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Abstract: Online collaborative communities are now ubiquitous. Identifying the nature of the 
events that drive contributors to withdraw from a project is of prime importance to ensure the 
sustainability of those communities. Previous studies used ad hoc criteria to identify withdrawn 
contributors, preventing comparisons between results and introducing interpretation biases. This 
paper compares different methods to identify withdrawn contributors, proposing a probabilistic 
approach. Withdrawals from the OpenStreetMap (OSM) community are investigated using time 
series and survival analyses. Survival analysis revealed that participants’ withdrawal pattern 
compares with the life cycles studied in reliability engineering. For OSM contributors, this life cycle 
would translate into three phases: “evaluation,” “engagement” and “detachment.” Time series 
analysis, when compared with the different events that may have affected the motivation of OSM 
participants over time, showed that an internal conflict about a license change was related to 
largest bursts of withdrawals in the history of the OSM project. This paper not only illustrates a 
formal approach to assess withdrawals from online communities, but also sheds new light on 
contributors’ behavior, their life cycle, and events that may affect the length of their participation in 
such project. 
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1. Introduction 

With the advent of the Web 2.0, large communities have developed around online collaborative 
projects that allow people to contribute data. Examples include platforms that allow sharing of in 
situ observations (e.g., the Audubon Society for birdwatching), identification of features from 
images (e.g., Zoouniverse), the sharing of general (e.g., Wikipedia) and technical knowledge (e.g., 
PostgreSQL), and the mapping of people’s neighborhoods (e.g., OpenStreetMap). Every day, 
millions of people visit websites from online communities like Wikipedia.org or OpenStreetMap.org 
[1]. Researchers are increasingly referring to these communities as a valuable work force and 
important source of data [2,3]. 

These successful communities may have hundreds of thousands of active contributors, but all 
do not contribute in the same way. Among those who contribute, a majority of them will only 
participate once [4,5], leaving most transactions to a small group of dedicated contributors [6,7]. 
Even if the proportions may slightly change between communities [5], this typical participation 
model is referred to as the 90–9–1 rule [6], stating that 90% of the members of a given online 
community will not contribute anything, 9% will contribute sporadically, and the remaining 1% will 
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be dedicated contributors. In this context, the withdrawal of participants who maintained their 
participation beyond an initial period of engagement is a significant loss for a community [8].  

Studies have looked at the life cycle of online contributors [5,9–12], but the results can be hard 
to compare. The use of ad hoc criteria to identify withdrawn contributors prevents comparisons 
between studies, in addition to introducing biases and interpretation errors. Most collaborative 
online projects have no formal mechanism to determine who withdrew from the project. Since 
participants freely decide when they contribute, based on their spare time, it is then difficult to 
distinguish between a participant who left a project from one who is waiting for some free time to 
contribute again.  

Assessing withdrawals from online projects and identifying the nature of the events that drive 
contributors to leave a community is thus of prime importance. Such knowledge is required to 
monitor the health of an online community and to minimize contributor withdrawal, particularly 
when changes are to be made to the participatory environment. 

In order to analyze this phenomenon, about 10 years of withdrawals from the OpenStreetMap 
(OSM) community were investigated. Different statistical approaches were explored to model 
participants’ behavior based on the history of their daily contributions. Using the history of daily 
contributions required first eliminating potential biases caused by the location of contributors. A 
probabilistic procedure was then developed to identify the contributors who left the project 
according to their historical behavior. The resulting daily count of withdrawals was analyzed using 
both survival and time series analyses.  

Survival analysis was used to model the proportion of OSM participants who were still 
considered active in the project after a given period of time (i.e., survival curve). The resulting model 
was also used to generate the hazard curve of OSM participants, Hazard curves are often used to 
characterize life cycles of different domains, such as demography or reliability engineering, and may 
provide similar insight about OSM contributors. 

Time series analysis was used to decompose daily withdrawals in their different components 
(i.e., trend, seasonal and random). Once decomposed, significant variations of resulting components 
were compared with the different events that dotted the OSM history to identify which ones may 
have affected the motivation of OSM participants over time [13]. 

This paper describes the distribution functions used to characterize the frequency of 
contributions from participants and discusses the results. The origin of the bias induced when using 
UTC timestamps to determine the dates of the contributions is explained, and the method used to 
correct the dates is described. The life expectancy and the survival rates of OSM contributors are 
presented with the results of a time series analysis. Finally, the paper reports on the events in the 
OSM project that correlated with large numbers of withdrawals from the community over years. 

2. Materials and Methods  

The OpenStreetMap project was chosen because the project’s history is well documented and 
the data are freely available. The OSM project aims to create a comprehensive map of the world built 
on the interests and the local knowledge of its community [14–16]. The project uses a Wiki approach 
to enable its community to create and improve the map. With currently more than 3 million 
registered users [17], it has become one of the most successful peer-production projects of the Web 
and is the largest mapping project in the world. The chronicle of the project’s history (e.g., technical 
improvements, normative changes, social activities) is maintained in the project’s wiki 
documentation [18] and a record of all the contributions is made available on a regular basis through 
OSM history dump files [19]. These files contain all transactions made since the first contribution 
and include the virtual containers (i.e., changesets) in which the edits were provided. These 
changesets identify the contributors who submitted changes, the temporal extent of each editing 
session, and a minimum bounding rectangle covering all the features edited during the session. 

2.1. Data Retrieval 
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As part of a larger project, a history dump file released on 1 September 2014, was downloaded 
from the OSM web site to access the records of contributions made to the project since 9 April 2005 
(i.e., the first edits). FME workbenches (Safe software 2015.0) were developed to extract and load the 
data contained in the history dump file to a PostgreSQL (9.3) database. The resulting 2 TB database 
included 25 M changesets that were used in this study. Statistical analyses and visualizations 
presented in this paper were carried out using R software (v.3.2.1).  

