
 International Journal of

Geo-Information

Article

Hypergraph+: An Improved Hypergraph-Based
Task-Scheduling Algorithm for Massive Spatial
Data Processing on Master-Slave Platforms

Bo Cheng 1,2, Xuefeng Guan 1,2,*, Huayi Wu 1,2 and Rui Li 1,2

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, 129 Luoyu Road, Wuhan 430079, China; chengbo@whu.edu.cn (B.C.);
wuhuayi@whu.edu.cn (H.W.); ruili@whu.edu.cn (R.L.)

2 Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China
* Correspondence: guanxuefeng@whu.edu.cn; Tel.: +86-27-6877-8311

Academic Editor: Wolfgang Kainz
Received: 20 May 2016; Accepted: 29 July 2016; Published: 10 August 2016

Abstract: Spatial data processing often requires massive datasets, and the task/data scheduling
efficiency of these applications has an impact on the overall processing performance. Among the
existing scheduling strategies, hypergraph-based algorithms capture the data sharing pattern
in a global way and significantly reduce total communication volume. Due to heterogeneous
processing platforms, however, single hypergraph partitioning for later scheduling may be not
optimal. Moreover, these scheduling algorithms neglect the overlap between task execution and
data transfer that could further decrease execution time. In order to address these problems, an
extended hypergraph-based task-scheduling algorithm, named Hypergraph+, is proposed for massive
spatial data processing. Hypergraph+ improves upon current hypergraph scheduling algorithms
in two ways: (1) It takes platform heterogeneity into consideration offering a metric function
to evaluate the partitioning quality in order to derive the best task/file schedule; and (2) It can
maximize the overlap between communication and computation. The GridSim toolkit was used to
evaluate Hypergraph+ in an IDW spatial interpolation application on heterogeneous master-slave
platforms. Experiments illustrate that the proposed Hypergraph+ algorithm achieves on average a
43% smaller makespan than the original hypergraph scheduling algorithm but still preserves high
scheduling efficiency.

Keywords: task scheduling; Hypergraph+; spatial data processing; master-slave platforms

1. Introduction

In recent years, with the rapid development of surveying and remote sensing technologies, the
volume of spatial data has increased dramatically [1–3]. Spatial data processing is a typical type of
data-intensive applications where users must access and process massive spatial data. Figure 1 depicts
a typical data-intensive computing scenario comprised of a set of storage and computing nodes that
collaborate in a network. Each task requires a subset of input files from the storage nodes; a task may
share a number of files with other tasks, while an individual task is submitted to one computing node
for execution. The computing nodes themselves are connected to the storage nodes for data transfer
through a network. This collaboration is orchestrated by a task/data scheduling strategy; therefore,
scheduling strategy efficiency has an important influence on collaboration performance.

ISPRS Int. J. Geo-Inf. 2016, 5, 141; doi:10.3390/ijgi5080141 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2016, 5, 141 2 of 16

1

Figure 1. A typical data-intensive computing scenario.

For such data-intensive applications, a number of scheduling strategies have been proposed,
including task-oriented, data-aware, and hypergraph-based algorithms. Among these scheduling
algorithms, only the hypergraph-based type of algorithms can fully capture data sharing among
tasks and thus minimize the overall data transfer while still maintaining a balanced distribution of
computing loads across the nodes. Heterogeneous processing platforms, however, generate additional
problems in these hypergraph-based scheduling strategies. The formulated hypergraph model can
completely represent the relationship among tasks, data files and compute platforms, but as the
task execution node and file transfer destination are unknown before scheduling, these types of
improved hypergraph algorithms cannot take processors or network heterogeneity into consideration.
Without due consideration of platform heterogeneity, scheduling with single hypergraph partitioning
is not optimal. Furthermore, the existing scheduling algorithms including hypergraph approaches
generally neglect the overlap between task executions and data transfers. These overlooked overlaps
might be exploited to further decrease total task execution time.

To address these problems, we propose an extended hypergraph-based task-scheduling algorithm,
named Hypergraph+. Hypergraph+ firstly encapsulates a master-slave platform, spatial data processing
applications, and a scheduling objective into a general hypergraph model. The later Hypergraph+
scheduling contains two consecutive stages: matching and ordering. In the matching stage, a Fitness
function represents platform heterogeneity, evaluates the quality of hypergraph partitioning, and
selects the optimum partition. In the ordering stage, a Sharing-Files metric determines the task execution
in order to maximize overlap between communication and computation.

We conducted experiments to compare our proposed Hypergraph+ algorithm with three
classical scheduling algorithms on a virtual heterogeneous master-slave platform using the GridSim
simulation toolkit [4]. These classical scheduling algorithms include MinMin [5], XSufferage [6],
and the pure hypergraph-based scheduling algorithm [7] that we term Hypergraph in this paper
for the sake of simplicity. The target application is a real IDW interpolation of a massive point
cloud. Simulation results illustrate that in comparison to Hypergraph, our proposed Hypergraph+
algorithm can decrease task execution time by more than 43% when scheduling massive spatial data
processing applications.

The rest of this paper is organized as follows. Hypergraph partitioning and scheduling strategies
for data-intensive applications are introduced in Section 2. The formulated general hypergraph model

ISPRS Int. J. Geo-Inf. 2016, 5, 141 3 of 16

for task scheduling is presented in Section 3. Section 4 describes the proposed Hypergraph+ algorithm,
followed by simulation result details in Section 5. Section 6 concludes the paper.

2. Background and Related Work

2.1. Hypergraph and Hypergraph Partitioning

A hypergraph H = (V, N) is defined as a set of vertices V and a set of hyperedges N that connect
those vertices [8]. Each hyperedge nj P N is a non-empty subset of vertices V, i.e., nj Ď V. Figure 2
illustrates one hypergraph; in this figure, the closed curve represents one hyperedge and the dots in
the closed curve denote the vertices on this hyperedge. A graph can be treated as a special type of
hypergraph where each hyperedge can only connect two vertices. Similar to a graph, the weights wi and
costs cj can be assigned to the vertices (vi P V) and hyperedges (nj P N) of the hypergraph, respectively.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 3 of 16

for task scheduling is presented in Section 3. Section 4 describes the proposed Hypergraph+ algorithm,

followed by simulation result details in Section 5. Section 6 concludes the paper.

2. Background and Related Work

2.1. Hypergraph and Hypergraph Partitioning

A hypergraph H = (V, N) is defined as a set of vertices V and a set of hyperedges N that connect those

vertices [8]. Each hyperedge 𝑛𝑗 ∈ N is a non-empty subset of vertices V, i.e., 𝑛𝑗 ⊆ V. Figure 2 illustrates

one hypergraph; in this figure, the closed curve represents one hyperedge and the dots in the closed curve

denote the vertices on this hyperedge. A graph can be treated as a special type of hypergraph where each

hyperedge can only connect two vertices. Similar to a graph, the weights wi and costs cj can be assigned to

the vertices (𝑣𝑖 ∈ V) and hyperedges (𝑛𝑗 ∈ N) of the hypergraph, respectively.

Figure 2. An illustration of one hypergraph: the dots represent the vertices, and the closed curves

denote the hyperedges.

