the visible band and the NIR band in deep 

water regions is shown in Equation (2) below [12]. The calculation of regression coefficients is done 

using GRASS GIS module r.regression.line.  

𝐿(𝜆∞)𝑖 =  𝛼0𝑖 +  𝛼1𝑖  (𝐿(𝜆∞)𝑁𝐼𝑅) (2) 

A logarithmically transformed Equation (3) was proposed by [1] for atmospheric and water 

corrections. 

𝑋(𝜆)𝑖  =  log(𝐿(𝜆)𝑖 –  𝑚𝑒𝑎𝑛 (𝐿(𝜆∞)𝑖) (3) 

where X(λ)i is the transformed radiance, L(λ)i is the spectral radiance of the ith band over a shallow 

water region, and (L(λ∞)i) is the spectral radiance of the ith band in deep water region. The regression 

coefficients (𝛼0𝑖 , 𝛼1𝑖 ) derived from deep water pixels by the regression between the respected 

spectral band and the NIR band (Equation (2)) are used for atmospheric and water corrections of a 
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shallow water region or area of interest. The radiance of the deep water pixel (L(λ∞)i) from Equation 

(2) can be substituted into Equation (3) to derive a transformed radiance as shown below:  

 𝑋(𝜆)𝑖 = 𝑙𝑜𝑔(𝐿(𝜆)𝑖 − (𝛼0𝑖 + 𝛼1𝑖 (𝐿(𝜆)𝑁𝐼𝑅))) (4) 

To compute Equation (4), first of all, the working region in GRASS GIS should be changed to 

the shallow water region or area of interest. Subsequently, estimated values of α0i and α1i for the 

deep-water pixels are used to calculate the transformed (X(λ)i) of shallow water pixels for the 

respective bands using the r.mapcalc function (step 3 in Figure 1). 

3.4. Geographical Weighted Regression 

The GWR model is a weighted regression model that computes β-coefficients for each pixel [16]. 

In GWR models, the term bandwidth denotes the radius of the kernel window. In the case of the 

Bi-square function (Equation (5)), decay of weighting would be applied only if the distance from the 

current pixel is less than the bandwidth, else the assigned weight will be zero. On the other hand, the 

continuous Gaussian function (Equation (6)) gives the fractional decay of weights according to the 

proximity of a pixel to the current pixel, even if the distance from the current pixel is greater than the 

bandwidth.  

𝑤𝑝 = (1 − (𝑑/𝑏𝑤)2)2 (5) 

𝑤𝑝 =  𝑒𝑥𝑝(−0.5 ∗  (𝑑/𝑏𝑤)2) (6) 

Where, bw is the bandwidth, d is the distance from a pixel to the current pixel, and wp is the weight 

assigned to a pixel. In the i.image.bathymetry module, the Gaussian kernel is default; otherwise the 

user can choose the bi-square kernel by using a -b flag as shown in the Figure 1. Prior knowledge is 

required in order to choose the appropriate kernel type. [20] has discussed in detail the selection of 

the appropriate kernel in terms of the surface to be estimated and the distribution of calibration 

points. 

3.4.1. Fixed-GWR 

In GWR, the selected bandwidth determines the spatial coverage of the local kernel, and 

assigning the appropriate bandwidth is critical. There are two ways of assigning bandwidth; one is 

fixed bandwidth (Fixed-GWR) and the other is adaptive bandwidth. In case of Fixed-GWR, the size 

of the kernel is the same all over the working domain. Therefore, Fixed-GWR treats the entire region 

uniformly irrespective of the distribution of calibration depth points. The Fixed-GWR model is less 

computationally intensive and less memory consuming as compared to an adaptive GWR (A-GWR) 

model. Consequently, the Fixed-GWR model is available in many software packages, and therefore 

it is easy to apply. In GRASS GIS 7, the module r.gwr computes the Fixed-GWR and A-GWR with 

bi-square, Gaussian, and exponential kernels. The i.image.bathymetry module has adopted the r.gwr 

module to process Fixed-GWR by selecting a system generated optimal bandwidth. The corrected 

spectral bands are used as independent variables and calibration depth as the dependent variable to 

calculate Fixed-GWR (step 4a in Figure 1). A flag (-f) has been implemented in order to carry out 

depth estimation using Fixed-GWR (Figure 1). 