The frequency of contributions (i.e., the number of continuous time intervals an individual has 
invested in the project) cannot be determined from the number of changesets a contributor provided. 
The number of changesets and the time span of each of these changesets largely depend on the OSM 
application interface (API) and the mapping application used by the contributor. First, the OSM API 
applies constraints regarding the time over which a changeset has been opened by automatically 
closing them either after being inactive for one hour, or after being active for 24 h. Second, OSM 
mapping applications have different schema for creating changesets. The same editing session may 
then produce various numbers of changesets, according to the application used and its configuration. 
However, the changesets’ creation timestamps were exploited to identify on which days a 
contributor was active. 

In order to link potential bursts of withdrawals from the community with events from the 
project’s history, a comprehensive event repository was built by retrieving the entire history of the 
project from OSM Wiki pages [18] and some OSM mailing lists [20] (i.e., talk, dev and legal mailing 
lists). The period covered by the repository matched the time span of the history dump file. The 
events were classified according to an adapted version of the Wiki page’s nomenclature and OSM 
event classification [21] to include development milestones, media news and internal 
announcements (i.e., blogs and mailing lists).  

2.2. Assessing the Frequency of Contributions 

The frequency of contributions of each participant has been derived from the UTC timestamps 
of their changesets. UTC timestamps cannot be used directly to extract the dates of contributions as 
it could introduce a bias due to the contributor’s geographic location and the local time at which the 
contributions were usually made. The number of distinct dates extracted from the changesets can 
double when the local time at which the contributions are made falls around midnight GMT. In 
order to circumvent the problem, we needed to aggregate individuals’ contributions in 24-h units 
that would not be affected by this temporal reference. Two approaches were compared to define a 
daily contribution timeframe for each individual, the first one based on the proximity of 
contributions, the other based on contributors’ circadian behavior. 

The first approach aimed at aggregating contributions by using hierarchical clustering on the 
time interval (i.e., distance) between changesets. The approach was based on the fact that when the 
participants have some free time to contribute, the changesets generated during their editing 
sessions will form clusters in time as demonstrated by Halfaker [22] for different online communities. 
The closer the changesets, the higher the odds the edits were made on the same editing session and 
consequently on the same day (from contributors’ point of view). For each contributor, clusters of 
changesets were formed by iteratively grouping the nearest changesets using the nearest-neighbor 
chain algorithm [23]. The algorithm was chosen because of its relative simplicity to implement as a 
recursive function in PostgreSQL. When a cluster was about to extent over more than 24 h, it was 
removed from the process and considered as a one-day contribution. After all the contribution 
clusters were removed (i.e., any new cluster would span over 24 h), the inter-cluster times were 
rounded to one-day units to obtain the number of days spent by a contributor between each 
contribution. 

The second approach aimed at identifying the circadian cycle of each contributor in order to 
apply an offset to the UTC timestamps and consequently to adjust the date of contributions. The 
circadian cycle partition of a contributor was defined as the time (UTC) at which a contributor was 
usually inactive (i.e., potentially asleep) according to the history of its contributions. The UTC offset 
was computed by averaging hours over the longest contiguous interval of time for which the 
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number of contributions was at its minimum. The number of contributions was counted over 24 
one-hour bins (0 h–23 h). Corresponding bins were duplicated over four hours on each side (−4 h, −3 
h, ..., 26 h, 27 h) to smooth contributions’ count with a nine-hour moving average window. Once a 
UTC offset was obtained for each contributor, it was applied to their changesets’ UTC timestamps 
prior to extract the distinct dates of their contributions (i.e., active days). Changesets’ creation 
timestamps were used since only participants can trigger them while closing timestamps could 
result from an API operation. 

Both approaches were compared and assessed using a subset of about fifty contributors at both 
ends of the activity spectrum. The subsets covered both new (active days < 10) and accomplished 
(active days > 1000) contributors. The approach that provided the most reasonable estimate of 
contributors’ active days for both subsets was used to identify the number of contributions (active 
days) and the number of days between these contributions. Since a reasonable estimate had to be 
compatible with human behavior, the time spent by participants contributing on each active day was 
measured for each method. The higher the number of days an outstanding time was spent 
contributing (i.e., 12–24 h), the less the method was considered compatible. 

2.3. Identifying Withdrawn Contributors 

Due to the irregular nature of contributions made by volunteers on online communities, it can 
be hard to discriminate participants who are waiting for time to contribute again from others who 
simply withdrew from a project. Results from the analysis described above were used to model the 
frequency of contributions and identify a time threshold after which an inactive contributor should 
be considered as being withdrawn from the project with say a 95% probability. Three models were 
used to identify such threshold. The first two used a global approach based on the contributions 
from all the participants while the last one considered the history of contributions of individual 
participants.  

First, the potential theoretical distribution of delays was identified based on kurtosis and 
skewness methods. The ‘descdist’ procedure (from R’s fitdistrplus package) was used to identify the 
distribution using a ‘Cullen and Frey’ graph for discrete values [24,25] with 100 bootstrap samples. 
The proposed distribution was examined to model the delays and identify withdrawn contributors.  

Second, the 95th percentile of delays between each sequential contribution was computed and 
plotted on a log-log graph, providing threshold values that can be used to identify withdrawn 
contributors. The graph was assessed on both new and accomplished contributors.  

Third, since the history of contributions of each individual is available, we used the Chebyshev 
inequality described in Equation (1) to assess the contributions of each participant and set 
individuals’ threshold:  ܲ(|ܺ − |ݑ ≥ ߳) ≤ ఙమఢమ. (1) 

On the left side of the inequality, P is the probability that the interval of time since the 
participant’s last contribution (ܺ) is larger or equal to a given value (ε) when compared to the 
average interval (ݑ) between its contributions. The right side of the inequality shows that this 
probability is less or equal to the ratio of the variance of the intervals between contributions (σ2) over 
the square of the value provided on the left side of the equation (ε2).  