A partition Π = {V1, V2, … , VK} is called a K-way partition of H if (1) each part Vk is a non-empty

subset of H, (2) all parts are disjointed pairwise and (3) the union of all parts is equal to V. In one

partition Π, if a hyperedge has at least one vertex in a part, then it is connected to this part. The

connectivity set Λj of a hyperedge nj denotes all the parts connected by nj, and the connectivity value

λj = |Λj| of nj is defined as the number of parts connected by nj. If a hyperedge connects more than

one part, it is cut (i.e., λj > 1), and if otherwise, it is considered as uncut (i.e., λj = 1). The cutsize of a

partition Π is computed as in Equation (1):

cutsize(Π) = ∑ 𝑐𝑗(𝜆𝑗 − 1)

𝑛𝑗∈𝑁𝑐𝑢𝑡

 (1)

where Ncut is the set of all cut hyperedges and each cut hyperedge nj incurs a cost of 𝑐𝑗(𝜆𝑗 − 1). This

partition cutsize is also known as the connectivity-1 metric.

To solve the hypergraph partition problem, a partition must be found where the cutsize is

minimized, and a relative balance among all the parts is maintained. A partition Π of H is balanced

if the workload Wk of each part Vk satisfies the balance criterion, shown in Equation (2):

𝑊𝑘 = 𝑊𝑎𝑣𝑔(1 + 𝜀), for 1 ≤ k ≤ K (2)

where 𝑊𝑘 = ∑ 𝑤𝑖𝑣𝑖∈𝑉𝑘
 denotes the sum of the vertex weights of one part Vk; 𝑊𝑎𝑣𝑔 =

∑ 𝑤𝑖𝑉𝑖∈𝑉

𝐾
 is the

average weight; and ε is a predetermined imbalanced value.

Although hypergraph partitioning is a NP hard problem, there are still some excellent

hypergraph partition algorithms. In addition, open source tools, such as hMETIS [9], PaToH [10], and

Parkway [11], are available to implement high-quality hypergraph partitioning. Hypergraph

Figure 2. An illustration of one hypergraph: the dots represent the vertices, and the closed curves
denote the hyperedges.

A partition Π = {V1, V2, . . . , VK} is called a K-way partition of H if (1) each part Vk is a
non-empty subset of H; (2) all parts are disjointed pairwise and (3) the union of all parts is equal to
V. In one partition Π, if a hyperedge has at least one vertex in a part, then it is connected to this part.
The connectivity set Λj of a hyperedge nj denotes all the parts connected by nj, and the connectivity
value λj = |Λj| of nj is defined as the number of parts connected by nj. If a hyperedge connects more
than one part, it is cut (i.e., λj > 1), and if otherwise, it is considered as uncut (i.e., λj = 1). The cutsize of
a partition Π is computed as in Equation (1):

cutsize pΠq “
ÿ

njPNcut

cj
`

λj ´ 1
˘

(1)

where Ncut is the set of all cut hyperedges and each cut hyperedge nj incurs a cost of cj
`

λj ´ 1
˘

.
This partition cutsize is also known as the connectivity-1 metric.

To solve the hypergraph partition problem, a partition must be found where the cutsize is
minimized, and a relative balance among all the parts is maintained. A partition Π of H is balanced if
the workload Wk of each part Vk satisfies the balance criterion, shown in Equation (2):

Wk “ Wavg p1` εq, for 1 ď k ď K (2)

where Wk “
ř

viPVk
wi denotes the sum of the vertex weights of one part Vk; Wavg “

ř

ViPV wi

K is the
average weight; and ε is a predetermined imbalanced value.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 4 of 16

Although hypergraph partitioning is a NP hard problem, there are still some excellent hypergraph
partition algorithms. In addition, open source tools, such as hMETIS [9], PaToH [10], and Parkway [11],
are available to implement high-quality hypergraph partitioning. Hypergraph partitioning is widely
used in many fields, including very-large-scale integration (VLSI) design [12,13], data mining [14,15],
parallel scientific computing [16,17], and task scheduling for data intensive applications [7,18].

Moreover, a hypergraph can be also represented as a bipartite graph, e.g., conceptual graph [19,20].
A conceptual graph contains two disjoint vertices and the semantic relationships as directed edges
connecting the disjoint vertices. Conceptual graphs can support problem solving and decision making
processes, including artificial intelligence, data mining and case-based reasoning [21]. However, a
hypergraph is much more general and obvious than a conceptual graph, and was selected here to
model massive spatial data processing.

2.2. The Scheduling Heuristics for Data Intensive Applications

Scheduling data-intensive applications has been extensively studied, and a number of scheduling
algorithms have been proposed. According to whether and how they take data transfer into
account, these algorithms can be classified into three categories: task-oriented, data-aware, and
hypergraph-based.

Task-oriented scheduling algorithms usually require detailed information about tasks and
machines for accurate estimation of task execution times on each machine. Maheswaran et al. proposed
several typical mapping heuristics including MinMin, MaxMin and Sufferage [5]. From the unscheduled
tasks, the MinMin chooses the task that has the minimum earliest completion time and allocates this
task to a corresponding machine that can compute it the quickest. Unlike MinMin, MaxMin assigns the
task with the maximum earliest completion time to the fastest executing node. Sufferage selects the
task with the highest sufferage value, defined as the difference between its earliest completion time and
its second earliest completion time. None of these heuristics, however, considers data issues when
making scheduling decisions in data intensive applications and therefore, they are inefficient.

Different from task-oriented algorithms, data-aware scheduling algorithms can produce
significant performance improvements as they take both data transfer and task scheduling into
account [2,22,23]. Casanova et al. proposed an extension of Sufferage called XSufferage, which
exploits file locality and computes a cluster-level sufferage value to achieve better performance [6].
The Close-to-Files algorithm [24] schedules tasks with file replication on the least loaded processor close
to the sites where the input files are stored. Zhang et al. proposed metaheuristic data pre-scheduling
and dynamic task scheduling strategies to solve all-to-all comparison problems in heterogeneous
distributed systems [25]. Szmajduch and Kołodziej presented a new version of the Expected Time
to Compute Matrix model (ETC Matrix), in which the data transmission and task computation are
involved [26]. These data-aware scheduling algorithms however, do not consider file sharing patterns
in a global way and thus cannot fully exploit high degrees of shared I/O.

Hypergraph-based scheduling algorithms globally optimize the data transfer during task
scheduling. Khanna et al. proposed a hypergraph partitioning-based strategy to schedule a batch of
independent tasks to minimize the volume of remote data transfer and contention on storage nodes
while maintaining a balanced computational load distribution across compute nodes [7]. Kaya and
Aykanat proposed an iterative scheduling approach that improves the scheduling performance by
adopting hypergraph-partitioning [18]. They exploit data sharing in a global way to achieve more
enhanced performance than the other two types of algorithms.

However, since the file transfer node and task execution destination are unknown, the formulated
hypergraph scheduling model cannot fully represent the underlying heterogeneous platforms
in which the processors have different processing capabilities and network links have different
bandwidths. Hence, a single hypergraph partitioning may not be optimal since platform heterogeneity
is neglected. Furthermore, these scheduling algorithms cannot adequately exploit the overlap between
communication and computation. Therefore, a new task-scheduling algorithm that can address

ISPRS Int. J. Geo-Inf. 2016, 5, 141 5 of 16

the heterogeneous platform problem and maximize the communication-computation overlap is
urgently needed.

3. Hypergraph-Based Task Scheduling Model

In this section, we formulate a general hypergraph-based task scheduling model consisting of a
master-slave platform, spatial data processing applications, and the scheduling objective.

3.1. Platform Model

The target platform conforms to a typical heterogeneous master-slave paradigm and contains a
master P0 and a set of p slave processors, P = {P1, P2, . . . , Pp} as depicted in Figure 3. The master P0 is
connected to slaves over a local area network. The slaves are employed as computing nodes and each
has a relative processing capability ρ to execute the tasks. We assume that all the data files are initially
stored on the master P0, so if an input file required by a task is not in the slave processor where the
task is executed, it must be requested from the master P0.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 5 of 16

3. Hypergraph-Based Task Scheduling Model

In this section, we formulate a general hypergraph-based task scheduling model consisting of a

master-slave platform, spatial data processing applications, and the scheduling objective.

