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Abstract: Detection of built-up areas from Very High Spatial Resolution (VHSR) remote sensing
images is a critical step in urbanization monitoring. This paper presents a method for extracting
built-up areas from VHSR remote sensing imagery by using feature-level-based fusion of right angle
corners, right angle sides and road marks. This method has six main steps. First, line segments are
detected. Second, the Harris corner points are detected. Third, the right-angle corners and right-angle
sides are determined by cross-verification of the above detected Harris corners and line segments.
Fourth, the potential road marks are detected by the template matching method. Fifth, a built-up
index image is constructed. Finally, the built-up areas are extracted through a binary thresholding of
the above index image. Three satellite images with wide coverage are employed for evaluating the
above proposed method. The experimental results suggest that the proposed method outperforms
the classic PanTex method. On average, the completeness and the quality of the proposed method
are respectively 17.94% and 13.33% better than those of the PanTex method, while there is no great
difference between the two methods on the correctness.

Keywords: remote sensing; very high spatial resolution; satellite image; built-up area; Harris corners;
line segment; spatial voting

1. Introduction

Very High Spatial Resolution (VHSR) aerial and satellite images provide valuable information [1]
in diverse fields such as geography, cartography, surveillance, city planning, surveying and mapping.
One of the most important pieces of information is about built-up regions. Built-up regions’ information
such as area, shape, location, distribution, growth and characteristics greatly helps government
agencies and urban planners in updating land use maps, forming long-term plans and monitoring
urbanization. As a result, the monitoring of built-up regions has received increasing attention [2].
In this kind of monitoring, the first step is to detect built-up areas from the VHSR remote sensing
images [3].

Generally, a built-up area represents a vital and highly dynamic environment, which is mainly
composed of both man-made and natural objects [2]. For low and medium spatial resolution remote
sensing images with abundant spectral bands, researchers have proposed many built-up area indices
such as the Normalized Difference Built-up Index [4], the Enhanced Built-Up and Bareness Index [5]
and the Combinational Built-Up Index [6]. However, the above indices may fail to accurately detect
built-up areas from the VHSR images because the VHSR images may not contain the necessary spectral
bands that are needed in computing these indices.

ISPRS Int. J. Geo-Inf. 2017, 6, 338; doi:10.3390/ijgi6110338 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi6110338
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2017, 6, 338 2 of 19

Recently, many automatic methods [7–20] have been proposed for built-up area detection from
VHSR remotely-sensed images. Depending on whether training samples are used, these existing
methods can be roughly divided into two groups [7]:

• The first group detects built-up areas based on supervised classification methods. In this group,
a large number of representative training samples is required to learn the patterns of built-up
areas for detection. For example, Benediktsson et al. classified built-up areas from panchromatic
high-resolution data by using morphological and neural approaches [8]. Zhong and Wang
presented an ensemble model of multiple conditional random fields to incorporate multiple
features and learn their contextual information for urban detection [9]. Pesaresi et al. used
a novel image classification method, called symbolic machine learning, for detailed urban land
cover mapping [10]. Hu et al. presented a novel approach for built-up area detection from high
spatial resolution remote sensing images, using a block-based multi-scale feature representation
framework [11]. However, the detection accuracy of built-up areas varies with image types, study
areas and the selection of training samples and classifies.

• The second group directly detects built-up areas without using any training data. With regard to
the employed features, these methods are divided into four subcategories:

� Texture-based approaches: PanTex [12,13], being a contrast measurement of texture features
using the gray-level co-occurrence matrix, has been widely used for global human settlement
extraction. However, forested areas, which contain high PanTex values due to tree shadows, are
subject to be taken as built-up areas.

� Building-density-based approaches: Huang and Zhang [14] propose a building detection method
using the difference of morphological profiles, and the corresponding building-density-based
feature is employed to extract the built-up areas in [7]. However, the building extraction itself is
still a difficult problem and faces great challenges, and it often fails to extract built-up areas.

� Corner-density-based approaches: The local key point features such as SIFT (Scale Invariant
Feature Transform) [15], local feature point extraction using Gabor filters [3], junctions [7] and
Harris corners [16] are widely employed to detect built-up areas. To improve the detection
accuracy, the literature presents some variants of corner detection methods such as improved
Harris [2] and modified Harris for edges and corners [17]. However, corners extensively exist
in farmland areas and highways, which leads to the farmlands and highways possibly being
wrongly labeled as human settlements.