3.4.2. Adaptive-GWR 

In an A-GWR model, the size of the kernel is set by considering the density of calibration points 

in a local neighborhood. The size of the kernel is smaller when calibration points are denser, and the 

size of the kernel increases when calibration points are sparse. Previous research [18] has 

demonstrated that adaptive bandwidth performs relatively better, particularly in the case of 

randomly distributed calibration points. The module called GWmodel, available in R, has been used 

to calculate A-GWR. Corrected spectral bands (step 3 in Figure 1) are imported to R using the library 

rgrass7, and these spectral bands are further converted to a spatial data frame using the library 

data.table (step 4b in Figure 1). A spatial data frame of spectral bands is used as the independent 
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variable and reference depth is used as the dependent variable to compute A-GWR using the library 

GWmodel. In GWmodel, the function called bw.gwr is used to calculate the optimal bandwidth. In 

GWmodel, the optimal bandwidth is determined using a cross-validation approach in which the 

validation scores are minimized [16,27,28]. An A-GWR model is slower and needs more memory 

than a Fixed-GWR model. However, because of its better performance, i.image.bathymetry by default 

uses an A-GWR model. If the particular system not able to run the A-GWR model due to low 

memory, a Fixed-GWR will be used to estimate SDB (step 4b in Figure 1). 

4. Validation of Implemented SDB Algorithm 

Several tests have been carried out with various satellite imageries to evaluate the performance 

of i.image.bathymetry to estimate SDB. Here, we present three case studies carried out in Puerto Rico 

and parts of the Iwate and Miyagi Prefectures.  

4.1. Puerto Rico, Northeastern Caribbean Sea 

The study area is shown in Figure 2 and geographically covers 17°54′ N–17°58′ N and 67°08′ 

E–67°12′ E, about 40 km2 along a 10 km coastal stretch off Puerto Rico. The Puerto Rico coastal 

stretch was selected as a study area for two reasons; one of them is the availability of open high 

resolution LiDAR data provided by National Oceanic and Atmospheric Administration (NOAA). 

Secondly, clear water conditions observed in the region could afford better estimation. LiDAR 

bathymetric data provided by NOAA were acquired using a Laser Airborne Depth Sounder (LADS) 

Mk II Airborne System, which surveyed between 7 April 2006 to 15 May 2006. The final product 

imagery (16-bit Geotiff image) has been produced at 4 m × 4 m bathymetry surface [29].  

 

Figure 2. Case study 1: Study area, Puerto Rico, Northeastern Caribbean Sea. 

Sentinel-2 Multi Spectral Instrument (MSI) high spatial and radiometric resolution data were 

collected on 25 December, 2015. Compared to other satellite imageries, Sentinel-2 have a spatial 

resolution that varies from 10 m to 60 m for multispectral bands and radiometric resolution 

quantized over a 12-bit dynamic range and rescaled to 16-bit. In addition to that, Sentinel-2 provides 

several red edge bands that can be effectively used as additional bands for SDB estimation. The 
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availability of the SWIR band (1.53–1.68 μm) is another significant feature of Sentinel-2, which can be 

used for atmospheric and water corrections. In this study, bi-linear interpolation has been carried 

out to resample the pixels of the SWIR band from 20 m to 10 m. One 20 m pixel can be divided in to 

four 10 m pixels; the value of first pixel was assigned as the original value of the 20 m pixel, and the 

values of other three pixels were interpolated using Equation (7). This interpolation method has 

been carried out for all 20 m pixels to keep the original value for the first pixel of the four 

interpolated 10 m pixels. 