3.1. Platform Model

The target platform conforms to a typical heterogeneous master-slave paradigm and contains a

master P0 and a set of p slave processors, P = {P1, P2, …, Pp} as depicted in Figure 3. The master P0 is

connected to slaves over a local area network. The slaves are employed as computing nodes and each

has a relative processing capability ρ to execute the tasks. We assume that all the data files are initially

stored on the master P0, so if an input file required by a task is not in the slave processor where the

task is executed, it must be requested from the master P0.

Figure 3. The target heterogeneous platform.

The bandwidth of the link between the master P0 and the slave processor Pk is denoted by bk (k =

1, 2, …, p), while the maximum outgoing bandwidth of P0 is denoted by bm. In order to decrease the

waiting time for tasks, task executions and file transfers can overlap on the slaves, i.e., a slave

processor can execute a task while accepting the necessary files to execute the next task.

The multiplexed connection model [27] that enables communications between the masters and

slaves is used: (1) it allows multiple slaves to download files from the master P0 simultaneously; (2)

two slaves cannot request the same file at the same time; and (3) a slave processor can receive another

file after it has saved the previously received file on its local disk.

3.2. Application Model

The spatial data processing application A = (T, F) consists of a set of independent tasks

T = {t1, t2, …, tn} and m files F = { f1, f2, …, fm}. The execution of each task ti depends upon a subset of

files, denoted by Fi = {f1, f2, …, fk}; a given file may be shared by several tasks. The target application

A can be represented as a hypergraph model H = (V, N) to capture this data-sharing pattern. In our

proposed formulated hypergraph model H, tasks correspond to vertices and files correspond to

hyperedges. A hyperedge nj connecting some vertices means that this file fj is needed as input and is

shared by a set of tasks. The vertex weight wi is the estimated completion time of the corresponding

task Tct(ti), and the hyperedge weight cj is equal to the file size Size(fj).

The estimated completion time of one task Tct(ti) is the sum of the total input file transfer time

from the master P0 and the actual task computation time. Prior to task mapping, the file transmission

destination is unknown, but the actual file transfer time can be estimated from the size of file fj divided

Figure 3. The target heterogeneous platform.

The bandwidth of the link between the master P0 and the slave processor Pk is denoted by bk
(k = 1, 2, . . . , p), while the maximum outgoing bandwidth of P0 is denoted by bm. In order to decrease
the waiting time for tasks, task executions and file transfers can overlap on the slaves, i.e., a slave
processor can execute a task while accepting the necessary files to execute the next task.

The multiplexed connection model [27] that enables communications between the masters and
slaves is used: (1) it allows multiple slaves to download files from the master P0 simultaneously;
(2) two slaves cannot request the same file at the same time; and (3) a slave processor can receive
another file after it has saved the previously received file on its local disk.

3.2. Application Model

The spatial data processing application A = (T, F) consists of a set of independent tasks
T = {t1, t2, . . . , tn} and m files F = {f1, f2, . . . , fm}. The execution of each task ti depends upon a
subset of files, denoted by Fi = {f1, f2, . . . , fk}; a given file may be shared by several tasks. The target
application A can be represented as a hypergraph model H = (V, N) to capture this data-sharing pattern.
In our proposed formulated hypergraph model H, tasks correspond to vertices and files correspond to
hyperedges. A hyperedge nj connecting some vertices means that this file fj is needed as input and is

ISPRS Int. J. Geo-Inf. 2016, 5, 141 6 of 16

shared by a set of tasks. The vertex weight wi is the estimated completion time of the corresponding
task Tct(ti), and the hyperedge weight cj is equal to the file size Size(fj).

The estimated completion time of one task Tct(ti) is the sum of the total input file transfer time
from the master P0 and the actual task computation time. Prior to task mapping, the file transmission
destination is unknown, but the actual file transfer time can be estimated from the size of file fj divided
by the maximum outgoing bandwidth bm of P0. For spatial data processing applications, it is feasible
to assume the actual computation time of a task is proportional to the size of its input files Fi, and C is
the predefined computation cost of one data byte. Thus, the total estimated completion time of task ti
will be defined as in Equation (3):

Tct ptiq “
ÿ

f jPFi

`

Size
`

f j
˘˘

˚
1

bm
`

ÿ

f jPFi

`

Size
`

f j
˘˘

˚ C “
ÿ

f jPFi

`

Size
`

f j
˘˘

˚

ˆ

1
bm
` C

˙

(3)

Neighborhood computations are usually required in spatial data processing applications. Figure 4
shows some typical neighborhood configurations, including von Neumann, Moore, and extended
Moore neighborhoods [28]. In neighborhood processing, one cell generally corresponds to a block
of pixels, whose attribute values are stored in a file. When a neighborhood algorithm is used, for
example, to calculate slopes and aspects from elevations, the computation task for a given cell requires
the values of its neighborhood cells (including the cell itself), i.e., a set of corresponding files.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 6 of 16

by the maximum outgoing bandwidth bm of P0. For spatial data processing applications, it is feasible

to assume the actual computation time of a task is proportional to the size of its input files Fi, and C

is the predefined computation cost of one data byte. Thus, the total estimated completion time of task

ti will be defined as in Equation (3):

𝑇𝑐𝑡(𝑡𝑖) = ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗
1

𝑏𝑚
𝑓𝑗∈𝐹𝑖

+ ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗ 𝐶 = ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗ (
1

𝑏𝑚
+ 𝐶)

𝑓𝑗∈𝐹𝑖𝑓𝑗∈𝐹𝑖

(3)

Neighborhood computations are usually required in spatial data processing applications. Figure

4 shows some typical neighborhood configurations, including von Neumann, Moore, and extended

Moore neighborhoods [28]. In neighborhood processing, one cell generally corresponds to a block of

pixels, whose attribute values are stored in a file. When a neighborhood algorithm is used, for

example, to calculate slopes and aspects from elevations, the computation task for a given cell requires

the values of its neighborhood cells (including the cell itself), i.e., a set of corresponding files.

Figure 4. Typical and regular neighborhood configurations: (a) Von Neumann neighborhood, (b)

Moore neighborhood, and (c) Extended Moore neighborhood.

A Moore neighborhood example is also presented here to illustrate how to build such a

hypergraph model: in Figure 5, tasks T = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and files F = {A, B, C, D, E, F, G, H, I}.

The file B, file D, and file E are required by task T1 to calculate the first cell, then F1 = {A, B, D, E}.

Similarly, F2 = {A, B, C, D, E, F}, F3 = {B, C, E, F}, F4 = {A, B, D, E, G, H}, F5 = { A, B, C, D, E, F, G, H, I},

F6 = {B,C, E, F, H, I}, F7 = {D, E, G, H}, F8 = { D, E, F, G, H, I}, and F9 = {E, F, H, I}.

Figure 5. Tasks and files in a Moore neighborhood algorithm.

Figure 4. Typical and regular neighborhood configurations: (a) Von Neumann neighborhood, (b) Moore
neighborhood, and (c) Extended Moore neighborhood.