� Edge-density-based approaches: Edge is an importance feature for image understanding.
For example, Gong and Howarth [18] incorporate the edge-density feature in image classification
to increase the accuracy by approximately 10%. Ünsalan and Boyer [19] introduce a set
of measures based on straight lines to assess land development levels in high-resolution
panchromatic satellite images. Recently, Chen et al. [20] realized the extraction of built-up
areas from VHSR images using edge density features. However, edges are common features even
in natural scenes, leading to the failure of built-up area extraction.

Overall, the second group is more practical than the first group. However, a major issue of the
second group is that the employed features for extracting built-up area are indistinctive from those of
non-built-up areas. Thus, we focus on developing and selecting unique clues of the built-up areas to
improve the extraction accuracy of built-up areas in this article.

In VHSR satellite images, built-up areas have two dominant classes of man-made objects, namely
buildings and roads. Furthermore, most of the building roofs have rectangular shapes, and they
contain a large number of right-angle corners and right-angle sides. At the same time, road lane
markings are abundant on the road surfaces and they are distinctive from the backgrounds. In this
sense, both corner points and line segments ((including right-angle sides of building roofs and line
segments of road lane markings) can be used as the unique features for built-up area detection. Thus,
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an Index using Joint Density of Corners and Line Segments (IJDCLS) is proposed to extract built-up
areas from VHSR satellite images. Note that the built-up area is more similar to the concept of human
settlement in this paper. The main contribution of this paper is the use of right-angle corners and
the qualified line segments for spatial voting to promote the robustness of built-up extraction from
VHSR images.

The remainder of this paper is organized as follows. Section 2 presents the overall framework
of our proposed method. Section 3 demonstrates the experiments and analyses. Section 4 gives
concluding remarks.

2. The Proposed Framework for Built-Up Area Extraction

As shown in Figure 1, our proposed method is composed of six main steps: (1) detection of straight
line segments by a Line Segment Detector (LSD) [21]; (2) detection of corners by a Harris corner
detector; (3) determination of right-angle corners and sides; (4) detection of the line segments of road
lane markings by template matching; (5) the generation of a thematic image of Joint Density of Corners
and Line Segments (IJDCLS) by spatial voting; and (6) binary thresholding by a trial-and-error method.

Figure 1. Flowchart of the proposed method.

2.1. Detection of Line Segments

Intuitively, local edges in an image indicate spectral discontinuity and the existence of structure
texture or objects [22]. For some types of man-made objects with strong edge boundaries, such as
buildings, cars, boats and airplanes, edge distribution is not only a strong indication of existing objects,
but also can be used for locating the centers of objects [22]. Furthermore, line segments are very
important clues for building detection. For example, Lin and Nevatia [23] detected buildings and other
structures in aerial images using the features of line segments. Moreover, in VHSR remotely-sensed
images, straight-line structures are fairly prevalently and regularly distributed in developed areas
compared to wilderness or rural areas [19]. Thus, line segments’ density and orientation have been
used as clues to detect the built-up areas [20].

Various line segment detectors such as Hough transform and the detector of Burns et al. [24] have
been proposed. In this article, LSD, first proposed in [25], is adopted to detect line segments in VHSR
images. LSD is pretty fast, and it gives sub-pixel accurate results [21]. LSD is designed to work on
any digital image without parameter tuning [21] by controlling the number of false detections, on
average, one false alarm per image [25]. LSD is based on Burns et al. [24], and it also uses an a contrario
validation approach according to the theory of Desolneux, Moisan and Morel [26,27]. For example,
Figure 2a displays a VHRS image sample, and Figure 2b shows the detected line segments by the
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LSD algorithm. We can see that built-up objects (e.g., buildings and roads) and natural objects (e.g.,
croplands and forests) generate many line segments.

To limit the distribution of the lengths of line segments, we use two line-segment length thresholds:
the maximum (ϕ1) and minimum (ϕ2) length thresholds. Among the detected line segments, a line
segment is deleted if it is shorter than ϕ1 or longer than ϕ2. Figure 3a displays the original VHSR image,
and Figure 3b displays the refined line segments when ϕ1 = 2.00 m (four pixels) and ϕ2 = 150.00 m
(300 pixels).