𝑍 =  𝑍1(1 − 𝑡)(1 − 𝑢) + 𝑍2𝑢(1 − 𝑡) + 𝑍3𝑡(1 − 𝑢) + 𝑍4𝑢𝑡 (7) 

where, Z is the value of the pixel and x, y is the coordinates of Z in a matrix, respectively; Z1, Z2, Z3, 

and Z4 are the neighboring pixels which are used for the calculation and (x1, y1), (x1, y2), (x2, y1), and 

(x2, y2) are the coordinates, respectively. t and u are the slopes between these coordinates, which can 

be written as (x − x1)/(x2 − x1) and (y − y1)/(y2 − y1), respectively.  

All the available bands in the visible domain and the Near-infrared (NIR) band were used for 

Satellite-Derived Bathymetry (SDB) estimation, as shown in Table 1. Tide height during satellite 

image acquisition was nearly zero; therefore no tide correction was applied. The estimation has been 

carried out using 1260 depth points as the dependent variables, and another 2000 depth points were 

used to validate the results. Both calibration and validation depth points ranged from 0 to 20 m. First 

of all, a global model [20] has been used to estimate SDB, and the results show reliable accuracy in 

terms of correlation coefficient (R) of 0.86, coefficient of determination (R2) of 0.74 and Root Mean 

Square Error (RMSE) of (2.53 m) as shown in Table 2. Nonetheless, a detailed investigation using a 

residual depth map (Figure 3a) indicates that spatial heterogeneity was not effectively addressed by 

a global model. Therefore, further study used GWR based models in order to exploit spatial 

auto-correlation by addressing the spatial heterogeneity. Various weighting functions in fixed 

bandwidth GWR (Fixed-GWR) and adaptive GWR (A-GWR) were tested. Among different options 

attempted, A-GWR using bi-square kernel produced high accuracy SDB. Results were evaluated in 

terms of R (0.99), R2 (0.98,) and RMSE (0.61 m). Figure 3b clearly demonstrates the efficacy of a GWR 

based model in addressing the heterogeneity due to bottom types or water conditions. 

 

 
 

 

(a) (b) 

Figure 3. Comparison between residual maps of (a) global model and (b) Geographically Weighted 

Regression (GWR) model for case study 1.  

4.2. Iwate Prefecture, Japan 

The second study demonstrates SDB estimation in a coastal area of the Iwate Prefecture, Japan 

(Figure 4). This study area is comparatively much smaller than the previous study area, covering 



ISPRS Int. J. Geo-Inf. 2017, 6, 89  8 of 16 

 

only 4 km2 and stretching along 6 km of coast line. Freely available Landsat-8 with medium spatial 

resolution (30 m) and high radiometric resolution was collected on 31 October 2014. Higher 

radiometric resolution quantized over a 12-bit dynamic range and rescaled to a 16-bit dynamic range 

was used for SDB estimation. All the available visible spectral bands and the NIR band were used 

for estimation and the SWIR band (1.57–1.65 μm) band was used for correction. A total of 3360 depth 

points (10 June 2012) were collected by an echo sounder, 2342 depth points were used for estimation, 

and the remaining depth points were used to evaluate the accuracy of the result. Both the calibration 

and validation depth points ranged from 0 to 26 m.  

 

Figure 4. Case study 2 and 3: Study area, parts of the Iwate Prefecture and the Miyagi Prefecture, 

Japan. 

Table 1. Characteristics of data used.  