A Moore neighborhood example is also presented here to illustrate how to build such a hypergraph
model: in Figure 5, tasks T = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and files F = {A, B, C, D, E, F, G, H, I}. The file B, file
D, and file E are required by task T1 to calculate the first cell, then F1 = {A, B, D, E}. Similarly,
F2 = {A, B, C, D, E, F}, F3 = {B, C, E, F}, F4 = {A, B, D, E, G, H}, F5 = { A, B, C, D, E, F, G, H, I},
F6 = {B,C, E, F, H, I}, F7 = {D, E, G, H}, F8 = { D, E, F, G, H, I}, and F9 = {E, F, H, I}.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 6 of 16

by the maximum outgoing bandwidth bm of P0. For spatial data processing applications, it is feasible

to assume the actual computation time of a task is proportional to the size of its input files Fi, and C

is the predefined computation cost of one data byte. Thus, the total estimated completion time of task

ti will be defined as in Equation (3):

𝑇𝑐𝑡(𝑡𝑖) = ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗
1

𝑏𝑚
𝑓𝑗∈𝐹𝑖

+ ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗ 𝐶 = ∑ (𝑆𝑖𝑧𝑒(𝑓𝑗)) ∗ (
1

𝑏𝑚
+ 𝐶)

𝑓𝑗∈𝐹𝑖𝑓𝑗∈𝐹𝑖

(3)

Neighborhood computations are usually required in spatial data processing applications. Figure

4 shows some typical neighborhood configurations, including von Neumann, Moore, and extended

Moore neighborhoods [28]. In neighborhood processing, one cell generally corresponds to a block of

pixels, whose attribute values are stored in a file. When a neighborhood algorithm is used, for

example, to calculate slopes and aspects from elevations, the computation task for a given cell requires

the values of its neighborhood cells (including the cell itself), i.e., a set of corresponding files.

Figure 4. Typical and regular neighborhood configurations: (a) Von Neumann neighborhood, (b)

Moore neighborhood, and (c) Extended Moore neighborhood.

A Moore neighborhood example is also presented here to illustrate how to build such a

hypergraph model: in Figure 5, tasks T = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and files F = {A, B, C, D, E, F, G, H, I}.

The file B, file D, and file E are required by task T1 to calculate the first cell, then F1 = {A, B, D, E}.

Similarly, F2 = {A, B, C, D, E, F}, F3 = {B, C, E, F}, F4 = {A, B, D, E, G, H}, F5 = { A, B, C, D, E, F, G, H, I},

F6 = {B,C, E, F, H, I}, F7 = {D, E, G, H}, F8 = { D, E, F, G, H, I}, and F9 = {E, F, H, I}.

Figure 5. Tasks and files in a Moore neighborhood algorithm. Figure 5. Tasks and files in a Moore neighborhood algorithm.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 7 of 16

Figure 6 illustrates the formulated hypergraph model: Hypergraph H = (V, N), V = {1, 2, 3, 4, 5, 6,
7, 8, 9}, N = {A = {1, 2, 4, 5}, B = {1, 2, 3, 4, 5, 6}, C = {2, 3, 5, 6}, D = {1, 2, 4, 5, 7, 8}, E = {1, 2, 3, 4, 5, 6, 7, 8,
9}, F = {2, 3, 5, 6, 8, 9}, G = {4, 5, 7, 8}, H = {4, 5, 6, 7, 8, 9}, and I = {5, 6, 8, 9}; the master P0 initially holds
all the files, and the slaves P = {P1, P2, P3} will execute these tasks.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 7 of 16

Figure 6 illustrates the formulated hypergraph model: Hypergraph H = (V, N), V = {1, 2, 3, 4, 5,

6, 7, 8, 9}, N = {A = {1, 2, 4, 5}, B = {1, 2, 3, 4, 5, 6}, C = {2, 3, 5, 6}, D = {1, 2, 4, 5, 7, 8}, E = {1, 2, 3, 4, 5, 6,

7, 8, 9}, F = {2, 3, 5, 6, 8, 9}, G = {4, 5, 7, 8}, H = {4, 5, 6, 7, 8, 9}, and I = {5, 6, 8, 9}; the master P0 initially

holds all the files, and the slaves P = {P1, P2, P3} will execute these tasks.

Figure 6. Hypergraph-based task-scheduling model.

3.3. Scheduling Objective

The scheduling objective is to minimize the overall execution time, known as the makespan,

which starts from the first file transfer and ends with the completion of the last task execution [18].

Since the estimated completion time of one task is the sum of the total data transfer time and actual

task computation time, the scheduling objective is to shorten the amount of data transfer and balance

the computational load across the slaves in such a way that the overall execution time is minimized.

With the help of the formulated hypergraph model, this objective will be further generalized and

considered as the objective of hypergraph partitioning.

Data transfer minimization is achieved by the hypergraph partitioning objective.

After constructing the hypergraph H, the objective of a typical hypergraph partitioning problem

is to find a partition Π = {V1, V2, … , VK} where the cutsize is minimized. For a given partition Π, a cut

hyperedge nj with connectivity λj means that the file fj needs to be transferred 𝜆𝑗 − 1 more times but

incurs additional (𝜆𝑗 − 1) ∗ Size(𝑓𝑗) bytes of data transmission. Thus, the total communication cost

can be computed as in Equation (4):

comm(Π) = ∑ 𝜆𝑗 ∗ 𝑆𝑖𝑧𝑒(𝑓𝑗)

𝑓𝑗∈𝐹

= ∑ 𝜆𝑗 ∗ 𝑐𝑗
𝑛𝑗∈𝑁

= ∑ (𝜆𝑗 − 1) ∗ 𝑐𝑗
𝑛𝑗∈𝑁𝑐𝑢𝑡

+ ∑ 𝑐𝑗
𝑛𝑏∈𝑁

 (4)

where ∑ 𝑐𝑗𝑛𝑗∈𝑁 is equal to total input file size and can be treated as constant, so the comm(Π)

depends on the cutsize(Π). Thus, minimizing the cutsize is equivalent to minimizing the total data

transfer.

The scheduling load-balance is guaranteed by the hypergraph partitioning constraint.

Equation (2) shows that a partition Π of H is balanced if each part Vk satisfies the balance

constraint. Since the estimated completion time of a task is the weight of the corresponding vertex,

then the workload of one slave processor Pk is equal to the accumulated execution time of all assigned

tasks:

Figure 6. Hypergraph-based task-scheduling model.

3.3. Scheduling Objective

The scheduling objective is to minimize the overall execution time, known as the makespan,
which starts from the first file transfer and ends with the completion of the last task execution [18].
Since the estimated completion time of one task is the sum of the total data transfer time and actual
task computation time, the scheduling objective is to shorten the amount of data transfer and balance
the computational load across the slaves in such a way that the overall execution time is minimized.
With the help of the formulated hypergraph model, this objective will be further generalized and
considered as the objective of hypergraph partitioning.

Data transfer minimization is achieved by the hypergraph partitioning objective.
After constructing the hypergraph H, the objective of a typical hypergraph partitioning problem

is to find a partition Π = {V1, V2, . . . , VK} where the cutsize is minimized. For a given partition Π, a cut
hyperedge nj with connectivity λj means that the file fj needs to be transferred λj ´ 1 more times but
incurs additional

`

λj ´ 1
˘

˚ Size
`

f j
˘

bytes of data transmission. Thus, the total communication cost
can be computed as in Equation (4):

comm pΠq “
ÿ

f jPF

λj ˚ Size
`

f j
˘

“
ÿ

njPN

λj ˚ cj “
ÿ

njPNcut

pλj ´ 1q ˚ cj `
ÿ

njPN

cj (4)

where
ř

njPN cj is equal to total input file size and can be treated as constant, so the comm pΠq depends
on the cutsize pΠq. Thus, minimizing the cutsize is equivalent to minimizing the total data transfer.