Figure 2. The extraction of line segments by the Line Segment Detector. (a) A subset of a VHSR satellite
image; (b) the detected line segments (marked with red color) and (c) the detected line segments
(marked with red color) imposed on the original image.
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Figure 3. The first test image; the intermediate results of our method and the extracted built-up areas.
(a) The VHSR satellite image; (b) the detected line segments; (c) Harris corners; (d) the detected right angle
corners and right angle sides; (e) the detected road marks; (f) the retained corners and line segments; (g) the
constructed thematic image by spatial voting; (h) the final built-up area (by our proposed method) imposed
on the original image; (i) the final built-up area by the PanTex method; (j) the reference built-up area.
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2.2. Detection of Harris Corners

In VHSR remotely-sensed images, built-up areas contain a number of corners from building roofs,
roads and other man-made objects [16]. Many corner detection methods, such as Harris [28], FAST [29]
and SUSAN [30], have been designed in the computer vision field. Among them, the classic Harris
corner detector and its variants are popular for extracting man-made structures in urban areas [31].
The work done in [2,16,17] has proven that the classic Harris corner detector is an effective and robust
algorithm for corner detection.

Therefore, to extract low-level corners in the VHSR images, we use the classic Harris corner
detector for detecting built-up areas. Figure 3c displays the detected Harris corners from the image.
We can see that the detected corners are abundant in both man-made and natural environments.

2.3. Verification of Harris Corners by Line Segments

In built-up area extraction from VHSR images, four situations exist:

(1) Some textured areas, such as grassland and forested areas, contain many corners and few line
segments, as shown in Figure 3c;

(2) The farmland areas with a lattice distribution contain many corners and line segments, and their
line segments are larger than those of the built-up areas;

(3) The roads contain many corners and line segments; moreover, some corners have a longer line
segment and a shorter line segment;

(4) A building roof’s corner generally has two orthogonal line segments with medium lengths,
as shown in Figure 3d.

The above four facts tell us that one single feature alone (Harris corners or line segments) is not
well suited to detect built-up areas. Therefore, the fusion of Harris corners and their supporting line
segments might contribute more to built-up area detection than just one single feature does.

In this article, a Harris corner with its supporting line segments is defined as a Harris corner with
two orthogonal line segments, and both line segments have medium lengths. As shown in Figure 4,
for each Harris corner pi, let l1 and l2 be the two nearest line segments around pi and θi be the angle
between the line segments l1 and l2. Moreover, the lengths of the line segments l1 and l2 are length1 and
length2, respectively; the distances between Harris corner pi and line segments l1 and l2 are distance1

and distance2, respectively. Additionally, distance d between Harris corner pi and line segment l is
calculated as follows. Through pi, draw a line perpendicular to l. If the endpoint of the perpendicular
line is located between the two endpoints of l, d is equal to the distance between the perpendicular
line’s endpoint and point pi. Otherwise, d is equal to the distance between pi and its nearest endpoint
of l. Thus, a Harris corner with two supporting line segments should meet the three criteria:

ϕ1 < length1 < ϕ2 and ϕ1 < length2 < ϕ2 (1)

|θi − 90◦| < ϕ3 (2)

distance1 < ϕ4 and distance2 < ϕ4 (3)

where ϕ1, ϕ2, ϕ3 and ϕ4 are four predefined thresholds. Moreover, ϕ1 and ϕ2 are two length
thresholds. A Harris corner will be deleted if it does not satisfy the above three criteria. Figure 3d
shows the detected right-angle corners and sides when ϕ3 = 10◦ and ϕ4 = 1.00 m (two pixels herein).
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Figure 4. The construction of a right angle corner and two right angle sides.

Note that we do not consider the use of vegetation or building indices to verify the Harris corners
because not all of the images have sufficient bands to allow the calculation of these indices.