Chebyshev’s inequality was chosen because it can be applied to any arbitrary distribution, 
something expected in our context. However, Equation (1) determines the probability for both sides 
of the distribution while we are only interested in the upper bound (i.e., the maximum delay 
expected from a given contributor). Furthermore, the equation requires the population’s mean and 
variance while we consider having only a sample of the delays a contributor will experience during 
its lifespan in the project, unless the contributor has already left the community. Consequently, we 
used a version of the one-sided Chebyshev inequality adapted to samples [26], as described by 
Equation (2):  
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P(X୬ − X ≥ ϵs) ≤ ଵଵା ౤౤షభ ஫మ. (2) 

In order to determine that a participant has withdrawn from a project with a given probability 
(ܲ), the time since its last contribution (Xn) must differ by at least a given threshold (ϵs) from the 
average delays (X) experienced by the participant. This probability is smaller than or equal to the 
right side of the inequality, which takes into account the size of the sample, where (n) is the number 
of delays, (s) is the standard deviation of the delays, and (߳) is a constant specific to each participant. 
The constant is obtained from Equation (3): ϵ ≤ ට ଵି୔୔( ౤౤షభ). (3) 

Equations (2) and (3) were used to determine individuals’ thresholds for the time interval since 
their last contribution. The contributors were considered withdrawn with a 95% probability (P) 
when the interval between the creation of the history dump and their last contribution reached this 
threshold. In cases where the participants did not have enough contributions to compute delays’ 
standard deviation (i.e., fewer than three contributions), we used the average threshold of people 
having made three contributions. 

Finally, the subsets of participants from both ends of the activity spectrum were used again to 
assess the most appropriate method to identify withdrawn contributor from the distribution 
identified by the Cullen and Frey graph, the 95th percentile of delays, and the sample version of the 
one-sided Chebyshev inequality. The method was selected by comparing the proportions of 
contributions that happened outside the threshold established by each method using the history of 
contributions from our subset of participants. The nearer the proportion is to 5%, the more adequate 
the method. 

2.4. Survival Analysis 

Survival analysis provides a set of methods that allow for modeling the probability that an 
event occurred (e.g., death, withdrawal) over a given period of time. The methods deal with two 
types of observations, those for which the observed event occurred, and those for which the event 
did not occur during the period under consideration. In cases the event did not occur within this 
period, the observations must be censored. Censored data (i.e., a type of missing data) are 
observations for which the information was measured accurately within the studied period but for 
which we only know that the survival span was longer than the observed period. The survival 
analysis is preferred to standard regression models because it adequately handles censored 
observations, avoiding potential bias in such analysis. 

A survival analysis [27,28] was run using the R ‘survival’ package to measure the probability 
that an OSM contributor would still be active after a given time in the project. We estimated and 
plotted survival curves using a non-parametric estimator of the survival function (i.e., the Kaplan–
Meier method). The contributors not considered as withdrawn at the end of the period covered by 
our study (1 September 2014) were identified as censored observations.  

Kaplan–Meier estimators were computed for the entire OSM population, and then for years at 
which participants first contributed (i.e., strata computation). Using the resulting survival curves, 
we computed and plotted the instantaneous rate of withdrawal over time, also known as the hazard 
function. This function provides the proportion of active contributors that are expected to withdraw 
from the project at a given point in time. It illustrates at which points in the life cycle of contributors 
the odds they withdraw from the project are higher, stable, or lower. Since the results vary on a daily 
basis, they were filtered using a moving average on a 30-day window. 

2.5. Time Series Analysis 

A time series analysis assumes the data result from a stochastic process, dividing the process 
into a deterministic trend, seasonal and centered random components [29,30]. The daily counts of 
withdrawn contributors were considered as resulting from such a stochastic process. Variations in 
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the different components can show changes in the interest of the participants to contribute to the 
project. However, one must consider the volume of new contributors in interpreting any variations 
because withdrawals depend on them, particularly since most participants contribute for only a very 
short period of time [4,5]. Consequently, a time series of both withdrawn and new contributors were 
computed. 

The time series were divided into their components using the R package ‘decompose’ 
procedure [31]. The procedure first determines the trend component by using a moving average on 
observed data and removes it from the time series. The window used in this process is determined 
by the cyclical variations expected in the data (i.e., seasonal). The length of the seasonal variations 
was set to a year, resulting in 182 days without value on each side of the trends components. The 
seasonal variations were then computed by averaging resulting observations for each of the 365 time 
units and the results duplicated over the whole range of observations. Finally, the centered random 
component is what remains after having removed both the trend and the seasonal values from 
observed data. An additive decomposition was chosen over a multiplicative one to limit the 
influence of early years of the project in the analysis. Given the small number of participants at that 
time, any change represented a large proportion of the population using a multiplicative 
decomposition, which in turn would have had a large impact on the resulting seasonal and random 
components later in time [13]. 

Variations in withdrawals and the number of new contributors were compared for each 
component. Outstanding variations in withdrawal components that were not correlated with 
variations from new contributors were identified and linked to potential explanatory events found 
in our inventory. The number of participants who withdrew from the project was estimated by 
adding positive random component values over 21 days surrounding each event. 

3. Results 

We identified 464,858 distinct contributors from the 25.1 M changesets found in an OSM history 
dump retrieved on 1 September 2014. The dump spanned a period of 3433 days (almost 10 years), 
from first to last registered contributions. The 8381 changesets created by anonymous users were not 
used in the analyses. This option to remain anonymous was removed for new contributors in fall 
2007 and for all participants with the advent of API 0.6 in spring 2009. Furthermore, 400–450 
contributors who declined the CT/ODbL license implemented in 2012 [32,33] were not considered 
either since their data were removed from the database and their contributions did not appear in the 
dump. 