Data Date  Res.(m) Estimation Bands Correction Band 

Landsat-8 31 October 2014 

30 0.43–0.45 μm (coastal) 

1.57–1.65 μm (SWIR) 

30 0.45–0.51 μm (blue) 

30 0.53–0.59 μm (green) 

30 0.64–0.67 μm (red) 

30 0.85–0.88 μm (NIR) 

Sentinel-2 25 December 2015 

10 0.44–0.53 μm (blue) 

1.53–1.68  μm (SWIR) 

10 0.53–0.58 μm (green) 

10 0.64–0.68 μm (red) 

20 0.69–0.71 μm (Red-edge) 

20 0.73–0.74 μm (Red-edge) 

10 0.76–0.90 μm (NIR) 

ASTER 10 September 2010 
15 0.52–0.60 μm (green) 

0.76–0.86 μm (NIR) 
15 0.63–0.69 μm (red) 



ISPRS Int. J. Geo-Inf. 2017, 6, 89  9 of 16 

 

The tide height during the acquisition of satellite imagery was nearly 1.35 m and was provided 

as tide height value in the module option to apply correction. A global model was used to estimate 

SDB in order to compare the accuracy and investigate the significant improvements provided by 

GWR based models (Table 2). Various weighting functions in Fixed-GWR and A-GWR were tested. 

Among them, A-GWR using bi-square kernel produced high accuracy SDB in terms of R (0.98), R2 

(0.97), and RMSE (1.50 m). Detailed results of the SDB are shown in Table 3. 

Table 2. Comparison of accuracy of SDBs generated by global model and GWR model case studies 1, 

2, and 3.  

Case Studies 
Global Model GWR Model 

R R2 RMSE (m) R R2 RMSE (m) 

Puerto Rico 0.86 0.74 2.53 0.99 0.98 0.61 

Iwate 0.80 0.65 3.59 0.97 0.94 1.50 

Miyagi 0.78 0.61 3.18 0.93 0.87 1.65 

Table 3. Performance of i.image.bathymetry in case studies 1, 2, and 3. 

Area Data Kernel  GWR Model Time (m) 
SDB Results 

R R2 RMSE (m) 

Puerto Rico Sentinel-2 

Gaussian 
Fixed-GWR 2.22 0.99 0.98 0.67 

A-GWR 180.00 0.99 0.98 0.62 

Bi-square 
Fixed-GWR 2.24 0.99 0.98 0.64 

A-GWR 184.00 0.99 0.98 0.61 

Iwate Landsat-8 

Gaussian 
Fixed-GWR 2.50 0.86 0.74 2.91 

A-GWR 6.00 0.96 0.93 1.54 

Bi-square 
Fixed-GWR 2.50 0.88 0.77 2.77 

A-GWR 5.55 0.97 0.94 1.50 

Miyagi ASTER 

Gaussian 
Fixed-GWR 3.02 0.91 0.83 1.93 

A-GWR 265.00 0.89 0.80 2.20 

Bi-square 
Fixed-GWR 3.08 0.93 0.87 1.65 

A-GWR 255.00 0.91 0.84 1.95 

5. Application for Integrated Coastal Relief Model and Tsunami Simulation  

The previous section illustrated that the newly developed i.image.bathymetry is able to produce 

high quality SDB. The results indicate that the module can be used to estimate SDB from various 

conditions of coastal water, density of calibration depth points, and spatial and radiometric 

resolutions of the satellite data. Therefore, in this section, this study investigates the application of 

derived SDB as input in practical scenarios. Our study aims to generate an ICRM over parts of the 

Miyagi Prefecture by combining derived SDB with various resolutions of topographic and 

bathymetry data. The ICRM could be used to demonstrate a practical application scenario of the SDB 

in a tsunami simulation to hindcast the real event. Coarse accuracy coastal bathymetry data were 

used for many previous tsunami simulation application researches. Several studies have reported 

issues pertaining to tsunami simulation due to lack of reliable accuracy coastal bathymetry data [30]. 

Hence, research aims to develop better ICRM in parts of the Miyagi Prefecture, Japan.  