2.4. Detection of Potential Road Lane Markings

In VHSR satellite images, the road lane markings are generally bright linear features. Based on
this feature, some methods have been presented for extracting road lane markings from aerial images.
For example, Hinz and Baumgartner [32] constructed ideal models of markings. Zhang [33] extracted
highways and main roads by detecting road lane markings and zebra crossings. Jin et al. [34] extracted
road lane markings from VHSR images based on hierarchical image analyses and 2D Gabor filters.
Tournaire and Paparoditis [35] built models of dashed lines using geometric, radiometric and relational
characteristics, and they proposed an automatic approach to detect dashed lines based on stochastic
analysis. Lin et al. [36] tracked the roads by template matching, and road lane markings are the
important clues for road tracking. However, the spatial resolution of satellite image used in this article
is lower than aerial images, and road lane markings on satellite images show different characteristics
from the ones on aerial images. Thus, the methods mentioned above are not suitable for extraction of
road lane markings.

In VHSR satellite panchromatic images, such as QuickBird and WorldView2, a road lane marking
is approximately one pixel in width, and its grey values are larger than its nearby backgrounds.
Moreover, only the straight-line-segment-shaped road lane markings are concerned. In this article,
template matching is employed for detecting road markings. In [37], the template matching using the
correlation coefficient as a similarity measure was used in the recognition of road centerline points.
Suppose there was a binary bar-shaped reference template, as shown in Figure 5. To detect and locate
the centerline points of the bar-shaped roads, the template matching, which correlated the bar-shaped
reference template and the image, evaluates the similarity between the reference template and the
image; therefore, the centerline point candidates were detected based on the local maximums of the
correlation. As a result, we apply the above template matching to VHSR satellite images for the
extraction of road lane markings.
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Figure 5. The binary reference template for the extraction of road marks.

Suppose there is a detected line segment with the length of lline, a binary reference template t
with the same line length of lline, and a width of three pixels (as shown in Figure 5). Furthermore, for
each detected line segment with a length of lline, an image patch, f , with a size of lline × 3 pixels is
segmented from the images and then centered by the reference template with the same image size of
the patch. Their correlation coefficient is estimated by:

r(t, f ) =
∑N

n=1 tn fn − 1
N

(
∑N

n−1 tn

)(
∑N

n−1 fn

)
√[

∑N
n−1 t2

n − 1
N

(
∑N

n−1 tn

)2
][

∑N
n−1 f 2

n − 1
N

(
∑N

n−1 fn

)2
] (4)

where N = 3lline.
The correlation coefficient evaluates the similarity between the binary reference template t and the

image patch f . The line segment is maintained if its correlation coefficient is larger than a predefined
threshold ϕ5. Otherwise, it is deleted. Figure 3e shows the maintained road lane marking candidates
when ϕ5 = 0.6.

Note that if the input original image has no obvious road lane markings, this step is skipped.

2.5. Construction of Built-Up Area Index

Generally, built-up areas contain a high density of right-angle corners, right-angle sides and
road-lane-marking line segments in a spatial neighborhood, while non-built-up areas sparsely contain
these features. This means that, if an image pixel (xi,yi) belongs to a built-up area, we expect that more
corners and line segments exist in its neighborhood. Hence, a density map of the corners and line
segments, computed by spatial voting, is utilized to identify built-up areas.

The spatial voting is performed as follows. Suppose that an image pixel (xi,yi) contains n1 Harris
corner pixels and n2 line segment pixels within a predefined distance threshold, ϕ6. A built-up area
pixel is defined by the following likelihood function:

Index(xi, yi) =
n1
∑

k=1

100√
2π

exp

(
−
√
(xi−xk)

2+(yi−yk)
2

2

)

+
n2
∑

j=1

1√
2π

exp

(
−
√
(xi−xj)

2
+(yi−yj)

2

2

) (5)

where (xk,yk) represents the spatial coordinates of a corner, for k = 1, . . . , n1; (xj,yj) represents the
spatial coordinates of a line segment pixel, for j = 1, . . . , n2. The likelihood function highlights the
built-up region in the pixel neighborhood. If a pixel is a good candidate for the built-up region, a high
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value Index(xi, yi) is expected. Figure 3g shows the built-up area extraction results by the proposed
IJDCLS when ϕ6 = 150.50 m (301 pixels herein).