Over 3570 events related to the history of the OSM project were retrieved from the OSM Wiki 
and from forums’ threads, covering the project’s history from 2005 to 2014. Events were classified 
into seven categories (Table 1). 

Table 1. Classification of events related to the OSM project (2005–2014). 

Category Category Description Number 
Meeting Administrative, development and social activities. 1350 
Upgrade Infrastructure and software upgrade implementation. 135 
Forum Mailing lists announcements and OSM Foundation blog. 52 
License Contributor terms and OdbL 1 license change milestones. 8 

Mapping  Mapping parties/efforts, including humanitarian activities. 725 
Conference Conferences mentioning/discussing the OSM project. 369 

Media Media coverage about OSM or related topics. 939 
1 OSM switched to an Open Database License (ODbL) after a lengthy process that lasted almost four years. 

3.1. Assessing the Frequency of Contributions in Days 

Results from the nearest-neighbor chain algorithm estimated to 4.52 M the number of days 
OSM participants contributed, with an average of 9.72 days per contributor, and up to 2373 days for 
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the most active ones. Results from the circadian cycle algorithm estimated to 5.03 M the number of 
days OSM contributors were active, with an average of 10.83 days per contributor, and a maximum 
of 2465 days for one of the contributors. 

The comparison of both approaches shows that the nearest-neighbor chain algorithm generated 
five times more occurrences of contribution spans longer than 12 h for a day (50,579 days) than the 
circadian cycle (10,875 days). This was further analyzed by comparing activities over long 
contribution span clusters with the UTC offsets of their contributors. The result shown that the 
changesets grouped under long span clusters were usually split by a period of inactivity around 
contributors’ UTC offsets (i.e., contributors’ middle of the night). Using our subset of new and 
accomplished contributors, we found the average daily contribution span was 58% longer for the 
nearest-neighbor chain algorithm in the first group and 44% longer for the second group. Similarly, 
the longest daily contribution span was of 24 h for the nearest-neighbor chain algorithm and of 20 h 
for the circadian cycle algorithm. The circadian cycle algorithm then provided results that were more 
compatible with expected human behaviors for both new and accomplished participants. 
Consequently, the circadian cycle algorithm was used to identify contributors’ active days and then 
compute the time they waited between two consecutive active days (i.e., contributors’ delays).  

3.2. Identifying Withdrawn Contributors 

The first approach used the skewness and kurtosis of contributors’ delays (i.e., the Cullen and 
Frey graph) to suggest potential models of distributions for the delays and identify withdrawal 
thresholds (Figure 1). 

 
Figure 1. Cullen and Frey graph of delays between contributions of OSM participants with 100 
bootstrap samples. 

Results suggested a negative binomial distribution (Figure 1). A negative binomial distribution 
is the distribution of a random variable that gives the expected number of trials required prior a 
given number of successes (r) to happen (for instance, obtaining a given result twice when throwing 
dice). Since in our case the number of trials, failures, and successes are integers (days), and we are 
waiting for a next contribution to happen (r = 1), the data would have a geometric distribution (i.e., a 
special case of the negative binomial distribution), as long as the probability remains the same over 
all trials. In other words, contributing on a given day could be seen as the successful result of a dice 
game, in which all OSM participants would use the same dice. 
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In the case of a geometric distribution, the probability of being successful (i.e., to contribute on a 
given day) is inversely related to the average number of trials required, which in our case is the 
average delay between contributions (in days). Using the 4.57 M delays experienced by those who 
contributed at least twice to the OSM project, we found that on average, an OSM contributor waited 
19.51 days between two consecutive contributions, with the longest delay being of 3118 days (i.e., 
over 8.5 years).  

Using the dice game analogy, OSM participants did not use the same dice since they show a 
broad spectrum of frequency of contributions. Furthermore, assuming that each participant would 
keep playing the same game with the same number of dice all over their life span in a project is not 
realistic. Consequently, identifying withdrawn contributors from the above statistical model was not 
considered realistic either. 

The second approach used the 95th percentile of the delays between each sequential 
contribution illustrated here in a log-log plot (Figure 2). 

 
Figure 1. The 95th percentile of delays (days) between a Nth contribution and the previous one. An 
exponential model of the distribution covering 99.9% of contributors (i.e., a subset) is drawn on the 
log-log graph (green line). The model was extrapolated for the remaining 0.1% of contributors (red 
line) where delays were diverging. 

The curve shows that new participants may take years before contributing again since at least 5% 
of them waited more than a year between one of their first four active days. It also shows that, as the 
number of active days gets higher, the delays between contributions become smaller. An 
exponential decay model was built by fitting a linear equation on the log transform of both the 
percentiles and active day numbers to characterize the behavior of 99.9% of contributors (green line). 
We chose to exclude from the model the percentiles derived from the remaining 0.1% of contributors 
since their values started to disperse unevenly after about 765 active days. These values were 
affecting the adjustment of the model with 69% of available measurements representing only 0.1% of 
contributors. The resulting equation is shown below: Pଽହ = eି଴.଻ହ ୪୭୥(୒)ା଺.଼ଽ଼, (4) 

where P95 is the number of days after which 95% of participants will have contributed again after a 
previous active day, and N is the current contribution (active day). The resulting model coefficients 
(p < 0.001) produced an adjusted R-squared of 0.986 (green line). The model was extrapolated to 
cover the remaining contributions (red line). However, we found that the graph tends to 
underestimate actual delays experienced by individual participants. For new participants, 26% 
experienced a delay longer than the 95th percentiles defined in above Equation (4), while we were 
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expecting around 5%. For accomplished contributors, this proportion rises to 74%. Since the 95th 
percentiles were determined from the delays of all participants (which count a few bots), those who 
kept contributing for a larger number of days pulled the model to shorter delays as the frequencies 
of their contributions were higher (as defined by the model). Interestingly, the fact that the more the 
participants have contributed, the less time they wait until their next contribution may suggest 
behavior that is typical of an addictive process [34–36]. 