The scheduling load-balance is guaranteed by the hypergraph partitioning constraint.
Equation (2) shows that a partition Π of H is balanced if each part Vk satisfies the balance constraint.

Since the estimated completion time of a task is the weight of the corresponding vertex, then the
workload of one slave processor Pk is equal to the accumulated execution time of all assigned tasks:

Wk pΠq “
ÿ

ViPVk

wi “
ÿ

tiPPk

Tct ptiq “
ÿ

tiPPk

ÿ

f jPFi

ˆ

1
bm
` C

˙

˚ Size
`

f j
˘

(5)

ISPRS Int. J. Geo-Inf. 2016, 5, 141 8 of 16

Thus, achieving balance among all the grouped vertices during hypergraph partitioning
corresponds to balancing the workload of slave processors during the scheduling.

4. The Hypergraph+ Scheduling Algorithm

The proposed Hypergraph+ scheduling algorithm has two consecutive stages: matching and
ordering. Section 4.1 introduces hypergraph partitioning for mapping tasks to the slave processors.
Section 4.2 explains an ordering algorithm that efficiently orders tasks for execution and accordingly
transfers the needed files.

4.1. Hypergraph Partitioning for Matching Tasks

Hypergraph partitioning provides an initial scheme to assign tasks to slave processors so
that data transfers are minimized and computational workloads are balanced. Single hypergraph
partitioning may not be optimal, however, under conditions of platform heterogeneity. Therefore, we
consider both network heterogeneity and processor heterogeneity when evaluating the quality of
partitioning results for optimization. The whole flow of matching tasks to slaves is shown in Figure 7.
First, the input hypergraph model is quickly partitioned with the PaToH tool [10] to obtain partition
Π= {V1, V2, . . . , VK}. Next, the fitness evaluation is carried out on partition Π with the fitness function:
Fitness(Π). Finally, the optimum partition is chosen to map tasks to slaves.

1

Figure 7. The flow diagram of hypergraph partitioning for matching tasks.

The Fitness(Π) evaluation is as follows:
(a) Equation (4) is only valid for homogeneous network cases, and λj is set to constant 1

bm
.

After obtaining one hypergraph partitioning, the actual communication volume comm1 pΠq is

ISPRS Int. J. Geo-Inf. 2016, 5, 141 9 of 16

calculated with Equation (6). The heterogeneous network, λj is modified to
ř

PkPΛj
1
bk

, where Λj
denotes the set of slave processors needed to transfer file fj, and bk is the bandwidth between Pk and P0.

comm1 pΠq “
ÿ

f jPF

ÿ

PkPΛj

Size
`

f j
˘

bk
(6)

(b) Then, the actual workload of each slave processor W1
k pΠq is calculated, which is the sum

of the computation load and communication cost. In contrast to Equation (5), relative processing
capability ρk is added to represent the actual computational load and bk is substituted for bm to derive
the actual communication load in Equation (7).

W1
k pΠq “

ÿ

tiPPk

ÿ

f jPFi

ˆ

1
bk
`

C
ρk

˙

˚ Size
`

f j
˘

(7)

(c) The average of workload W1
avg pΠq and the mean square deviation of workload sd1W1

k
pΠq are

calculated as in Equations (8) and (9).

W1
avg pΠq “

řK
k“1 W1

k pΠq
K

(8)

sd1W1
k
pΠq “

d

řK
k“1

`

W1

k pΠq ´W1

avg pΠq
˘

K
(9)

(d) The fitness value is defined in (10): a smaller fitness value implies that the partition has lower
communication overhead and a more equally balanced computational load.

Fitness pΠq “ comm1 pΠq ˚ sd1W1
k
pΠq (10)

From Equation (10), a lower fitness value means a better partition quality. Generally, the lowest
fitness value is inversely proportional to the repetition number n, but a greater repetition number will
increase the entire evaluation time cost. To achieve a cost/quality balance, the iteration number n is
chosen as follows. Initially, n is set to a given number (e.g., 10). Then, n doubles each time until the
percentage decrease in the lowest fitness value is smaller than a given threshold (e.g., 5%). In this way,
the evaluation will generate satisfactory partition quality without costing much time.

4.2. Ordering Tasks and File Transfers

After all the tasks have been assigned to their destination processors, Hypergraph+ will then
determine the task execution order and input file transfer so as to maximize the overlap between
computation and communication while decreasing the end-point contention among the slaves.

In order to achieve overlap maximization, a Sharing-Files(SF) metric is introduced to order the
task execution on each processor. This metric computes how similar one task is to other tasks. The SF
value of one task is defined as the number of bytes that the task input files shares with other tasks on
the assigned processor. It can be calculated as in Equation (11):

SF ptiq “
ÿ

tjPPk

ÿ

fxPFi
Ş

Fj

Size p fxq, i ‰ j (11)

Task ti with higher SF(ti) value means that its input files are shared with more tasks. Task ti
that has the highest SF(ti) value will be executed first; then, the required files are transferred in
advance; thus other tasks relying on these files are subsequently executed. In this case, communication
and computation can be overlapped to decrease the waiting time of tasks. Algorithm 1 outlines the
proposed task ordering heuristic.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 10 of 16

Algorithm 1 Ordering tasks for execution

(1) for each slave processor Pk in P
(2) for each task ti mapped to Pk

(3) evaluate Function SF(ti);
(4) build the list L(Pk) of the tasks sorted in decreasing order of SF(ti);
(5) endfor
(6) endfor
(7) do until all tasks in T are scheduled
(8) find the slave processor Pk with maximum workload;
(9) if (input files of task ti are already on the processor Pk)
(10) select task ti to execute;
(11) else
(12) select the first task ti in L(Pk) to execute;
(13) schedule the file transfers of task ti; (Algorithm 2)
(14) remove task ti from L(Pk), T;
(15) update the workload of Pk;
(16) enddo

The transfer of file f j P Fi is scheduled based on its earliest completion time. Two tasks on
different slave processors may depend upon the same input file and cause end-point contention among
slave processors. In order to reduce end-point contention, the estimated completion time includes
the actual transfer time and the waiting time. The actual transfer time is the size of file fj divided
by the bandwidth. Tw(fj) denotes the time spent waiting for transfer in the queue since other slave
processors have previously sent requests for the file fj to the master P0. The estimated completion time
for transferring file fj is computed as in Equation (12):

Tct
`

f j
˘

“
Size

`

f j
˘

bk
` Tw

`

f j
˘

(12)

Algorithm 2 describes the general structure of the file transmission heuristic in each processor.
The heuristic starts by computing the estimated completion time of each file in Fi, which is the set of
files requested by task ti (line 2 to line 4). It schedules the transfer of file fj with the earliest completion
time (line 5). Then, file fj is removed from Fi (line 6) and Tw(fj) is updated accordingly (line 7).
This heuristic performs the next iteration of the do loop until all files are transferred.

Algorithm 2 The file transmission heuristic in each processor

(1) do until all files in Fi are transferred
(2) for each file fj in Fi

(3) compute Tct(fj);

(4) endfor
(5) transfer file fj with the earliest completion time from P0 to Pk;

(6) remove file fj from Fi;

(7) update Tw(fj);

(8) enddo

ISPRS Int. J. Geo-Inf. 2016, 5, 141 11 of 16

5. Experiments and Discussion

5.1. Simulated Resources

Simulations provide a repeatable and controllable evaluation environment, and were used to
perform an evaluation of our proposed Hypergraph+ algorithm. We selected the GridSim toolkit [4]
to conduct the simulations since it allows us to model heterogeneous processor resources and
network connectivity with different bandwidths. GridSim also supports both static and dynamic
scheduling simulations.