5.1. Study Area and Data Usage  

Coastal areas in the Miyagi Prefecture, Japan were significantly affected by an earthquake 

driven tsunami that occurred off Japan on 11 March 2011 [31,32]. This tsunami was the third mega 

earthquake generated a tsunami in this decade. In view of this, tsunami simulation combining SDB 

and other datasets has been carried out in parts of the Miyagi Prefecture (Figure 4) along a 110 km 

long coastal stretch.  
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Medium spatial resolution (15 m) ASTER Open Data collected on 10 September 2010 were used 

to estimate SDB. Medium radiometric resolutions (8-bit quantized) in the green band (0.52–0.60 μm) 

and the red band (0.63–0.69 μm) were used for estimation and the NIR band (0.76–0.86 μm) Nadir 

looking was used for correction (Table 1). J-EGG500 (Japan Oceanographic Data Center 

(JDOC)-Expert Grid data for Geographic-500m) bathymetry data of 500 m grid resolution were used 

as calibration depth points to estimate 15 m reliable SDB approximately over an area of 219 km2 in a 

part of the Miyagi coastal area. A total of 649 evenly distributed calibration depth points were used 

for calibration and for the evaluation of accuracy. Even though the depth points were sparse, the 

distribution of the data was at equal intervals. Therefore, a Fixed-GWR model was used to estimate 

the SDB and was expected to perform better than an A-GWR model in this situation. The results of 

SDB generated from Fixed-GWR shows better agreement with reference depth in terms of R (0.93), 

R2 (0.87), and RMSE (1.65 m) than the A-GWR model with R (0.91), R2 (0.84), and RMSE (1.95 m). 

Both the Advanced Spaceborne Thermal Emission and Reflection (ASTER) satellite image and the 

J-EGG500 data were collected before the tsunami occurred; therefore the estimated SDB can be 

considered to be reliable. 

5.2. Integrated Coastal Relief Model  

ICRM provides a comprehensive view of regional coastal zones, integrating offshore 

bathymetry with land topography into a seamless representation of the coast. Here, ICRM was 

generated to provide a seamless representation of parts of the Miyagi Prefecture. This model 

incorporates the most recent publicly available topographic data and bathymetry data (Figure 4). 

Publicly available low resolution (900 m) offshore bathymetry collected from General Bathymetry 

Chart of the Oceans (GEBCO) and medium resolution (30 m) terrestrial topographic data collected 

from Shuttle Radar Topographic Mission (SRTM) [33] were combined with SDB estimated using 

ASTER (15 m) to develop the seamless ICRM. The ICRM was generated using an ANUGA Open 

Source Hydrodynamic model [34]. ANUGA is an Open Source Software package, with most 

components being implemented in Python, and is capable of modeling the impact of hydrological 

disasters such as dam breaks, riverine flooding, storm-surges, or tsunamis. ANUGA functions 

provide a platform to combine multiple spatial resolution raster data sets for a comprehensive 

ICRM. 

Firstly, the raster GEBCO, SRTM, and SDB data were individually converted to American 

Standard Code for Information Interchange (ASCII) format with Universal Transverse Mercator 

(UTM) coordinates using the r.out.ascii module of GRASS GIS. Further this ASCII data was 

converted into Digital Elevation Model (DEM) format using the script anuga.asc2dem. Further, the 

DEM file was converted to point format using anuga.dem2pts. Subsequently the point file 

containing multi-resolution topographic data was combined using the ANUGA script 

anuga.geospatial_data.geospatial_data, and a single seamless ICRM was generated. 

5.3. Tsunami Simulation 

In the case of tsunami simulation, 2D non-linear shallow water equations are commonly 

implemented and solved numerically on a mesh or grid, and there are many software solutions 

available for tsunami simulation, such as TUNAMI [35], ANUGA, and TsunAWI [36]. Tsunami 

inundation is simulated through numerical solutions of the non-linear shallow water equations over 

a model of bathymetry and topography with appropriate extensions to model wetting and drying 

processes. ANUGA uses unstructured triangular meshes, with internal polygons used to define the 

maximum allowable size of an individual mesh. The ICRM represents unstructured triangular 

meshes, as explained in Section 5.2. The Tohoku tsunami was generated from the crust sliding after 

earthquake; therefore a crust slide generated tsunami simulation was carried out. The available 

python script runcairns.py in ANUGA was adopted and modified for our simulation experiment. 