The Chebyshev inequality determined the time threshold after which a contributor should be 
considered as being withdrawn with a 95% probability. Since Chebyshev’s inequality requires at 
least two observations to compute a threshold, participants having fewer than three contributions 
had their thresholds set to 598 days, the average threshold value of participants having three 
contributions. The resulting thresholds were compared to the time actually spent by the participants 
between each contribution. We found that 7% of new contributors experienced at least one delay 
longer than the estimated threshold, and 3.8% of accomplished contributors could have been 
identified as being withdrawn from the project more often than expected (i.e., 5% of the delays). 
These results are consistent with the proportion expected from the analysis and were considered 
appropriate to run the remaining analyses.  

The Chebyshev inequality built on individuals’ history has provided a better estimate of the 
thresholds than those obtained from statistics using the whole OSM population. Individuals’ 
thresholds obtained from Chebyshev’s inequality were then compared to the time lapse between 
contributors’ last participation and 1 September 2014. Participants for which the time lapse was 
longer than their individual thresholds were considered withdrawn from the project.  

3.3. Survival Analysis 

The Kaplan-Meier estimator used to model survival rates of participants in the OSM project 
reveals variations in withdrawals of participants over years (Table 2).  

Table 2. Withdrawals per year of first contribution. For each year, “Joined” is the number of people 
who made a first edit in that year, “Quit” is the number of concerned people who withdrew from the 
project over years, “Rate” is the resulting proportion of contributors who withdrew over years, and 
“Median” is the number of days over which at least 50% of participants contributed to the project. 

Year Joined Quit Rate Median 
2005 83 41 49% 3143 
2006 432 218 50% 2733 
2007 4820 3240 67% 1036 
2008 26,545 20,409 77% 111 
2009 61,566 52,044 85% 1 
2010 58,547 49,698 85% 1 
2011 65,516 55,917 85% 1 
2012 87,582 73,833 84% 1 
2013 86,319 9278 11% NA * 
2014 73,447 4220 6% NA * 
All 464,857 268,898 58% 28 

* Participants who made a first contribution after January 2013 should not be considered since the 
majority of them were assigned a threshold of 598 days as they contributed fewer than three times. 
Consequently, their thresholds were not reached yet at the time the history dump was created. 

Table 2 shows that half of participants who enrolled during the 2005–2007 period were still 
active in September 2014, while 85% of those who enrolled after 2009 withdrew from the project 
prior to that date. Similar turning points in participants’ behavior were found in OSM’s enrollment 
history [13] and were linked to early stages of the Diffusion of Innovation theory [37]. After 2009; 
half of withdrawn participants contributed only once, as shown by the median values. Combining 
all the above participants, the analysis produced a survival curve that is shown in Figure 3.  



ISPRS Int. J. Geo-Inf. 2017, 6, 11  10 of 20 

 

 
Figure 3. Survival curve of OSM contributors with 95% confidence intervals. 

The model estimated that 64% of OSM participants “survived” their first active day, while 11% 
would have been active after almost 10 years (3335 days). After a steep drop of the survival rate, the 
slope rapidly decreases to eventually become constant. This characteristic is more easily understood 
from the hazard function that assesses the rate of withdrawal of participants who keep contributing 
to the project. The plot of the hazard function is presented in Figure 4.  

 
Figure 4. Hazard function of OSM participants, where dark dots are the proportion of remaining 
participants who withdrew at a given time and the red line is a moving average of the data. The first 
and last points of the distribution are not shown. Tags A and B delimit a segment of the curve where 
withdrawal rates are low and almost constant. 

The curve shows a bathtub profile familiar to reliability engineering and system safety domains 
[38]. These curves are used to characterize the rate of failure of different systems or manufactured 
objects and are used to split life cycles into three stages. The first stage is called “early failures” and 
shows an initial steep drop in the failure rates, where weaker components rapidly fail after an item is 
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put into service. The next stage is referred to as the “useful life” of equipment, where failure rates are 
low and relatively constant and result from random events. The last one is called the “wear out” 
stage, in which cumulative damages eventually trigger cascade failures of the components. 

When using similar definitions with OSM (Figure 4), one can observe that the early defect rates 
are high with 36% of withdrawals happening on the first day (not shown on the graph). The daily 
rates then drop rapidly to stabilize around 0.1% after six months. By this time, about 60% of 
contributors will have left the project. The second stage, delimited by tags A and B (Figure 4), shows 
stabilized daily rates. These rates slightly decrease over time to reach a minimum of 0.023% (i.e., 8% 
on an annual basis) after 1670 active days. The rates then increase to reach 0.04% after six years (2192 
days). By this time, about 80% of contributors will have left the project. The last stage sees the rates 
of withdrawal increasing exponentially to reach 33% (not shown on the graph). This rate results 
from the withdrawal of one of the three oldest participants who quit the project after having 
contributed over 3367 days. This last stage concerns early OSM contributors since the span of the 
history dump used in this research was 3432 days and the longest individual span was 3381 days. 

3.4. Time Series Analysis 

The data used in the analysis were a continuous sequence of discrete time-ordered number of 
withdrawals from the OSM project, as identified previously. A first analysis was run on all OSM 
participants who withdrew from OSM. The variations in the number of both withdrawals and new 
contributors proved to be highly correlated (Spearman’s rank correlation rho = 0.721 p < 0.001), 
which means that the events that triggered a large volume of new contributors did the same for 
withdrawals since 36% of these new contributors withdrew on the same day. In order to reduce this 
correlation, the same analysis was run with participants who contributed more than once to the 
project. The resulting analysis presented an outstanding peak of withdrawals in mid-2011, which 
was not visible on results from all participants. The height of the peak affected the computation of 
seasonal and the random components. To remove the effect from the seasonal component, observed 
values were replaced by trend values over the event interval. A second analysis was run and the 
peak was added back on observed and random components. Figure 5 presents the time series of new 
contributors and the adjusted time series of the withdrawn contributors. 