2.6. Thresholding of Human-Settlement Index

Once the IJDCLS index image is constructed, a corresponding frequency histogram is formed to
obtain a threshold of ϕ7. The built-up regions are generally the pixels with the Index(xi, yi) larger than
ϕ7. Figure 3h shows the detected built-up area candidates from Figure 3g. Figure 3j shows the ground
truth data. Visual inspection shows that the detection results closely fits to the ground truth data.

In a short, our proposed method needs seven parameters in total. Among them, five parameters
have physical meanings. For example, ϕ1 and ϕ2 are respectively the minimum length and maximum
length of a line segment candidate, because the line segments belonging to building roofs or road
lane marking lines are impossibly too long or too short. Moreover, ϕ3 and ϕ4 are respectively the
tolerances of a right-angle and a right-angle side. Additionally, ϕ6 is the influence radius of a corner or
side point, and it is related to the physical sizes of buildings and blocks, especially the average distance
between two man-made objects such as two buildings. If the value of ϕ6 is suitable, any two adjoining
man-made objects will touch each other, and the built-up areas will have higher values on the feature
image. Finally, two parameters, including ϕ5 and ϕ7, do not have physical meanings, but they can be
decided by the trial-and-error [38] method.

3. Experiments and Analysis

A prototype system for built-up area extraction based on our proposed method is developed using
the C++ language in Microsoft Visual Studio 2010. To demonstrate the performance of our method, we
compare it with the PanTex [12,13] method. The PanTex code is from the Orfeo ToolBox (OTB) [39],
which is an open-source project for state-of-the-art remote sensing. Additionally, all the experiments are
conducted on a ThinkPad W520 laptop with an Intel Pentium 2.40-GHz CPU and 2.98 GB of RAM.

3.1. The Test Datasets

Three VHSR satellite images are used for evaluating the performance of our method, and their
basic information is referred to in Table 1. The first one is a GeoEye-One pan-sharpened multi-spectral
image with a size of 9700 × 8856 pixels. The Ground Sampling Distance (GSD) is 0.50 m, and the
covered area is located in the suburban of Suzhou City, Zhejiang Province, China, as shown in Figure 3a.
Note only the red band is used in the experiments. The GeoEye data mainly contain two types of
objects: built-up and forested areas. Moreover, a lake is contained in the built-up areas, as shown
in Figure 3a. Some road lane markings on the highways are obviously visible, and some road lane
markings on the streets are invisible in the urban areas.

Table 1. Information about the three test images.

Image No. Satellite Sensor Bands GSD (m) Length × Width
(Pixels × Pixels) Location

First GeoEye-One Pan-sharpened RGB 0.50 9700 × 8856 Suzhou, China
Second QuickBird panchromatic 0.61 20,786 × 15,448 Tai’an, China
Third QuickBird panchromatic 0.61 6904 × 6905 Linzhi, China

The second is a QuickBird panchromatic image with a size of 20,786 × 15,448 pixels. The GSD
is 0.61 m, and the covered area is located around the central urban and suburban area of Tai’an
City, Shandong Province, China, as shown in Figure 6a. Besides the built-up areas, the study area
covers various types of objects, including forested mountains, croplands, rivers and lakes, as shown
in Figure 6a. Most road lane markings are obviously visible on the highways and main streets in the
urban area.
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Figure 6. Cont.
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Figure 6. The second test image; the results of our method and the extracted built-up areas.
(a) The VHSR satellite image; (b) the retained corners and line segments; (c) the constructed thematic
image by spatial voting; (d) the final built-up area (by our proposed method) imposed on the original
image; (e) the final built-up area by the PanTex method; (f) the reference built-up area.

The third is a QuickBird panchromatic image with a size of 6904 × 6905 pixels. The GSD is 0.61 m,
and the covered area is located in the central urban area of Linzhi City, Tibet Autonomous Region,
China, as shown in Figure 7a. Similar to the second set of data, the third set of data covers built-up
areas, rivers, forests, grass land and bare lands, as shown in Figure 7a. Moreover, many islands are
located in the rivers. The road lane markings are not observed.

Figure 7. Cont.
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Figure 7. The third test image; the results of our method and the extracted built-up areas. (a) The VHSR
satellite image; (b) the retained corners and line segments; (c) the constructed thematic image by spatial
voting; (d) the final built-up area (by our proposed method) imposed on the original image; (e) the final
built-up area by the PanTex method; (f) the reference built-up area.