In this simulation, six slave processors were defined as in Table 1 to execute the input tasks.
Each slave processor contains two distinct characteristics, the CPU speed and network bandwidth.
Since the task execution time can be defined in terms of million instructions (MI), the CPU resource
speed was modeled as million instructions per second (MIPS). The network bandwidth is the
bandwidth of the link between the master and the slave. The MIPS and bandwidth were randomly
generated for this evaluation experiment [29].

Table 1. Slave setup for the simulation.

Slave MIPS Bandwidth

P1 200 170
P2 260 320
P3 160 280
P4 540 630
P5 390 470
P6 410 390

5.2. Experimental Application and Datasets

We selected spatial interpolation as the target application to evaluate the Hypergraph+ scheduling
algorithm. For simplicity, inverse distance weighted (IDW) interpolation was used in the experiments.
IDW reflects the principle that the estimated value of a cell is more likely correlated with nearby points
than distant points [30]. The IDW interpolation equation is defined as,

Zp “

řk
i“1

ˆ

Zi

dβ
i

˙

řk
i“1

ˆ

1
dβ

i

˙ (13)

where Zp is the interpolated value at the target point p; Zi is the observed value at the ith scatter point pi
in the neighborhood of p; k is the number of scatter points taken into the interpolation in the predefined
neighborhood of p; di is the Euclidian distance from the ith scatter point pi to p; and β is an arbitrary
positive number called the weighting exponent.

A LiDAR point cloud dataset was used as real input in the experiments. These LiDAR point
cloud data were acquired in Gilmer County, West Virginia, USA and were free for downloading on the
Internet (http://www.wvview.org/data/lidar/Gilmer/). The dataset contains 0.883 billion points,
and the point spacing is about 1.4 m, illustrated in Figure 8. This dataset is stored in the ASPRS LAS
file format. The total data size is approximately 16.4 GB.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 12 of 16

ISPRS Int. J. Geo-Inf. 2016, 5, 141 11 of 16

was modeled as million instructions per second (MIPS). The network bandwidth is the bandwidth of

the link between the master and the slave. The MIPS and bandwidth were randomly generated for

this evaluation experiment [29].

Table 1. Slave setup for the simulation.

Slave MIPS Bandwidth

P1 200 170

P2 260 320

P3 160 280

P4 540 630

P5 390 470

P6 410 390

5.2. Experimental Application and Datasets

We selected spatial interpolation as the target application to evaluate the Hypergraph+

scheduling algorithm. For simplicity, inverse distance weighted (IDW) interpolation was used in the

experiments. IDW reflects the principle that the estimated value of a cell is more likely correlated with

nearby points than distant points [30]. The IDW interpolation equation is defined as,

𝑍𝑝 =

∑ (
𝑍𝑖
𝑑𝑖
𝛽)

𝑘
𝑖=1

∑ (
1

𝑑𝑖
𝛽)

𝑘
𝑖=1

 (13)

where Zp is the interpolated value at the target point p; Zi is the observed value at the ith scatter point

pi in the neighborhood of p; k is the number of scatter points taken into the interpolation in the

predefined neighborhood of p; di is the Euclidian distance from the ith scatter point pi to p; and β is

an arbitrary positive number called the weighting exponent.

A LiDAR point cloud dataset was used as real input in the experiments. These LiDAR point

cloud data were acquired in Gilmer County, West Virginia, USA and were free for downloading on

the Internet (http://www.wvview.org/data/lidar/Gilmer/). The dataset contains 0.883 billion points,

and the point spacing is about 1.4 m, illustrated in Figure 8. This dataset is stored in the ASPRS LAS

file format. The total data size is approximately 16.4 GB.

Figure 8. The Gilmer County LiDAR dataset.
Figure 8. The Gilmer County LiDAR dataset.

The experimental LiDAR dataset was later divided into multiple point blocks. IDW interpolation
requires Moore neighborhood to be used as the neighboring blocks input, and the formulated
Hypergraph application model is the same as the example model defined in Section 3.2. In this
application model, the hyperedge weight cj was set to each point block size. The vertex weight wi was
set to the interpolation time of the corresponding point block Tct.

In Equation (3), we derived that the actual computation time of one task is proportional to the
size of its input files. Thus, an additional experiment was conducted firstly to explore the quantitative
relationship between the IDW interpolation time and the input points size. As shown in Figure 9, the
relationship between the data size of points and IDW interpolation runtime is almost linear (R2 > 0.99).
From the curve fit function, C was solved to 0.0002 for Equation (3).

ISPRS Int. J. Geo-Inf. 2016, 5, 141 12 of 16

The experimental LiDAR dataset was later divided into multiple point blocks. IDW interpolation

requires Moore neighborhood to be used as the neighboring blocks input, and the formulated

Hypergraph application model is the same as the example model defined in Section 3.2. In this

application model, the hyperedge weight cj was set to each point block size. The vertex weight wi was

set to the interpolation time of the corresponding point block Tct.

In Equation (3), we derived that the actual computation time of one task is proportional to the

size of its input files. Thus, an additional experiment was conducted firstly to explore the quantitative

relationship between the IDW interpolation time and the input points size. As shown in Figure 9, the

relationship between the data size of points and IDW interpolation runtime is almost linear (R2 >

0.99). From the curve fit function, C was solved to 0.0002 for Equation (3).

Figure 9. The quantitative relationship between input points size and IDW interpolation time.

5.3. Evaluation Results and Discussions

With the formulated platform and application models in Sections 5.1 and 5.2, experiments were

carried out to evaluate the performance and efficiency of Hypergraph+, comparing it to MinMin [5],

XSufferage [6] and Hypergraph, which is the original hypergraph partitioning-based approach [7].

These three heuristics are typical task-oriented, data-aware, and hypergraph-based scheduling

algorithms described as in Section 2.2.

The metrics used for evaluating the scheduling algorithms are makespan, I/O reduction

percentage, and running time. The makespan, i.e., the overall execution time, is the most common

performance measure for a scheduling algorithm. A lower makespan means better performance of

the scheduling algorithm. The I/O reduction percentage was calculated as the ratio of the amount of

data sets accessed from the local disk storage to the total amount of data sets required by the tasks.

A higher I/O reduction percentage means a greater decrease in data transfers. The running time is

the time spent scheduling tasks to computing processors, and reflects the time complexity of

scheduling algorithms. A scheduling algorithm will be more efficient with less running time. All

three metrics provide a complete evaluation for each scheduling algorithm.

In our experiments, the target application computed a digital elevation model of Gilmer County

from the LiDAR dataset. The original point cloud was divided into different block sizes and this could

lead to different task granularities and different degrees of I/O overlap, i.e., smaller block sizes

created more I/O overlap. Illustrated from Figure 5 and the example in Section 3.2, the number of

IDW interpolation tasks was equal to the number of point blocks. Experimental results are illustrated

in Figures 10 and 11.

Figure 9. The quantitative relationship between input points size and IDW interpolation time.

5.3. Evaluation Results and Discussions

With the formulated platform and application models in Sections 5.1 and 5.2, experiments were
carried out to evaluate the performance and efficiency of Hypergraph+, comparing it to MinMin [5],
XSufferage [6] and Hypergraph, which is the original hypergraph partitioning-based approach [7].
These three heuristics are typical task-oriented, data-aware, and hypergraph-based scheduling
algorithms described as in Section 2.2.