(a) 
 

(b) 

Figure 5. Compared time series analysis plots for participants who contributed more than once 
where (a) shows the time series for new contributors and (b) shows the time series for withdrawn 
contributors with seasonal and random components adjusted for the peak event. Both graphs show 
the observed values, trend, seasonal, and random components that indicate the estimated number of 
contributors.  
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As expected, seasonal and trend variations look similar on both graphs, although the trend of 
withdrawals (Figure 5b) should not be considered after it started declining in mid-2012. This decline 
resulted from participants who began contributing after this date and for whom the probability of 
withdrawal had not yet reached 95% when the history dump file was created. Random variations 
show numerous peaks on both distributions. These peaks identify days when unusual volumes of 
participants (i.e., small or large) first contributed of withdrew from the project. These unusual 
volumes of withdrawals were manually identified on the graph, and potential explanations were 
searched from the event inventory. Outstanding variations of withdrawals that were synchronized 
with variations of the number of new contributors were excluded from our selection. These included 
all negative peaks of withdrawals since they were all related to OSM database downtime and the 
events that potentially brought burst of new participants as identified by the literature [13]. The 
remaining outstanding withdrawal events are identified in Figure 6. 

 
Figure 6. Random components of withdrawals from the OSM project and largest outstanding events 
(A–F). The sharp drop seen after the last event (F) is an artefact of the 598-day threshold assigned to 
new contributors, and the time at which the history dump file was created.  

In addition to the main peak (C), five other peaks were identified in the graph. The potential 
explanatory events of these peaks are identified in Table 3. The cyclic variations visible at the left of 
the first event (A) are residual from the seasonal variations (Figure 5a seasonal) and the large 
withdrawals correlate with bursts of new contributors following large mapping parties after the 
implementation of API 0.6. 

Table 3. Outstanding random variations of withdrawals from OSM with associated explanatory 
events. ‘Id’ refers to the labels of Figure 6. ‘Quit’ is the estimated number of withdrawn contributors. 

Id Date Quit Associated Explanatory Event Description 
A 1 April 2010 136 Ordnance Survey began releasing data for free reuse. 
B 17 April 2011 255 ODbL: Unsettled users must make their choice in order to contribute. 
C 19 June 2011 1117 ODbL: Users who did not agree with the new license were blocked. 
D 13 December 2011 111 ODbL: Treads about what data should be removed from the database. 
E 1 April 2012 501 ODbL: Planned non-ODbL data removal and Blog. announcements 
F 20 September 2012 419 Import guidelines now require dedicated accounts. 

Interestingly, the first peak of withdrawals (A) seems related to the origin of the OSM project 
itself [39,40]. The last peak (F) could be related to participants who have imported or were to import 
data to the OSM database. In such a case, the volume of withdrawn contributors should correspond 
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to those who have changed the nature of their activities at this time or before since at the same time 
the number of new contributors increased without any other explanation according to the event 
inventory. 

The remaining peaks of withdrawals correlate with specific milestones or discussions about the 
license change. The largest peak (C) happened in the days before the accounts of users who did not 
agree to the CT/ODbL license were to be deactivated. It is important to recall that the data from these 
contributors were later removed from the databases and consequently do not appear in our results. 
These peaks could represent contributors who accepted the new license in order not to see their 
work removed from the database [41], or subsequently lost their motivation to contribute when the 
process resulted in a data loss. 

4. Discussion 

The results obtained from the different analyses and procedures have not only allowed for 
identifying withdrawn contributors from an online community, but also suggest potential 
explanations about the origin of collective withdrawals from OSM. Those results have also shed 
some light on OSM contributors’ behavior and life cycle. 

4.1. Assessing Withdrawals from an Online Community 

According to communities’ conventions about withdrawals, if any, contributors may announce 
their decisions to quit using templates or messages in their personal profiles. However, in order for 
the decision to be made public, contributors must care about respecting community conventions and 
their decision must be taken consciously. We suspect this happens mostly on specific circumstances 
such as health problems, personal obligations or a conflict with the community (e.g., OSM license 
change), as illustrated in some OSM users’ profiles [41]. The vast majority of contributors rather 
withdraw from a project by simply postponing their next contributions indefinitely because the 
priority they give to the activity slowly dropped, along with their motivation to contribute. This 
supports the need to use a statistical approach that depends only on actual contributions made by 
participants.  

The challenge in identifying withdrawn contributors was twofold. First, using statistical models 
derived from the contributions of a whole population would not have permitted an analysis of 
individuals’ behavior. The use of Chebyshev’s inequality to assess the contributions of each 
participant has proven to provide accurate decisions about individuals’ withdrawal. The main 
drawback of the method is that it took 798 days before confirming a one-time OSM contributor had 
left the project with 95% certainty, which is much shorter in most of the cases. According to Figure 3, 
about 75% of contributors have left the project at this time but the status of these one-time 
contributors cannot be confirmed with a 95% certainty until the threshold is reached. However, the 
length of this threshold for one-time contributors will vary according to the studied community and 
the required level of certainty. Second, in order to identify withdrawn participants based on the 
history of their contribution, one must identify the frequency at which they contributed to the 
project. We demonstrated that the UTC timestamps used to make such an assessment can lead to 
very different results depending on contributors’ location and the time at which they usually 
contribute. The resulting frequency of contributions may even double in certain circumstances, 
something that has to our knowledge not been mentioned in the literature. Such bias could induce 
interpretation error when assessing contributions based on participants’ locations (i.e., country, 
continent). Determining individuals’ circadian cycle based on the UTC timestamps of their 
contribution proved to be a simple and efficient approach. Identifying the time at which the volume 
of contributions is at its minimum for each contributor better reflects individuals’ natural cycles, 
even with fewer than 10 contributions, as we found when assessing changesets’ clustering using 
nearest-neighbor algorithm. 