Boundary conditions such as rainfall, tide, wind stress, surface roughness, etc. were not considered 

in the simulation process. In addition, mean sea level was assumed as the initial water level and a 

fixed manning’s coefficient was used. 
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6. Result and Discussion 

This study presents a user friendly Open Source GIS module to estimate bathymetry from 

optical satellite imageries. The efficacy of the i.image.bathymetry module has been evaluated using 

three case studies with multi-resolution and multi-constellation data. The module incorporates 

pre-processing of satellite data and an option for performing tide correction of calibration depth data 

with tide at the time of satellite image capture. The SDB estimation region is automatically 

determined by the distribution of calibration depth points. Therefore it is suggested to be mindful 

while preparing the calibration depth points in order to cover the area of interest. In addition, an 

optional parameter has been developed to supply a polygon vector file which defines the area to be 

estimated. Deep water pixels are used for atmosphere and water corrections; therefore, users need to 

provide multispectral data, which contains deep water regions. A satellite image that does not have 

a deep water region can also be used for SDB estimation without applying deep water pixels for 

correction. If deep water regions are not supplied, the correction band will be used for correction 

without the use of deep water regression coefficients. In addition, our previous studies [20] have 

suggested the use of the SWIR band for correction instead of the NIR band. NIR band is suggested to 

be used for correction only when multispectral imagery does not include the SWIR band, such as 

imageries like ASTER. The key functionality of the i.image.bathymetry module is GWR based 

estimation. Our present and earlier research [20] have demonstrated that the GWR model can 

effectively address the issues of heterogeneity due to different bottom types and water quality and 

hence provide improved SDB.  

A major limitation in SDB models is the inability to address the spatial heterogeneity due to 

different bottom types and water types. The presented module proposed to address this issue by 

using a GWR based model. The results shown in Tables 2 and Table 4 clearly indicate the 

improvements made by the proposed module by addressing local heterogeneity issues. The 

statistical difference between reference depth and estimated SDB illustrated in Table 4 shows a good 

agreement with each other for all the three case studies. 

Table 4. Statistical differences between reference depth and SDB in case studies 1, 2, and 3. 

Case Studies 
Reference Depth GWR Model 

Min Max Mean STD Min Max Mean STD 

Puerto Rico 0.80 20.20 10.89 4.89 0.82 20.10 10.83 4.94 

Iwate 0.48 26.51 11.95 5.89 0.53 26.29 11.99 6.00 

Miyagi 2.00 19.00 11.95 4.90 1.51 17.41 12.10 3.45 

The presented case studies were carried out in order to assess the behavior and performance of 

the module related to different factors such as size of the data, spatial/spectral/radiometric 

resolution, cloud coverage, and water quality of the study area. Table 3 evaluates the performance of 

the module in order to comprehend impact of above mentioned factors in SDB estimation. Table 3 

mainly compares the accuracy of the results in terms of kernel weighting functions (bi-square or 

Gaussian) and the mode of the GWR estimation (Fixed-GWR or A-GWR). The machine used for the 

benchmark was a laptop with an Intel Core i5-3320M CPU @2.60 GHz. The system has 16 Gb of RAM 

and a solid-state disk (SSD) of 512 Gb. The installed operating system (OS) is GNU/Linux (Ubuntu 

14.04 LTS x64-bit). GRASS 7.0.4 version and R version 3.3.1 were used for the benchmark. The 

screenshots shown in Figure 5 demonstrate the options and workflow of i.image.bathymetry. Figure 5 

shows an example of case study 1 to demonstrate the processing using the bi-square kernel. Figure 