The metrics used for evaluating the scheduling algorithms are makespan, I/O reduction
percentage, and running time. The makespan, i.e., the overall execution time, is the most common

ISPRS Int. J. Geo-Inf. 2016, 5, 141 13 of 16

performance measure for a scheduling algorithm. A lower makespan means better performance of
the scheduling algorithm. The I/O reduction percentage was calculated as the ratio of the amount of
data sets accessed from the local disk storage to the total amount of data sets required by the tasks.
A higher I/O reduction percentage means a greater decrease in data transfers. The running time is the
time spent scheduling tasks to computing processors, and reflects the time complexity of scheduling
algorithms. A scheduling algorithm will be more efficient with less running time. All three metrics
provide a complete evaluation for each scheduling algorithm.

In our experiments, the target application computed a digital elevation model of Gilmer County
from the LiDAR dataset. The original point cloud was divided into different block sizes and this
could lead to different task granularities and different degrees of I/O overlap, i.e., smaller block sizes
created more I/O overlap. Illustrated from Figure 5 and the example in Section 3.2, the number of
IDW interpolation tasks was equal to the number of point blocks. Experimental results are illustrated
in Figures 10 and 11.ISPRS Int. J. Geo-Inf. 2016, 5, 141 13 of 16

(a)

(b)

Figure 10. Performance evaluation with different numbers of tasks. (a) Makespan; (b) I/O

reduction percentage.

Figure 11. Efficiency evaluation with different numbers of tasks.

Figure 10. Performance evaluation with different numbers of tasks. (a) Makespan; (b) I/O
reduction percentage.

ISPRS Int. J. Geo-Inf. 2016, 5, 141 14 of 16

ISPRS Int. J. Geo-Inf. 2016, 5, 141 13 of 16

(a)

(b)

Figure 10. Performance evaluation with different numbers of tasks. (a) Makespan; (b) I/O

reduction percentage.

Figure 11. Efficiency evaluation with different numbers of tasks.
Figure 11. Efficiency evaluation with different numbers of tasks.

As shown in Figure 10a, when the number of tasks increased, the makespan of MinMin increased
quite rapidly; XSufferage and Hypergraph followed the same pattern, but the makespan of Hypergraph+
grew much more slowly. During the entire task execution process, our proposed Hypergraph+ algorithm
reduced the total execution time for MinMin, XSufferage, and Hypergraph by 70%, 62%, and 43%,
respectively. These results demonstrate that Hypergraph+ outperforms the other scheduling strategies.

Figure 10b shows that the percentage of I/O reduction in these heuristics varied with the number
of tasks. When the number of tasks increased, the percentage I/O reduction in MinMin was about 40%,
XSufferage was nearly 55%, and Hypergraph was above 80%, but Hypergraph+ achieved a 2%–5% higher
reduction than Hypergraph. In terms of the I/O reduction metric, Hypergraph+ was superior to MinMin,
XSufferage and Hypergraph.

As shown in Figure 10a,b, MinMin and XSufferage perform slower with lower I/O reduction
than Hypergraph+ and Hypergraph. This is because MinMin does not consider data sharing at all, and
XSufferage fails to exploit data sharing patterns globally. Hypergraph+ and Hypergraph take data sharing
into consideration globally such that the tasks with shared input are assigned to the same processor
as much as possible. In addition, Hypergraph+ can obtain an optimal hypergraph partition result
and maximizes the overlap probability between communication and computation to decrease the
waiting time for tasks. Therefore, Hypergraph+ achieves better performance than Hypergraph in terms
of makespan and I/O reduction percentage.

As illustrated in Figure 11, when the number of tasks increased, the running time increased at a
much faster rate for MinMin and XSufferage, in contrast to Hypergraph+ and Hypergraph. MinMin and
XSufferage must calculate the expected completion time for each task on each computing node to
choose one task until all tasks are executed; consequently, the time complexity was O(n2). On the other
hand, Hypergraph+ and Hypergraph use hypergraph partitioning to map all tasks to processors quickly,
as the time complexity of hypergraph partitioning was O(n) + O(logn) [31]. Hypergraph+ was only
about 3 s slower than Hypergraph on average. As seen in Figure 10a, Hypergraph+ conserved more than
2400 seconds compared with Hypergraph. This small overhead can be negligible. Thus, Hypergraph+
can achieve better performance than the other three algorithms and still maintains high efficiency.

6. Conclusions

This paper presents a Hypergraph+ scheduling algorithm that extends the existing
hypergraph-based scheduling algorithm for massive spatial data processing to obtain better
performance. It first formulates a general hypergraph model to represent tasks, spatial datasets
and processing platform. Then, the quality of hypergraph partitioning results is evaluated by a

ISPRS Int. J. Geo-Inf. 2016, 5, 141 15 of 16

Fitness function to map tasks to the processors such that the total volume of communication is
minimized while balancing computational workloads. Moreover, Hypergraph+ schedules tasks and
file transfers to maximize the overlap probability between communication and computation with
reduced end-point contention among processors. Simulations were carried out to compare Hypergraph+
with MinMin, XSufferage, and Hypergraph using spatial interpolation applications on heterogeneous
master-slave platforms. Simulation results illustrate that the Hypergraph+ is on the average 43% better
than Hypergraph in terms of makespan, while preserving the efficiency of Hypergraph.

In the future, we will extend the Hypergraph+ algorithm to distributed file system storage centers.
Currently, the distributed file system, e.g., Hadoop HDFS, is used to store and process massive spatial
datasets. Data replication is often employed in Hadoop HDFS to improve availability and throughput.
Therefore, our Hypergraph+ scheduling algorithm can be further investigated to address the data
replication problem and exploit a higher degree of data sharing in a Hadoop environment.

Acknowledgments: This work is supported by the Natural Science Foundation of China (Grant No.: 41301411)
and the Natural Science Foundation of Hubei Province (Grant No.: 2015CFB399).

Author Contributions: Xuefeng Guan amd Bo Cheng conceived and designed the experiments; Bo Cheng
performed the experiments; all the authors analyzed the data; Xuefeng Guan, Bo Cheng and Rui Li wrote the
paper. Authorship must be limited to those who have contributed substantially to the work reported.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, Y.; Chen, B.; Yu, H.; Zhao, Y.; Huang, Z.; Fang, Y. Applying GPU and POSIX thread technologies in
massive remote sensing image data processing. In Proceedings of the 19th International Conference on
Geoinformatics 2011, Shanghai, China, 24–26 June 2011; pp. 1–6.

2. Song, W.; Yue, S.; Wang, L.; Zhang, W.; Liu, D. Task scheduling of massive spatial data processing across
distributed data centers: What’s new? In Proceedings of the 2011 IEEE 17th International Conference on
Parallel and Distributed Systems, Tainan, Taiwan, 7–9 December 2011; pp. 976–981.

3. Xing, J.; Sieber, R.; Kalacska, M. The challenges of image segmentation in big remotely sensed imagery data.
Ann. GIS 2014, 20, 233–244. [CrossRef]

4. Buyya, R.; Murshed, M. Gridsim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing. CCPE 2002, 14, 1175–1220. [CrossRef]

5. Maheswaran, M.; Ali, S.; Siegal, H.J.; Hensgen, D.; Freund, R.F. Dynamic matching and scheduling of a class
of independent tasks onto heterogeneous computing systems. In Proceedings of the 8th Heterogeneous
Computing Workshop (HCW’99), San Juan, Puerto Rico, 12 April 1999; pp. 30–44.

6. Casanova, H.; Legrand, A.; Zagorodnov, D.; Berman, F. Heuristics for scheduling parameter sweep
applications in grid environments. In Proceedings of the 9th Heterogeneous Computing Workshop (HCW’00),
Cancun, Mexico, 1 May 2000; pp. 349–363.