4.2. Withdrawals from the OSM Project 
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Examining the withdrawals from the OSM project over time proved to be more complex than 
expected considering the relationship between withdrawal and enrollment rates. However, 
although the origin of long-term variations of withdrawals could not be differentiated from those of 
enrollment, we were able to identify specific events that correlated with collective withdrawals of 
participants.  

The first outstanding event originated from outside the project when the original raison d'être of 
the project disappeared for many contributors after the British national mapping agency (i.e., the 
Ordnance Survey) began releasing data for free use. This is a risk any crowdsourcing projects can 
face, when participants’ needs can suddenly be better met through another source. In this case, a 
new authoritative source of free geographic data has potentially caused some local contributors to 
leave the project. However, considering the number of withdrawals directly related to this event, the 
individual needs the OSM project was meeting must have been larger for most participants, as 
suggested in the literature about the motivations of online participants [41–46]. 

The main source of withdrawals from the OSM project was related with events that were 
internal to the project. The license change process and related discussions in OSM forums may have 
resulted in the withdrawal of about 2000 contributors (Table 3) to which we must add the 400–450 
contributors who declined the CT/ODbL license [31,32]. Overall, 1% of OSM contributors left the 
project during burst of withdrawals that seemed related to this process. 

If shared interests, values, and beliefs bring contributors together in a collaborative project like 
OSM [46,47], it necessarily translates into a collective identity [48] that in turn should result in 
collective behavior regarding the events that pave the way to the project. The license change may 
have highlighted differences in the values and beliefs of participants, resulting in the collective 
withdrawal of people whose values were jostled in the process (Table 3 and Figure 6). The fact that 
these withdrawals happened over different events simply reflects differences in the collective 
identity of those people [48]. 

The last event identified in Table 3 may have shed light on the volume of participants who are 
concerned by data imports. When a change to the import guidelines required contributors to use 
dedicated accounts for import and for casual mapping, a large number of users seem to have 
withdrawn from the project (Table 3). Since this event simultaneously generated an increase in both 
the number of new and withdrawn contributors, the latest is probably not related to people that left 
the project, but rather people that considered not having the same type of contribution anymore (i.e., 
imports or casual mapping) and decided to leave their previous account to adjust to the new 
guidelines. 

The withdrawals from the OSM project may reveal situations where a community is confronted 
to new challenges that cannot be overcome by all its participants [8]. The challenges online 
communities face in preventing contributors from withdrawing are twofold. First, changes related to 
the technical aspects of the participation (e.g., new rules, technical requirements) may trigger 
withdrawals even when changes can be considered as being positive for the community. This is not 
necessarily because the learning curve could be too steep, but also because the motivation to adapt 
from some contributors may not be there anymore (the wear-out stage). Second, interventions and 
changes that may hurt personal values or beliefs of the participants (e.g., changes in project’s 
objectives, better alternatives, internal conflicts) seem to have triggered large numbers of 
withdrawals in an otherwise strong and healthy community. In this case alternatives are limited 
since our results have shown that multiple collective identities can coexist in the same project, where 
going towards one group means moving away from another one. 

4.3. Contributors’ Behavior 

As shown by Vázquez and Barabási [42,43], people contribute through bursts of rapidly 
occurring events separated by long periods of inactivity. The main difference between new and 
accomplished contributors should then be the length of their activity bursts, this length being much 
longer for the latter. Figure 2 reveals such long periods of inactivity for new contributors and the 
long periods of rapidly occurring contributions from accomplished ones. 
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When participants engage in the project, they seem to assess the project to determine whether 
they find it relevant, enjoyable, or both [13]. The contributors will consider a project as relevant if it 
meets their needs, desires, or aspirations, whether because of the project’s objectives [44–47] or 
because of the nature of the tasks [48–50]. They will find a project enjoyable if their participation 
provide them distraction or even fun [45,46,51]. According to the Self-Determination Theory [52], an 
important motivation to keep contributing is self-efficacy [50,53]. This is the perception the 
individuals gain about their capacity to fulfill the required tasks as they contribute. When they are 
successful, individuals gain a feeling of control, competency, and autonomy that motivates them to 
keep contributing, while unsuccessful attempts may lead them to lose their motivation and stop 
contributing.  

Figure 4 shows that this phase seems to last up to six months, where the daily rates of 
withdrawals fall from 35% to 0.1% when they stabilize. During this phase, about 60% of the 
participants will have withdrawn from the project. We would call this period the “assessment” 
phase, a period over which participants are estimating the costs and benefits of contributing to the 
project. During this phase, the knowledge and skills required to contribute geographical information 
[54–56] can certainly be an obstacle for OSM contributors, which makes the project’s learning curve 
steeper than the average collaborative project. One would expect the rate of withdrawal to be higher 
with such a project than with other projects such as Wikipedia. However, the literature suggests the 
contrary, since about 60% of Wikipedia contributors withdraw within the first day [4,12], while a 
similar rate was found only after six months for OSM. An explanation might be that while learning 
to contribute, participants are less inclined to withdraw from a project. Such behavior may be seen in 
communities of practice where legitimate peripheral participation [57,58] is an important learning 
mechanism in which new participants slowly move from the periphery to the core of an activity. The 
longer it takes to grasp the nature of an activity, the longer it may take to assess the costs and 
benefits of engaging in such an activity. Interestingly, a similar assessment phase has been 
illustrated in another volunteered geographical information (VGI) project where the rates of 
withdrawals seemed to stabilize after about six months [11] (Figure 5). 