5a shows the required input used in the processing and Figure 5b demonstrates the optional input 

and optional flags used for Fixed-GWR based SDB estimation. The -f flag used in Figure 5b can be 

removed in order to process A-GWR based SDB estimation. Figure 5c demonstrates the optimal 

bandwidth estimation procedure for Fixed-GWR based computation. The optimal bandwidth 

estimation begins from a minimum value. The module performs GWR computation once the 

optimal bandwidth is determined. In Figure 5c, 47 was determined as the optimal bandwidth for 
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Fixed-GWR estimation. Figure 5d shows the A-GWR optimal bandwidth estimation in R using a 

cross-validation score. The number of points (15) selected as the optimal adaptive bandwidth is 

shown in Figure 5d. Figures 5e,f show the SDB estimated using Fixed-GWR and A-GWR in the 

GRASS GIS monitor, respectively. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. These screenshots demonstrate the input options and processing of i.image.bathymetry using 

an example from case study 1, (a) required input bands; (b) optional input bands and optional flags 

selected for Fixed-GWR; (c) optimal bandwidth estimation for Fixed-GWR; (d) optimal bandwidth 

estimation for A-GWR; and (e) SDB estimated from Fixed-GWR and (f) SDB estimated from A-GWR. 
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The area covered (40 km2) in case study 1 (Figure 1) was relatively larger and the 

spatial/spectral/radiometric resolutions of the imagery used was higher than in case studies 2 and 3. 

Apart from that, there were more depth points used for calibration, and the water quality of the area 

was also relatively better. Therefore, case study 1 produced high accuracy SDB from both Fixed and 

A-GWR models (Table 3). The processing time was evaluated using Fixed-GWR and A-GWR with 

bi-square and Gaussian kernels. In the case of the Fixed-GWR model, around 2 min were needed to 

finish processing, and in the case of the A-GWR model, around 6 min were needed to finish the 

processing. Since the region used to estimate SDB was a continuous surface, it is obvious that both 

Fixed and A-GWR perform well [20]. In case study 1, the study area was a continuous surface with 

dense calibration points distributed randomly over relatively clear waters, thereby facilitating SDB 

generation with good accuracy SDB for both the Fixed and A-GWR models. 

The second study area covered (4 km2) a part of the Iwate Prefecture (Figure 2) and was 

relatively smaller than the area in case study 1, and SDB estimation was based on a medium spatial 

resolution of 30 m. In the case of the Fixed-GWR model, around 2.5 min were needed to finish 

processing, and in case of A-GWR model, around 180 min were needed to finish the processing 

(Table 3). A-GWR with a bi-square kernel provides a better SDB estimate compared to the other 

modes. In case study 2, a continuous surface of the study area and randomly distributed denser 

calibration depth points were considered as two favorable factors for better estimation using the 

A-GWR model. The Fixed-GWR model does not perform well in this area, which could perhaps be 

the result of low quality water in study area. 

Figure 4 shows the third study area with the parts of the Miyagi Prefecture that were used for 

ICRM generation and tsunami simulation. In the case of the Fixed-GWR model, around 3 min were 

taken to finish processing. In case of A-GWR model, around 260 min were taken to finish the 

processing (Table 3). The calibration depth points were sparse and distributed in unit intervals (500 

m), and, hence, the Fixed-GWR model was expected to provide better or almost similar estimates to 

the A-GWR model [26]. Fixed-GWR with a bi-square kernel provides better SDB. 

The above case studies elucidate the efficacy of the i.image.bathymetry in estimating SDB and 

provide useful input for ICRM in tsunami simulation. Tsunami simulation was carried out with 

duration of 50 min and results were evaluated with post-tsunami survey results [33]. The main 

earthquake shocks lasted for 3 to 4 min, and, owing to the proximity of the epicenter to shore, the 

first significant waves reached Japan only 10 min after the event started [37]. In this study, we 

compared the inundation extent and heights of the tsunami simulation with post-tsunami survey 

data. The simulation experiment shows that an area of around 115 km2 was inundated. The 

simulation tsunami about 14 m high traveled inland up to 5 kilometers, and the Ishinomaki and 

Higashimatsushima regions were affected the most. These regions are low lying land, and Kitakami 

River passes through the Ishinomaki region; these factors could have contributed to amplifying the 

tsunami inundation (Figure 6).  