7. Khanna, G.; Vydyanathan, N.; Kurc, T.; Catalyurek, U.; Wyckoff, P.; Saltz, J.; Sadayappan, P. A hypergraph
partitioning based approach for scheduling of tasks with batch-shared I/O. In Proceedings of the 5th
International Symposium on Cluster Computing and the Grid (CCGrid 2005), Cardiff, UK, 9–12 May 2005;
pp. 792–799.

8. Berge, C. Graphs and Hypergraphs; North-Holland Publishing Company: Amsterdam, The Netherlands, 1973.
9. Karypis, G.; Kumar, V. Multilevel k-way hypergraph partitioning. VLSI Des. 2000, 11, 285–300. [CrossRef]
10. Catalyürek, U.V.; Aykanat, C. PaToH (partitioning tool for hypergraphs). In Encyclopedia of Parallel Computing

2011; Springer Science & Business Media: Berlin, Germany, 2011; pp. 1479–1487.
11. Trifunovic, A.; Knottenbelt, W.J. Parkway 2.0: A parallel multilevel hypergraph partitioning tool.

In Proceedings of 19th International Symposium on Computer and Information Sciences (ISCIS 2004),
Kemer-Antalya, Turkey, 27–29 October 2004; pp. 789–800.

12. Alpert, C.J.; Kahng, A.B. Recent directions in netlist partitioning: A survey. Integr. VLSI J. 1995, 19, 1–81.
[CrossRef]

13. Karypis, G.; Aggarwal, R.; Kumar, V.; Shekhar, S. Multilevel hypergraph partitioning: Applications in VLSI
domain. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1999, 7, 69–79. [CrossRef]

http://dx.doi.org/10.1080/19475683.2014.938774
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1155/2000/19436
http://dx.doi.org/10.1016/0167-9260(95)00008-4
http://dx.doi.org/10.1109/92.748202

ISPRS Int. J. Geo-Inf. 2016, 5, 141 16 of 16

14. Mobasher, B.; Jain, N.; Han, E.H.; Srivastava, J. Web Mining: Pattern Discovery from World Wide Web Transactions;
Technical Report TR96-050; Department of Computer Science, University of Minnesota: Minneapolis, MN,
USA, 1996.

15. Demir, E.; Aykanat, C.; Cambazoglu, B.B. Clustering spatial networks for aggregate query processing:
A hypergraph approach. Inf. Syst. 2008, 33, 1–17. [CrossRef]

16. Catalyürek, U.V.; Aykanat, C. Hypergraph-partitioning-based decomposition for parallel sparse-matrix
vector multiplication. IEEE Trans. Parallel Distrib. Syst. 1999, 10, 673–693. [CrossRef]

17. Cambazoglu, B.B.; Aykanat, C. Hypergraph-partitioning-based remapping models for image-space-parallel
direct volume rendering of unstructured grids. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 3–16. [CrossRef]

18. Kaya, K.; Aykanat, C. Iterative-improvement-based heuristics for adaptive scheduling of tasks sharing files
on heterogeneous master-slave environments. IEEE Trans. Parallel Distrib. Syst. 2006, 17, 883–896. [CrossRef]

19. Doumbouya, M.B.; Kamsu-Foguem, B.; Kenfack, H. Argumentation semantics and graph properties.
Inf. Process. Manag. 2016, 52, 319–325. [CrossRef]

20. Kamsu-Foguem, B.; Tchuenté-Foguem, G.; Foguem, C. Conceptual graph operations for formal visual
reasoning in the medical domain. IRBM 2014, 35, 262–270. [CrossRef]

21. Kamsu-Foguem, B. Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft
structures. Adv. Eng. Inf. 2012, 26, 859–869. [CrossRef]

22. Kosar, T.; Balman, M. A new paradigm: Data-aware scheduling in grid computing. Futur. Gener. Comput. Syst.
2009, 25, 406–413. [CrossRef]

23. Caíno-Lores, S.; Carretero, J. A survey on data-centric and data-aware techniques for large scale
infrastructures. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Auto. Cont. Inf. Eng. 2016, 10,
459–465.

24. Mohamed, H.H.; Epema, D.H. An evaluation of the close-to-files processor and data co-allocation policy in
multiclusters. In Proceedings of the IEEE International Conference on Cluster Computing 2004, Los Alamitos,
CA, USA, 20–23 September 2004.

25. Zhang, Y.F.; Tian, Y.C.; Fidge, C.; Kelly, W. Data-aware task scheduling for all-to-all comparison problems in
heterogeneous distributed systems. J. Parallel Distrib. Comput. 2016, 93, 87–101. [CrossRef]

26. Szmajduch, M.; Kołodziej, J. Data-aware scheduling in massive heterogeneous systems. In Proceedings of
the 29th European Conference on Modeling and Simulation ECMS 2015, Varna, Bulgaria, 26–29 May 2015;
pp. 608–614.

27. da Silva, F.A.; Senger, H. Scalability limits of Bag-of-Tasks applications running on hierarchical platforms.
J. Parallel Distrib. Comput. 2011, 71, 788–801. [CrossRef]

28. Guan, Q.; Clarke, K.C. A general-purpose parallel raster processing programming library test application
using a geographic cellular automata model. Int. J. Geogr. Inf. Sci. 2010, 24, 695–722. [CrossRef]

29. Muthuvelu, N.; Liu, J.; Soe, N.L.; Venugopal, S.; Sulistio, A.; Buyya, R. A dynamic job grouping-based
scheduling for deploying applications with fine-grained tasks on global grids. In Proceedings of the
3rd Australasian workshop on Grid computing and e-Research (AusGrid 2005), Newcastle, Australia,
30 January–4 February 2005; pp. 41–48.

30. Guan, X.; Wu, H. Leveraging the power of multi-core platforms for large-scale geospatial data processing:
Exemplified by generating DEM from massive LiDAR point clouds. Comput. Geosci. 2010, 36, 1276–1282.
[CrossRef]

31. Trifunović, A.; Knottenbelt, W.J. Parallel multilevel algorithms for hypergraph partitioning. J. Parallel
Distrib. Comput. 2008, 68, 563–581. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.is.2007.04.001
http://dx.doi.org/10.1109/71.780863
http://dx.doi.org/10.1109/TPDS.2007.253277
http://dx.doi.org/10.1109/TPDS.2006.105
http://dx.doi.org/10.1016/j.ipm.2015.08.003
http://dx.doi.org/10.1016/j.irbm.2014.04.001
http://dx.doi.org/10.1016/j.aei.2012.06.006
http://dx.doi.org/10.1016/j.future.2008.09.006
http://dx.doi.org/10.1016/j.jpdc.2016.04.008
http://dx.doi.org/10.1016/j.jpdc.2011.01.002
http://dx.doi.org/10.1080/13658810902984228
http://dx.doi.org/10.1016/j.cageo.2009.12.008
http://dx.doi.org/10.1016/j.jpdc.2007.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background and Related Work
	Hypergraph and Hypergraph Partitioning
	The Scheduling Heuristics for Data Intensive Applications

	Hypergraph-Based Task Scheduling Model
	Platform Model
	Application Model
	Scheduling Objective

	The Hypergraph+ Scheduling Algorithm
	Hypergraph Partitioning for Matching Tasks
	Ordering Tasks and File Transfers

	Experiments and Discussion
	Simulated Resources
	Experimental Application and Datasets
	Evaluation Results and Discussions

	Conclusions