Additionally, to verify the performances of our method, the reference built-up regions are carefully
manually created by an experienced operator. The reference data for the three test images are shown
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in Figures 3j, 6f and 7f, respectively. Note that if lakes are located in the built-up areas (as shown in
Figures 3j and 7f), the lakes are regarded as the built-areas in the reference data. Similarly, if a forested
park is contained by the built-up area, the park is also regarded as built-up area in the reference data,
as shown in the center of Figure 6f.

3.2. Parameters Setting and Results

Both our proposed method and the PanTex are tested on the three test images. As far as our
proposed method is concerned, the seven parameters and their values of our method for the three
images are listed in Table 2. With the predefined thresholds, the experimental results are obtained.
Figures 3f and 6b show the extracted right-angle corners, right-angle sides and road lane markings of
the first and second test images, respectively. Figures 3g and 6c demonstrate their generated thematic
images respectively; Figures 3h and 6d show the final built-up area extraction results respectively.
For the third image, only the right-angle corners and right-angle sides are extracted (as shown in
Figure 7b) to construct the index image (as shown in Figure 7c), and the final built-up area extraction
results are shown in Figure 7d.

Table 2. Values of the seven parameters of our proposed method for the three test images.

Image No. ϕ1
(m)

ϕ2
(m)

ϕ3
(◦)

ϕ4
(m) ϕ5

ϕ6
(Pixels) ϕ7

First 2.00 150.00 10.00 1.00 0.6 150.50 0.01
Second 3.05 91.50 15.00 1.22 0.7 122.61 10.00
Third 3.05 91.50 15.00 1.22 - 122.61 200.00

The data in Table 3 suggest that the extracted built-up areas by our proposed method for the
three test images are 16.984289 km2, 83.012586 km2 and 7.424627 km2, respectively. For the first test
image, visual evaluation suggests that our results are consistent with the reference data except for
the lake area. Furthermore, for the other two test images, our method detected more built-up areas
compared to the reference data (as shown in Figures 6d and 7d, Table 3). Specifically, our method
is capable of making the right recognition in forested areas, but may fail in some farmland areas.
Overall, our method achieves a satisfactory performance although it is subject to recognizing some
croplands as built-up areas because these croplands have similar shapes as the buildings (as suggested
by Figure 6d).

Table 3. The areas of the built-up regions by the three methods on the three test images.

Image No. Reference (km2) PanTex (km2) Our Method (km2)

First 17.352817 16.070800 16.984289
Second 75.689544 54.368011 83.012586
Third 4.115574 6.544921 7.424627

As far as the PanTex method is concerned, the two input parameters for the three images are listed
in Table 4. The two parameters include the window size and the binary threshold. The extracted results
of the three test images are shown in Figures 3i, 6e and 7e, respectively. The data in Table 3 suggest
that the extracted built-up areas by the PanTex method for the three test images are 16.070800 km2,
54.368011 km2 and 6.544921 km2, respectively. Note that the detected results of the first test image are
consistent with the reference data except for the lake region. Comparatively, the built-up extraction
results of the second and third images are quite different from their reference data. For example,
the PanTex method mistakenly recognized forested areas as the built-up areas on the second image, as
shown in the top-left part of Figure 6e, because the forested areas have very high contrast values due
to the existence of both trees and shadows. At the same time, the built-up areas also have very high
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contrast values due to the existence of both buildings and shadows. On the third image, compared to
the reference data, most detected results are correct, but many true built-up areas are missed; because
the heights of most buildings are very low in the built-up areas on the third image, which results in
less shadows and low contrast values. Overall, the PanTex method achieves different performances on
the three test images.

Table 4. The values of the two input parameters of the PanTex method for the three test images.

Image No. Window (Pixels × Pixels) Binary Threshold

First 100 × 100 0.25
Second 84 × 84 0.4
Third 84 × 84 0.37

3.3. Performance Evaluation

In this article, three indicators—correctness (Pe), completeness (Pc) and quality (Pq) [2,40]—are
used to evaluate the performance. They are defined as follows:

Pe =
Sauto&manual

Sauto

Pc =
Sauto&manual

Smanual

Pq =
Sauto&manual
Sauto maual

(6)

where Sauto is the area of the automatically-extracted results, Smanual is the area of the reference results,
Sauto&manual is the area of the intersection of the automatically-extracted results and reference results
and Sauto manual is the area of the union of the automatically-extracted results and reference results.