If the project meets the needs of the participants, they seem to engage with the project for the 
long term since daily rates of withdrawal stay low for a period of about six years. Given that such 
long-term engagement is frequent in collaborative projects [4,12,59,60], we have called this period 
the “engagement” phase. Over the first half of the period, the daily rates dropped from 0.1% to 
almost nothing (0.004%) before rising again over the second half to reach 0.04%. Referring to 
concepts used in reliability engineering, we consider the time at which the rates reached their 
minimum (i.e., 3.5 years after the first contribution) as a pivotal point where contributors seem to 
switch from an adaptation-dominated process to a cumulative-damage-dominated process [38]. 
During the adaptation-dominated process, contributors adapt to the community’s norms and rules, 
learn how to contribute and master available tools, and develop a feeling of self-efficacy. During the 
cumulative-damage-dominated process, the many events that over years brought irritation or 
annoyance to the participants start affecting their motivation to keep contributing. It is a period in 
which contributors may become less inclined to adapt to an evolving project and a never-ending 
flow of unexperienced contributors. This type of behavior (adaptation–conservatism) has already 
been mentioned in the literature regarding the vocabulary used by participants in online 
communities [59]. 

We called the last period experienced by participants, after having contributed to the project for 
over six years, the “detachment” phase. Results have shown that the daily rates of withdrawal 
increase exponentially over this period (Figure 4). However, the analyses also revealed that only half 
of early contributors (2005–2006) withdrew from the project (Table 2). This special commitment to 
the project contrasts with withdrawals from later participants, which reached 85% after 2009. 
According to Budhathoki [61], a large proportion of these early contributors were also project 
developers or people who had an impact on its development, which could explain the discrepancy. 

Another interesting finding made about contributors’ behavior is the time they spent between 
contributions, as the number of their contributions increases (Figure 2). The fact that this pattern of 
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participation is similar to what would be expected from an addictive process should be linked to 
contributors’ motivation. Providing geographic data to a project like OSM is a complex task [54,55], 
which may increase the pleasure gained by participants from fulfilling the task (learning, 
self-efficacy, self-actualization, self-expression), contemplating the outcome (fun, instrumentality), 
or using the result (meeting own need), as described by Budhathoki [51]. The more they contribute 
and master the process, the more pleasure they derive from it, and the higher priority they will give 
to the activity during their free time. The latest mechanism has even been used to explain the 
“bursty” nature of human behavior when engaging in online activities [43]. However, since the 
number of active days (Figure 2) and the time span of the project are related, some have suggested 
that new participants may have had fewer opportunities to contribute (lower frequency) than older 
participants (higher frequency) because of the OSM map saturation [62] in many Western countries 
[63]. An analysis of the number of participants who contributed frequently (more than once a week) 
against their years of enrollment revealed that there was no such relationship, the number of 
recurring contributors being even higher in recent years. 

Finally, the rates of withdrawal have shown variations over the years, a phenomenon similar to 
that identified within OSM enrollment and linked to the early phases of the Diffusion of Innovation 
theory [13,56]. This might result from a stronger engagement of early participants who developed 
the project, while the latest participants got involved once the project’s infrastructure was mostly set 
up [37,64]. 

5. Conclusions 

Online collaborative communities have grown in importance, with millions of people visiting 
or consulting their websites every day. For this reason, assessing withdrawals from online projects 
and identifying events that drive the contributors to leave a community is of prime importance. 

This study compared different methods to identify the contributors who have left a community. 
All these methods required assessing the frequency of contributions over time but the literature had 
not yet assessed the biases that could result from assessing this frequency according to participants’ 
location and schedules. We developed a method based on contributors’ circadian cycles that proved 
to be a simple and efficient approach to avoid such biases when using UTC timestamps. Our results 
show that assessing the withdrawal of individual participants required estimating individual 
behavior from the history of their own contributions. Accurately identifying withdrawn contributors 
should have provided reliable results when assessing withdrawals from the OSM community over 
time. Contrarily to previous studies that relied on ad hoc criteria to identify withdrawn contributors, 
the use of both the participants’ circadian cycles and Chebyshev’s inequality provides a transparent 
and reproducible approach when analyzing and comparing the behavior of contributors within and 
between online communities.  

The different procedures and analyses achieved in this research have not only illustrated an 
effective approach to assess withdrawals from online communities, but also shed light on 
contributors’ behavior, their life cycle, and the events that may affect the length of their participation 
in such a project. Our results suggest the origin of withdrawals from an online community is 
twofold.  

First, collective withdrawal can result from changes in the environment that cause participants 
to question their primary motivation for enrolling in a given community. These changes may lessen 
the need for the participants to contribute to a project, either because the need does not exist 
anymore or the need is better fulfilled elsewhere. Internal conflicts seem to be a major threat to the 
well-being of a community. Such conflicts often result from differences in values and beliefs between 
the members of a community, and these disagreements may be difficult to resolve collectively. Other 
changes that are internal to a project may also trigger withdrawals on a smaller scale in the event of a 
change in the community’s norms and rules, contribution tools, or communication interfaces. 

Second, contributors’ withdrawal has also proven to be determined by three different phases of 
their life cycle. There is first a short “assessment” phase, when contributors probe the project and 
determine if they will engage in the long term. A large majority of the participants will withdraw 
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from a project during this phase. A longer “engagement” phase follows, during which withdrawal 
rates are low and relatively constant. Finally, a “detachment” phase will come when years of wear 
and tear have exhausted the determination of many remaining participants. However, we were not 
able to establish a maximum lifespan for OSM contributors since half of those who engaged in the 
early years of the project were still active. 

This research has highlighted very simple mechanisms that can explain most withdrawals from 
an online collaborative project, from both individual and collective perspectives. Understanding the 
processes that determine withdrawals from an online community can help with intervening and 
minimizing their effects. It may then be possible to minimize withdrawals by directing efforts to 
appropriate phases of the life cycle of the contributors, or to transform the life of a project without 
generating conflicts, taking into account that all contributors do not have the same sensibilities, 
values, and beliefs. 
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