  
(a) (b) 
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(c) (d) 

Figure 6. Evaluation of Tohoku tsunami simulation results with post survey data. (a) Actual tsunami 

inundation extent; (b) simulation inundation extent; (c) survey tsunami height points overlaid on 

simulated tsunami inundation height map; and (d) scatter plot between survey and simulation 

tsunami height points. 

Figure 5 illustrates the comparison between the simulation results and the post-tsunami survey 

results. Figure 6a shows the actual extent of the inundation, and Figure 6b shows the simulated 

inundation extent over 50 min. The surveyed tsunami inundation heights at 243 points were 

overlaid on a simulated tsunami inundation height map (Figure 6c). Figure 6d demonstrates the 

correlation between the surveyed and simulated tsunami inundation heights. Figures 6c,d show that 

the maximum inundation observed was about 10 m and 14 m in surveyed and simulated events, 

respectively. The evaluation of the simulated tsunami inundation heights shows a reasonable 

agreement with post-tsunami survey data in terms of R (0.75), R2 (0.57), and RMSE (2.98 m).  

7. Conclusions 

Our study concludes that the i.image.bathymetry GRASS GIS module can be considered an 

effective solution for SDB. The module can be downloaded from 

https://svn.osgeo.org/grass/grass-addons/grass72/imagery/ or installed using the g.extension 

module in GRASS GIS. The accuracy of SDB depends upon characteristics of satellite imagery, 

number and distribution of calibration depth points, and water conditions of the study area. All the 

case studies were aimed to evaluate the performance of the module in addressing the characteristics 

of the data, which varied depending on the data used and area investigated. The i.image.bathymetry 

module allows the user to choose both a Fixed and an A-GWR model with either a bi-square or 

Gaussian kernel weighting function; this option can be effectively used if the user has prior 

knowledge about the study area. This study also evaluated the computational cost for estimation of 

Fixed and A-GWR models, comparing the accuracy of the SDB generated. Such evaluation illustrates 

that an A-GWR model is computationally intensive, especially for a large dataset, but offers the best 

results. However both Fixed and A-GWR models estimated SDB with acceptable accuracy, and, 

hence, it is suggested to use either Fixed or A-GWR according to the distribution of calibration depth 

points, size of the image, and available RAM on the computer.  

A common problem in SDB is the tide differences between the calibration depth and the 

satellite image; therefore the module allows the tide correction to be carried out if the tide height 

during the acquisition of satellite imagery was provided. A radiative transfer model is inherently 

related to the penetration capacity of light to the bottom of the sea and provides information about 

water depth. However, better accuracy can be expected in clear waters even with the minimum 

number of calibration depth points. The i.image.bathymetry module effectively addresses the problem 

of heterogeneity in bottom types and water quality using multispectral bands in a GWR model. Our 

results indicate that all the available spectral bands in the visible spectral domain can be provided to 

the module for better SDB estimation.  

This study has demonstrated application examples of SDB in a tsunami simulation model. The 

results of the tsunami simulation show reasonably good agreement with post-tsunami survey 
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results. The future perspective for the study is to deploy i.image.bathymetry as a Web Processing 

Service (WPS) to facilitate on-demand SDB data to the user without requiring them to have software 

and data locally. In case of Japan, low resolution (500 m) depth data (J-EGG500) are available as 

Open Data. J-EGG500 depth data coupled with Open satellite images like Landsat-8, ASTER, 

Sentinel-2, etc. could be used with SDB as a service to users with limited expertise in Remote Sensing 

and geospatial analysis. GRASS GIS also offers a framework for parallel computing, which may be 

useful when considering the future implementation of the SDB algorithm as a Web Service. 
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