The evaluation results of the two methods on the three test datasets are listed in Table 5. On the
first test image, both methods achieved pretty similar performance. For example, the quality values of
our method and PanTex are 84.78% and 84.05%, respectively. However, for the other two test images,
the statistics of the two methods are quite different. For example, the completeness values of our
method and PanTex are 91.43% and 61.64%, respectively, on the second test image.

Table 5. Statistics of the performance of two built-up extraction methods.

Image No. The Method Pe (%) Pc (%) Pq (%)

First
PanTex 94.97 87.96 84.05

Our Method 92.75 90.78 84.78

Second
PanTex 85.56 61.64 55.69

Our Method 83.37 91.43 77.32

Third
PanTex 96.49 60.68 59.37

Our Method 92.88 81.88 76.99

Moreover, the statistical values in Table 5 suggest two very interesting phenomena. First, all the
correctness values of PanTex are slightly higher than our method’s on the three test images. On average,
the correctness value of PanTex is 2.47% higher than our method, indicating that less significant
correctness difference exists between the two methods. Second, all completeness and quality values of
our method are higher than those of PanTex on the three test images. On average, the completeness
value of our method is 17.94% larger than PanTex’s, and the quality value of our method is 13.33%
larger than that of PanTex. On the whole, our proposed method outperforms PanTex with regards to
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completeness and quality. The statistics in Table 5 demonstrate that our proposed method is capable of
detecting more built-up areas than the PanTex method on average.

3.4. Discussion

The above performance evaluation suggests that our proposed method achieved a better
performance than the PanTex method on the three test images; but, our method needs more parameters
than PanTex. However, most of the seven parameters listed in Table 2 are related to the prior knowledge
of the VHSR image. There are five parameters, including ϕ1, ϕ2, ϕ3, ϕ4, ϕ6, that have very clear
physical meanings, and they correspond to physical sizes, shapes, the geometrical relationship of
buildings, blocks and road lane marking lines. Moreover, there are two parameters, including ϕ5 and
ϕ2, that are related to the feature spaces, but they can be determined by trial-and-error.

As shown in the results, our proposed method has two shortcomings. First, the extracted results
may have holes, as shown in Figure 7d. The holes are produced for two reasons: (1) there are no
detected corners, sides or road markings around the holes; (2) the parameter ϕ6 is not large enough.
Second, our proposed method easily mislabels croplands as built-up areas. This problem may be
solved by adopting the multispectral information of the satellite images.

4. Conclusions

In VHSR satellite images, there are more right-angle corners, right-angle sides and road lane
marking lines in the built-up areas than in the natural environments, which is used by our method as
a unique clue for the extraction of built-up areas. We named the proposed method IJDCLS. Although
IJDCLS needs seven parameters, most of the parameters can be determined by the prior knowledge of
the image itself. Three VHSR satellite images are used to evaluate the proposed method and PanTex.
The experimental results suggest that our proposed method outperformed PanTex. On average,
the completeness and quality values of our method are larger by 17.94% and 13.33%, respectively,
than those of PanTex, while the correctness values of our method and PanTex are very close, being
92.34% and 89.67% respectively. The above results suggest that our method has potential engineering
applications. On the other hand, our proposed method has some disadvantages. First, the final built-up
polygons may have holes due to unreasonable setting of the parameters or the complex topological
relationships between natural objects and man-made objects. Second, our method may misclassify the
farmlands as the built-up areas if both farmlands and buildings have very similar sizes.

The future work will include: (1) the fusion of big/open data [41] or elevation data [42] and VHSR
images for accurate detection of built-up areas; (2) the optimization of the algorithms and the adoption
of high performance computation to speed up the efficiency; (3) the use of the vegetation index to
promote the separation of farmlands from built-up areas; (4) the use of the building index [43,44] or
extracted man-made objects [45] to highlight only the impervious surfaces on the images, which is
helpful to increase the salience of the built-up areas.
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